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Abstract: Nutritional quality improvement of rice is the key to ensure global food security. Conse-
quently, enormous efforts have been made to develop genomics and transcriptomics resources for
rice. The available omics resources along with the molecular understanding of trait development can
be utilized for efficient exploration of genetic resources for breeding programs. In the present study,
80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to
understand the haplotypic variability and gene expression dynamics. The haplotypic variability of
selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes.
The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are
predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes,
and the distribution and evolution of these haplotype groups in rice were described. The nucleotide
diversity for the selected genes was significantly reduced in cultivated rice as compared with that
in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic
association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was
developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent
sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly
available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses
of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits
will help in exploring the most desired haplotype for grain quality improvement. Similarly, the
information provided here will be helpful to understand the molecular mechanism involved in the
development of nutritional and cooking quality traits in rice.

Keywords: allelic effects; gene expression dynamics; genetic variation; haplotypic network;
molecular evolution

1. Introduction

Rice, a staple food in many countries, contributes around 21% to the total per capita
calorie intake across the globe [1,2]. Rice is consumed in several forms such as processed
and fermented products. Many rice preparation methods depend on the grain size and
stickiness of the cooked grains. In addition to being rich in carbohydrates, rice grains con-
tain a low amount of essential micronutrients like calcium, zinc, iron, and phosphorus [3].
Hence, tremendous efforts have been made to improve the palatability and nutrient content
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of rice. Several genes determining essential mineral and provitamin content in rice have
been identified and subsequently well-characterized to reveal the molecular mechanism [4].
An in-depth understanding of genetic regulation, as well as information about allelic vari-
ations and effects, is important to explore their utilization for breeding programs. One
of the most noteworthy examples is the semi-dwarf 1 or SD1 gene with a loss-of-function
allele, which has been effectively used for rice improvement [5]. Among the quality-related
traits, grain size is one of the most important factors determining the market price of rice
more particularly for premium quality basmati rice. Recently, a quantitative trait loci (QTL),
qGS3, regulating grain size has been characterized in rice [6]. Several other QTLs/genes,
e.g., OsSPL16, OsSPL13, GL-2, and GL-7, have been identified and are known to regulate
grain size in rice [7–10]. Even though rice is highly important for nutritional value, more
intensified efforts are needed to improve nutritional quality related traits like minerals
and protein content. Recent studies have identified genes, such as OsAAP6, TGP12, and
OsGluA2, that have a role in governing protein content in rice [11–13]. Now, the challenge is
to utilize these genes through approaches like marker assisted breeding or haplotype-based
breeding in rice.

Recent advancement in the next generation sequencing technology has generated
plenty of genomics data, which will be helpful for basic as well as applied aspects of rice
research. Various studies aimed at the generation and curation of genomic resources have
been undertaken over the past decade. One such endeavor is ‘The 3000 Rice Genomes
Project’, which resulted in re-sequencing data for ~3024 diverse rice accession [14]. A similar
effort has been employed to generate whole genome resequencing information for the 108
diverse rice varieties, which have been subsequently used to reveal the sequence variations
in O. sativa Purpleputtu colored rice landrace [15]. Additional sequence information was
generated for 950 rice accessions in one study, and ~533 accessions from another study [16–
18]. Molecular markers were developed for yield-related traits by using re-sequencing
data for 50 rice accessions that belonged to both cultivated and wild rice varieties [19].
Similarly, Qin et al. [20] developed a pan-genome resource with a genetically diverse
panel of 31 rice accessions, which revealed 171,072 structural variants and 25,549 gene copy
number variants. A noteworthy study for quantitative trait nucleotides (QTNs) pyramiding
and breeding have been conducted by Wei et al. [21]. The ‘RiceNavi’ navigation system
developed by Wei et al. (2021) for QTN pyramiding will be helpful to explore haplotypic
diversity existed in rice germplasm. The system contains a comprehensive map of 348
QTNs and 51 structural variants along with 207 Single nucleotide polymorphism (SNPs)
and 90 InDels. Numerous such efforts have resulted in a huge source of information on
allelic variations for important agricultural traits.

In addition to genome sequence information, transcriptomic resources illustrate the
interactions of gene expression and regulation under different conditions, e.g., develop-
mental stages, tissues, and growth conditions. Moreover, the co-expression of genes plays
a pivotal role in understanding complex biological phenomena. Generally, genes sharing a
common molecular pathway tend to have similar expression patterns. Identification of such
genes enables the prediction of pathways, events in molecular responses, and importantly,
which genes have a key role in the expression network. Variation in the regulatory genes
or regulatory sequences (promoter) determines differential gene expression. Therefore,
genomics and transcriptomics will be invaluable resources for a better understanding of
trait development.

Allelic information from cultivated, wild, and traditional rice varieties help in the iden-
tification of accessions more conducive to well-established breeding strategies. In addition
to single alleles, combinations of heritable sequence variations (haplotypes) that result in su-
perior agronomic traits are being utilized. Several studies aimed towards the development
of ideal varieties using haplotype-based breeding approach. One such study identified
superior haplotype patterns for 120 genes governing desired yield and quality traits in
rice [22]. The haplotypes, which were identified on a core dataset of 150 rice accessions
panels were then compared to mega rice varieties. Such studies utilizing haplotype-based
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breeding pave the way for combining superior haplotypes with high-yielding rice acces-
sions to meet consumer-centric nutritional demands. One of the important outcomes of
allele mining and genome sequencing is the development and utilization of sequence-based
markers for breeding programs. Several marker assays based on such SNPs have been de-
veloped which include KASP (Kompetitive Allele-Specific PCR), TaqMan, SNPlex, Illumina
Infinium BeadChip, Affymetrix Axiom [23].

In the present study, we have selected functionally characterized genes that are im-
portant for the nutritional and cooking quality-related traits in rice. Utilizing the available
re-sequencing data for approximately 4700 rice accessions, we have studied the allelic
variations in the key genes and deciphered the haplotype combinations. The utility of this
approach and the generated information were demonstrated by showing the association of
various haplotypes of genes governing the grain length and chalkiness traits, with different
patterns and degrees of grain phenotypes. In addition, we have developed a transcriptomic
atlas to explore the gene expression and co-expression networks for the selected traits. We
have identified several functionally important SNPs that can be further utilized for the
development of marker assays associated with cooking and nutritional quality traits in rice.

2. Materials and Methods
2.1. Selection of Genes Governing Cooking Quality and Nutritional Value Related Traits

A total of 80 functionally characterized genes governing cooking quality and nutrient
content were selected from the literature search and by using tools viz. FunRiceGenes [24]
and OGRO (Overview of Functionally Characterized Genes in Rice Online database) on
Q-TARO [25] (Supplementary Table S1). The SNP data for selected genes was retrieved for
the set of 4726 rice accessions including 595 Indica I (IndI), 465 Indica II (IndII), 913 IndicaIII
(IndIII), 786 indica intermediate, 767 temperate japonica (TeJ), 504 tropical japonica (TrJ), 241
japonica intermediate, 269 Aus, 96 VI/aromatic, and 90 intermediate types from the SNP
Seek database at IRRI (https://snp-seek.irri.org/) (accessed on 20 August 2021) and from
RiceVarMap2.0 (http://ricevarmap.ncpgr.cn/) (accessed on 20 August 2021). Insertions
and Deletions were obtained for these genes by querying the 3kRG filtered dataset.

SNPs from wild Asian rice and cultivated rice accessions were used for diversity
analysis. The nucleotide diversity (π), expected nucleotide diversity (θ), and Tajima’s D
were estimated with a sliding window approach by using TASSEL v5.0 (http://www.
maizegenetics.net) (accessed on 1 September 2021) [26]. Diversity analysis of the selected
genes in case of wild and cultivated rice was studied using an R-based Pegas package
(Population and Evolutionary Genetics Analysis System) (https://cran.r-project.org/web/
packages/pegas/index.html) (accessed on 1 September 2021) and ‘APE’ (Analyses of
Phylogenetics and Evolution) implemented in Ecogems online tool (http://150.109.59.144:
3838/ECOGEMS) (accessed on 1 September 2021).

2.2. SNP Variation and Effect Prediction

Variants Effect Predictor tool [27] at Ensembl Plants was utilized to check the impact
of variations (SNPs and InDels) on gene function. The distribution of variants was obtained
in terms of intron, exon, upstream, downstream, splice region, 3 prime and 5 prime
UTR variants. Protein Variation Effect Analyzer (PROVEAN) tool was used to gauge the
deleterious effect of SNPs [28]. Prediction of the SNP impact on the biological function
was obtained for the amino acid changes and PROVEAN score at threshold −2.5. If
SNP scores ≤−2.5, it is predicted to be ‘deleterious’ to the protein function, whereas
values > 2.5 predict ‘neutral’ effects of sequence variations.

2.3. Haplotype Variation in Nutritional Quality-Related Genes

Haplotypes were deduced for sequence variations in the selected genes using the
RiceVarMap v2.0 tool [29]. Sequence variations were retrieved within the gene along with
1 kb upstream and downstream of the gene’s open reading frame (ORF). The SNPs that
caused non-synonymous, missense, splice region, frameshift, start lost, stop gained, or stop
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gained variations were used for haplotype analysis using RiceVarMap2.0. The ‘haplotype’
module from RMBreeding, Rice Functional Genomics and Breeding v2.0 was employed
for mining associations between SNPs and the phenotypic data [30]. The analysis was
conducted against the coding sequence of genes and maximum allele frequency of ≥0.01.

2.4. Haplotype Network Analysis

Haplotype network analysis was performed using re-sequencing data available for ~4000
rice accessions. The haplotypic networks were developed using the online RiceVarMap v2.0
database (RiceVarMap2 (ncpgr.cn)) (accessed on 4 September 2021). The haplotypes found in
more than 10 rice accessions were used to construct the haplotype network and the plots were
build using the pegas functions in R package (https://cran.r-project.org/web/packages/
pegas/index.html) (accessed on 4 September 2021). The classification system based on rice
isozyme classification was used to group the accessions into nine categories including Indica I,
Indica II, Indica III, Indica Intermediate, Aus, Temperate Japonica, Tropical Japonica, Japonica
Intermediate, and Intermediate (including aromatic and rest of the accessions).

2.5. Gene Expression Dynamics and Co-Expression Network for Grain Quality-Related Traits
in Rice

The raw sequencing reads were retrieved in the form of fastq format from the NCBI
Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) (accessed
on 10 September 2021). The retrieved dataset possess RNAseq transcriptomic data from
different studies representing 102 independent libraries. The dataset includes transcrip-
tome of different genotypes, seed development stages and different tissues like leaves,
inflorescence, seeds, embryo, endosperm [31,32]. The details of the SRA datasets used in
this study are provided in Supplementary Table S2. The raw reads were processed based
on quality and other parameters and then mapped to the reference genome of rice assembly
build 4.0 using CLC genomics Workbench [33]. The expression data in the form of read
count for all the rice genes were normalized in the form of Reads Per Kilobase of transcript
per Million mapped reads (RPKM). The RPKM values for selected genes were further
analyzed and visualized using the tool Multiple Experiment Viewer (MeV-4.9.0) [34]. The
data was adjusted with log2 transformation, followed by hierarchical clustering analysis.
Euclidean distance metric was further used to cluster genes. Gene-specific spatio-temporal
expression across tissues such as leaf blade/sheath, root, stem, inflorescence, anther, pistil,
lemma, palea, ovary, embryo, endosperm was obtained at Rice Expression Profile Database
(RiceXPro v3.0) [35].

In addition to the 102 RNA-Seq libraries which were processed in-house, recently
published 11,726 transcriptome libraries were queried for all the selected 80 genes, which
are available at the Plant Public RNA-seq Database (PPRD, http://ipf.sustech.edu.cn/
pub/plantrna/) (accessed on 15 February 2022) [36]. Subsequently, the gene co-expression
network for data derived from these libraries was generated. The co-expression network
was developed by CoExpNetViz plugin of Cytoscape [37] and visualized using Cytoscape
software v3.7.2 [38]. The Pearson product-moment correlation coefficient was used as the
correlation method at thresholds 5 and 95 for lower and upper percentile ranks, respectively.
Furthermore, Weighted Correlation Network Analysis (WGCNA) v1.68 [39] was utilized to
identify functional modules and groups of 80 query genes. RPKM values of these genes
calculated from RNAseq experimental data were used as an input for the package. Module
size varied for 3 genes, 4 genes, and 5 genes were considered to obtain an optimum number
of modules. Module size 3 was selected for further analysis.

2.6. Quantitative Real-Time PCR Analysis

To study the expression profile of selected candidate genes, three different tissues
including root, stem, and leaves were considered. Different tissues were harvested and
immediately flash-frozen in liquid nitrogen and subsequently used for total RNA extraction.
Spectrum™ Plant Total RNA Kit was used to extract RNA. The quantity and quality of

ncpgr.cn
https://cran.r-project.org/web/packages/pegas/index.html
https://cran.r-project.org/web/packages/pegas/index.html
https://www.ncbi.nlm.nih.gov/sra
http://ipf.sustech.edu.cn/pub/plantrna/
http://ipf.sustech.edu.cn/pub/plantrna/
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the total RNA were evaluated using Nanodrop and agarose gel electrophoresis. Subse-
quently, high-quality RNA samples were used for cDNA synthesis using the RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific™, Waltham, MA, USA). SYBR® Green
Master Mix (Bio-Rad, Hercules, CA, USA) 2× was used for the quantitative real-time PCR
(qPCR) reaction. Each reaction comprises of 5 µL SYBR® Green master mix, 1 µL template
cDNA, 2 µL water, and 1 µL of each primer (10 mM). The qPCR thermal profile an initial
denaturation at 95 ◦C for 1 min, followed by 40 cycles of denaturation at 95 ◦C for 10 s, and
annealing at 55 ◦C for 20 s, and extension at 72 ◦C for 20 s. The qPCR was performed in
96-well plates. After 40 cycles, a melting curve analysis was performed with a stepwise
increase in temperature over 65 ◦C to 95 ◦C by an increment of 0.5 ◦C every 5 s. The mean
CT and standard deviations were calculated.

2.7. Transcription Factors and Their Interaction with Nutritional Quality-Related Genes

Interactions between transcription factors and 80 genes governing grain quality and
nutritional traits were predicted using PlantRegMap (Plant Transcriptional Regulatory Map)
server [40]. Rice promoter sequences were first retrieved from EnsemblPlants through
the Biomart tool [41]. The promoter sequences were used as an input for the ‘Regulation
Prediction’ tool of PlantRegMap. A p-value threshold of 1.00 × 10−5 was set for the
prediction of significant binding sites.

2.8. Phenotyping of Rice Grains for Chalkiness Trait

Grain chalkiness and translucence were visualized for rice accessions representing dif-
ferent haplotypic groups. Whole rice grains were dried, de-husked, polished, and multiple
transverse sections were obtained using a handheld microtome cutter with a changeable
razor blade. The cross-sections were mounted on the specimen holder and coated with
5 NM Chromium Gold for visualization with a field emission scanning electron microscope
(FESEM). The images were captured at 10,000× magnification and 10 µm resolution.

3. Results
3.1. Haplotypic Diversity in Nutritional and Cooking Quality-Related Genes in Rice

Significant haplotypic diversity was observed in 80 grain quality related genes
(Supplementary Table S1). A total of 6,572,189 SNPs were retained after filtering for missing
calls per sample (<31%), missing calls per variant (<20%), and minor allele frequency per
variant (>1%). The maximum numbers of SNPs were obtained for gene Kala4|OsS1, which is
responsible for pericarp color in rice (Supplementary Table S1). A maximum of 56 missense
mutations were observed in the qCdT7|OsHMA3 gene, which is responsible for the grain
zinc content in rice. No missense mutations were observed in nine genes (Supplementary
Table S1). The functional amino acid change prediction revealed a total of 133 deleterious
mutations in 39 genes (Table 1). A maximum of 30 deleterious mutations were observed in
the FLO2 gene, which is known to regulate grain size (Tables 1 and S1).

Table 1. Details of single nucleotide polymorphisms (SNP) predicted to have a deleterious impact on
the functionality of genes known to regulate the nutritional and cooking quality related traits in rice.

Gene Name RAP ID Feature Total
SNPs

Number of
Haplotypes

Number of
Missense
Mutations

Functional Impact of Missense Mutations Number of
InDels

GW5L Os01g0190500 Grain
weight 82 12 3 V58G, A70S, H235R*, V58A 70

PHD1 Os01g0367100 Galactolipid
biosynthesis 72 12 6 D63V, F335I*, S321C*, G305V*, D288N*, F273V* 186

GLUa Os01g0762500 Glutelin
content 29 8 8 Y5H* 7

SD1|
GA20ox2 Os01g0883800

Grain
protein
content

66 11 9 A82N*, A82N*, E100G, H101D*, H101D*, C193S*,
P240L*, L266F*, Q340R, D349H 105
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Table 1. Cont.

Gene Name RAP ID Feature Total
SNPs

Number of
Haplotypes

Number of
Missense
Mutations

Functional Impact of Missense Mutations Number of
InDels

OsHMA4 Os02g0196600 Copper ac-
cumulation 47 12 8 I55M, F303L, T316M, A553V, S660A,

I704M, G818S, V914A* 64

OsBT1-
1|OsBT1 Os02g0202400

Endosperm
granule

formation
65 9 17

V25A, C46R, R102K, M107I, S115A,
H127Q, R130Q, R152C*, R170H, M173I,

R183H*, G184D*, T205R*, Y209C, P217L, V224I,
Y209F

70

DU3 Os02g0612300
Grain

amylose
content

107 21 7 S96F*, Y237F, R189K 116

OsCDPK1|
OsCDPK13|
OsCDPK11|
OsCPK11|
OsCDPK12

Os03g0128700 Grain starch
structure 67 8 8 I143T*, E259Q*, A265S*, I268V*, Q284P,

F288Y*, R355W*, V474I 54

XS-LPA2-1 Os03g0142800 Seed phytic
acid 41 10 6 N6T, A19T, R32L, A350T, N645K*, L1469F* 28

OsPht1;2|
OsPT2 Os03g0150800 Selenite

uptake 20 9 5 H398R, N335D, P269S, S258C*, V185I 6

OASA2 Os03g0264400
Grain

tryptophan
content

78 17 6 E585D, G527R*, P446S, R303P, E79K,
R68P 85

OsCCX2 Os03g0656500
Grain

cadmium
content

61 7 5 H90N, D292N, F412V*, V448L*, L532V 12

OsIRT1 Os03g0667500
Grain iron
and zinc
content

243 5 20

V369I, R307K, R304K, R281K, I227M,
V213A, R189W, H180R, V174I, N122S,

N121S, G93R, L82F, V71A, A58V*, D49E,
I29L, I27F, L21V, P9A

217

OsMADS34|
PAP2 Os03g0753100 Grain yield 90 8 5 Q89H*, Q106K*, Q71K*, T20A*, R10P* 140

OsPho1 Os03g0758100
Starch

structure in
endosperm

33 9 11 T268N*, V165I, E153K, R550H*, R501C*,
P391S*, T268N*, I254F*, S203L*, L60F*, M1del* 37

OsVIT1 Os04g0463400 Iron translo-
cation 72 10 5 A170T*, V136A*, Q105K 70

OsVPE1 Os04g0537900 Seed
glutelin 33 5 3 E384G*, Q90R, Y86C* 27

OsYSL9 Os04g0542200 Iron
distribution 48 8 4 S511N, T368R, L256F, R90L* 22

Kala4|
OsS1 Os04g0557500

Grain
pericarp
colour

1140 14 6 E308D, D173N, L140V, D101H, P84L, A29V* 448

OsABCC1|
MRP1 Os04g0620000 Arsenic ac-

cumulation 245 23 40

S1468T, R1398G*, R1300Q, E1231V*, R990Q,
L933F, K892R, Q879L, V814L, R712H*, P642H*,
A524S, R518C*, A449V, L285I, N283S, R276Q,
T216S, P206L*, L176V, A156S, I150S, I134M,

A107V, A92V, R90Q, T61A, G47S, T33S, N23Y*,
V21L, S1468N, F708L*, A409T*, R383H*, S266I*,

F252T*, A233V*, C228F*, C83F*, T29A*

135

FLO2 Os04g0645100 Grain size 117 9 30

A274T, L399P, I466T, R579K, P599L, G804D,
S1203L, N1319D, A1608T, F195L*, H200N*,

P204T*, S306P*, N323D*, M348R*, M348I*, L369F*,
A378S*, G452S*, P515T*, W589C*, R725K*,

A748V*, A789S*, N829Y*, R892Q*,
G926C*, R987H*,

A1060V*, L1107F*, Y1146F*

217

chalk5 Os05g0156900 Chalkiness 212 11 19

R525L, I497V, V412I, K401M, A379T,
A364V, G237R*, A215V, A139G, R137S,
T125P, V62D, G61V, G59V, D58G, S52N,

E49D, V48G, M30V

143

OsSPL9 Os05g0408200
Grain

copper accu-
mulation

79 8 7 A132V, A200T, P309S, I576V, S751T,
I789V, S248F* 114
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Table 1. Cont.

Gene Name RAP ID Feature Total
SNPs

Number of
Haplotypes

Number of
Missense
Mutations

Functional Impact of Missense Mutations Number of
InDels

WX Os06g0133000 Grain char-
acteristics 137 14 4 D166G*, Y224S*, P415S, D528Y*, D528N 205

SPDT Os06g0143700
Phosphorus
accumula-

tion
281 7 6 Q385L*, I251V, L247F, V71G*, A47V,

A21V 308

OsSSI Os06g0160700 Grain starch
content 197 10 12

S596L, K438E*, H420Y*, S319G, D214N*,
L86F, A78S, T74A, L60M, R29L, R343S*,

C251Y*
138

ALK|SSIIa Os06g0229800 Grain starch
quality 98 16 9 P56A, T117P, A148S, D161E, E208D, D283E,

S604G, M737V, L781F* 65

OsLCT1 LOC_Os06g38120 Cadmium in
grains 236 4 31

E15D, D26A, E35Q, P43L, P48S, A54S, I60T, L67H,
L70Q, A71D, G73D, A77T, A80S, N84K, E87K,

V95I, L101F, T147S, R152S, V183A, V211L, L215F,
K223N, M241V, Q246H, E258L, M310V, L380F,

T480S, V494M, L495F*

218

OsHMA2|
OsHMA2v Os06g0700700

Grain zinc
and

cadmium
content

104 8 3 C19R*, R7W 261

qCdT7|
OsHMA3 Os07g0232900 Grain zinc

content 142 10 56

G990A, E975D, C960G, T953I, G930R,
D926G, K912R, A908G, A908T, S873G,
G787S, E775D, G770A, D768A, A759P,
A758S, V752A, E733K, C678R, A638V,
S614D, S614D, G595A, G594S*, S575T,
D556H, V550I, T526I, S525T, R493Q,

G490A, A381V*, S380R*, D338N*, T333M*, F299L,
N298I*, Q269R, G268S*, V259I,

E257K*, G256D*, G256S*, V250I, E238D,
A234V, I233L, V229A, A184S, T134M,

G130S*, A95V, E93A, P92S, A91T, R80H*, S614G,
P92T, N725H*, L708F*, V697A*,

N686K*, G642D*, E607A*, A341T*, V323G*,
W293C*, P283L*, D267G*, D262N*,

A252V*, R163C*, A99V*, D87N*, V82A*

50

GW7|GL7|
SLG7 Os07g0603300

Grain
quality and

yield
60 10 10 I915M, S647A, S620G, N605K, P518S, A462S,

R361H, R361C, L259F* 75

RSUS3|
SUS3 Os07g0616800 Grain starch

content 45 12 7 A26T, E541K*, L551S, S559N, N634D, E637K,
S15G* 47

OsHMA7 Os07g0623200
Grain iron
and zinc
content

75 10 4 A32V, C37R, L147V*, R159C 5

OsGZF1 Os07g0668600 Seed storage
protein 26 7 9 R255H, A219S, S179P, M174I, L169V, A111P,

A102V, R100H, E47K*, A111T 12

SSIIIa Os08g0191433 Endosperm
appearance 186 14 35

A33T, M38K, T43N, A62S, R109H, K116N, E142D,
A184T, A195V, A217T, G226E, E231K, A268V,
S350L, F401S, D427G, V480L, T486I, A503T,

R576K, E641V, S681N, G686E, R702Q, R748H,
E790V, G817D, V843E, L957M, Y964C*, K1006N*,

R1118K, R1240H, A1528S, T1755I

136

BADH2 Os08g0424500 Grain aroma 156 21 5 A190V, K244I*, A316E, P458S*, G468V* 123

qGW8|
Os-

SPL16|GW8
Os08g0531600

Grain
quality and

shape
69 10 8 P79L, A110V, D172N*, T274N, Q285K, G315S,

M364I, A397T 222

OsDCL3b Os10g0485600 Seed quality 59 11 14
H89L*, A115V*, P129S*, N149D, S155A, T181A,
F205L, I355M, G712S, R811S, V874L, R1063Q,

F1101V, I1320L
135

OsCAO1|
PGL Os10g0567400 Grain yield

and quality 28 5 4 L394F*, T181P, V35L 39

Gene names are italicized. * indicates deleterious mutations.

The highest numbers of InDel (607) were observed in gene SUG1, which is involved
in the process of seed starch biosynthesis. Similarly, gene Kala4, which is responsible for
grain pericarp color in rice, showed 448 InDels (Supplementary Table S1). In the case
of the chalk5 gene, which regulates grain chalkiness, a total of 212 SNPs and 19 missense
mutations were observed, and most of the missense mutations were present in exon 4.
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The representative haplotype groups among 3024 rice accessions for the chalk5 gene were
specific to rice sub-populations. The indica types have reference type alleles and mostly
belonged to the same haplotypic group (Figure 1). The tropical and temperate rice types
mostly possessed alternate alleles and were grouped in distinct haplotypic groups when
compared to the indica type. Similarly, the aromatic group showed mutations in the third
exon specifically and were grouped separately compared to other rice sub-populations
(Figure 1). In the case of the grain length GL7 gene, a total of 10 missense mutations and
ten haplotypes were observed with the maximum number of missense mutations in the
third exon (Supplementary Figure S1A,B). Most of the accessions belonged to the haplotype
Hap-III (1667) and only 13 rice accessions belonged to the Hap-X group (Supplementary
Figure S1B,C).

The rice accessions belonging to different haplotypic groups showed varying gra-
dations of grain chalkiness and translucence. A total of 19 missense mutations and
11 haplotypes were observed for the chalk5 gene (Table 1). After removing the missing
data and heterozygous calls, five major haplotypes of the chalk5 gene were found most
promising. These five haplotypes included distinctly differentiated chalkiness and translu-
cent accessions (Figure 2A,B). The haplotypic network for the chalk 5 gene revealed five
major haplotypes and large number of accessions belonged to haplotype group 3 (AACG-
GTATGCC) (Figure 2C). Among the five haplotypic groups, haplotype 1 (CTCGTACCCAT)
and 2 (CACGGTATGCC) were most pronounced for translucent phenotype whereas haplo-
type 4 (CACTGTATGCC) was found to be associated with rice grains with varying degrees
of chalkiness (Figure 2D). Most of the accessions in haplotype groups 1, 2, and 4 belonged
to japonica, aromatic, and indica subpopulations, respectively. Field emission scanning
electron microscopy (FESEM) for chalky and translucent grains revealed contrasting struc-
tures of starch granules (Figure 2E). The translucent rice had distinct polyhedral structures
with no air pockets nearby and the chalky rice grains show round starch granules with
neighboring air gaps (Figure 2E). It was also observed that starch granules in chalky grains
had varying sizes. Gene expression dynamics for chalk5 showed a higher gene expression
in the ovary and endosperm tissues as compared to leaf, root, stem, and other tissues
(Figure 2F).

3.2. Haplotype Network Defining the Evolution of Important Rice Genes

Haplotypes found in at least ten accessions were considered for the development
of haplotype networks (Supplementary Dataset S1). Based on the sequence variations
prevalent in these genes, a total of 791 haplotyping groups were formed across the 80 genes
(Supplementary Table S1). A maximum number of haplotypes (23) was observed in
the OsABCC1|MRP1 gene, which is an ABC transporter and reduces arsenic uptake
(Supplementary Dataset S1). The lowest frequency was found in OsHAC1;1 gene (4),
which is known to regulate arsenic accumulation in rice (Supplementary Table S1). The
DU3 and BADH2 genes showed 21 haplotypes, each distributed across nine rice isozyme
categories (Supplementary Dataset S1). Both the OsABCC1|MRP1, and OsHAC1;1 genes
showed the highest number of accessions belonging to TeJ group. In the case of the GL7
gene, ten haplotypes were observed and most of the accessions belonged to the indica
rice types (IndII, IndIII, and Ind_admix), whereas accessions belonging to IndI group
were mostly present in haplotype 4 (Supplementary Figure S1D). Most of the accessions
belonging to TrJ, TeJ, and Jap_admix were more prevalent in the haplotypic group 6 in the
case of the GL7 gene (Supplementary Figure S1D). In the case of the DU3 gene, haplotype 1
possessed a larger number of accessions, which were mostly grouped under the TeJ group
(519) followed by TrJ (370) (Supplementary Dataset S1). Similarly, for the BADH2 gene, hap-
lotype 2 had the highest number of accessions with the TeJ group (535) followed by TrJ (245)
(Supplementary Table S1). Similarly, for gene OsCAO1|PGL (chlorophyllide a oxygenase),
haplotype 1 had the highest frequency with a larger number of accessions belonging to the
IndIII subgroup followed by TeJ (Supplementary Dataset S1). The haplotypic networks for
all the 80 genes are given in Supplementary Dataset S1.
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Figure 1. Haplotypic distribution of chalk5 gene across the ~3024 rice accessions depicted based on
the sequence variation data retrieved from SNPseek database (https://snp-seek.irri.org/) (accessed
on 15 September 2021). The topmost box represents the gene structure and sequence variations for
gene chalk5. Bigger blue sections denote exons and the bars represent intronic regions. Red lines show
11 non-synonymous SNPs.

https://snp-seek.irri.org/


Cells 2022, 11, 1144 10 of 20

Figure 2. Representative illustration showing genetic variations observed in chalk5 gene defining hap-
lotypic diversity, evolution, and expression profile in different tissues. (A) Intron–exon organization
of chalk5 gene showing the non-synonymous single nucleotide polymorphism sites; (B) haplotypic
grouping based on the SNPs present in the chalk5 gene; (C) haplotypic network showing relatedness
and allelic evolution of chalk5 gene; (D) box plot showing the frequency distribution of haplotypes
and their association with translucent and chalky phenotype, *** significance level at p-value < 0.001;
(E) field emission scanning electron microscopy for chalky and translucent grains; and (F) expression
profiling of chalk5 gene in different tissues.

Diversity Analysis

Most of the genes showed positive Tajima D values indicating a decrease in popula-
tion size and/or balancing selection; however, seven genes showed negative values that
indicates population size expansion and/or purifying selection (Supplementary Table S3).
The genes that show purifying selection include OsPT2 (phosphate transporter), which is
responsible for selenite transport, RINO1 (low phytate), OsIRT1 (Iron and Zinc accumula-
tors), SPDT (phosphorous accumulation), OsVIT2 (Iron transporter), OsCAO1|PGL (leaf
senescence, grain yield), and Rab5a (storage protein transporter).

The nucleotide diversity in the genomic region harboring nutritional and cooking
quality-related genes was significantly reduced in cultivated rice compared to wild rice,
particularly genes such as OsCAO1|PGL, OsVIT2, and OsGZF1. However, some genes like
OsABCC1|MRP1, OsMATE2, and SSIIIa showed higher diversity in cultivated rice (Supple-
mentary Dataset S2). The chalk5 gene, which governs the grain opaqueness/transparency
showed similar nucleotide diversities for the cultivated and wild-type rice accessions
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(Figure 3A). However, significantly lower diversity values were observed for indica and
japonica rice accessions. The comparative nucleotide diversity between for the OsIRT1 gene,
which governs the iron and zinc accumulation in rice shows a higher diversity in wild-type
accessions when compared to the cultivated accessions (Figure 3B). It was noted that the
diversity values for japonica sub-varieties were significantly decreased when compared to
the cultivated and indica sub-types of accessions. The phylogenetic analysis for the chalk5
gene showed that the indica and japonica sub-groups grouped separately and most of the
Oryza rufipogon OR-III accessions clustered with the japonica subtype and Or-I with the
indica subtype (Figure 3C). The phylogenetic analysis for the OsIRT1 gene shows a closer
clustering of the indica and japonica sub-group and most of the Oryza rufipogan accessions
were grouped separately and with more diversity than indica and japonica accessions
(Figure 3D).

Figure 3. Nucleotide diversity and phylogenetic analysis for chalk5 and OsIRT1 genes. (A) Nucleotide
diversity for the chalk5 (LOC_Os05g06480) gene and (B) OsIRT1 gene in cultivated (red), indica (green),
japonica (blue), and wild (purple) rice varieties. The lower panel shows the ratio of nucleotide diver-
sity between wild and cultivated rice accessions. Here, the x-axis represents the genomic positions
and the y-axis denotes the nucleotide diversity values. (C,D) A neighbor-joining phylogenetic tree
was implemented within the ECOGEMS resource for chalk5 and OsRT1 genes, respectively. Each
edge of the circular tree represents a rice accession. The inner track represents the cultivated rice
varieties whereas the outer track represents wild accessions. The Oryza rufipogon (Or) wild accessions
are represented with blue (Or-I), red (Or-II), and black (Or-III) colors, whereas the cultivated Indica
and Japonica accessions in purple and yellow colors, respectively.
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3.3. Gene Expression Dynamics for Grain Quality-Related Traits in Rice

Expression analysis of grain quality-related genes was evaluated using publicly avail-
able transcriptomic data. A diverse expression profile across different tissues and devel-
opmental stages was observed for the quality-related genes in rice (Figure 4). Only 64 out
of 80 genes showed expression in the selected tissues and developmental stages. Tissue-
specific expression was observed in nutritional and cooking quality-related genes and
about 29 genes showed higher expression in the endosperm (Supplementary Dataset S3).
Clustering analysis showed tissue-specific and developmental stage-specific expression
patterns for most of the genes. Some genes were constitutively expressed like Rab5a and
OsALDH7, and a few genes were expressed only in the later stages of seed development
such as OsGZF1 (Figure 4A) Three genes, GSE5, GW5L, and qGW8|OsSPL16|GW8, were
expressed only in early inflorescence and pistil tissue (Figure 4B). Three genes, OsIRO2,
OsNAS2, and OsHAC1;1 showed leaf-specific expression. Two genes, OsUgp2|UGP2 and
WX showed expression only in GSK5 mutants compared to wild type and ARF4 mutant.
Two genes, qCdT7|OsHMA3 and chalk5, were expressed in GSK5 and ARF4 mutants com-
pared to wild type and GLU4A showed expression only in ARF4 mutant (Figure 4C). Gene
OsPht1;2 responsible for selenite uptake in rice showed higher gene expression in the
endosperm tissue of black rice as compared to red and white rice. Similarly, the gene
SPDT which governs phosphorus accumulation and OsPCR1 showed significantly higher
expression in grains of red rice as compared to white and black rice tissues (Figure 4D).
Higher expression of the GL7 gene was mostly observed in pistil followed by palea and
lemma (Supplementary Figure S1E). The qPCR analysis showed higher expression of the
FLO16 gene in seedling and leaf as compared to the roots. In the case of OsLTPL36 and
GLU4A genes, comparatively higher expression was observed in roots (Supplementary
Figure S2).

Figure 4. Cont.
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Figure 4. Heatmaps showing gene expression dynamics of 80 nutritional and cooking quality-related
genes across different tissues and conditions. (A) Gene expression across seven rice varieties viz
Heugjinju, Heuseol, Heugnam, Josengheug, Boseogheug, Sinnongheug, and Dongjin at different
stages of seed development; (B) expression across different tissues such as endosperm, embryo,
anther, pistil, seed, inflorescence, and leaves at different stages; (C) expression in wild type and loss
of function mutants rice accessions for GSK5 and ARF4; and (D) expression in grains, pericarp, and
endosperm of white, black, and red rice. Red color corresponds to high expression whereas green for
low gene expressions.

3.4. Hub Genes Identified through Gene Co-Expression Network Analysis in Rice

A co-expression network for 80 genes was developed using gene expression data from
11,726 libraries from the ‘PPRD’ database. A total of 16 genes were removed after filtering
the expression data, based on missing values using the WGCNA tool. The remaining
63 genes were used for co-expression network construction and module detection. Varying
module sizes were selected to obtain an optimum number of modules. For network genera-
tion, the minimum number of genes to define a module was selected as 3. Among various
modules, genes for grain protein content clustered separately, as did genes responsible
for grain starch content and chalkiness (Figure 5A). Genes placed in module 0 were not
grouped under any module.

A total of 19 hub genes showed a high degree of correlation with other genes (Table 2,
Figure 5B). Among these, gene OsCAO1, which is involved in grain yield and quality,
showed the highest degree of correlation with 20 other quality-related genes (Supplemen-
tary Table S4). The OsSSI gene involved in the starch biosynthesis pathway and FLO2
which controls rice grain size and starch quality showed a high degree of correlation with
19 genes, respectively. The OsSULTR3;3 gene showed 18 interactions with the rest of the
genes. Among the hub genes, the Ospho1 gene, which is responsible for starch structure
within the endosperm, showed higher expression (1237.6 RPKM value) in seed (Table 2,
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Supplementary Table S4). The Ospho1 gene was present in the WGCNA module 1, which
consists of genes related to grain starch, sucrose and chalkiness (Figure 5A).

Figure 5. (A) Chromosomal distribution and cluster of genes as functional modules predicted by
WGCNA. The outermost track number 1 shows the chromosomal position of 80 cooking and nutri-
tional quality-related genes. Genes highlighted in red color belong to Module 1: Starch, Chalkiness,
Zinc bioavailability, Sucrose; Module 2 (blue): Grain size, Starch, Seed storage protein, Glutelin;
Module 3 (green): Cd, Zn, Glumes, Phosphorus, Arsenic, Heavy metals; Module 4 (black): Grain
width, Size, Weight, Cadmium, Copper; Module 5 (orange): Iron, Phytate, Phosphorus; Module 6
(grey): Glutelin, Prolamine, Selenite. Track number 2 depicts the number of SNPs in various genes
responsible for grain cooking and nutritional quality traits whereas the innermost track 3 represents
the missense SNPs for these genes. (B) Co-expression network predicted among the 80 cooking
and nutritional quality-related genes. The network was developed with Cytoscape v3.7.2.20 using
RPKM values. Genes with the highest degree of co-expression have been displayed in bigger and
brighter nodes and vice versa. Positive correlations have been depicted in orange, whereas negative
correlations in blue edges.

Table 2. Details of hub genes identified through weighted correlation network analysis (WGCNA)
performed with transcriptome profiling of genes known to regulate nutritional and cooking quality
related traits in rice.

Gene Name Gene ID Neighborhood
Connectivity

Clustering
Coefficient

Number of
Directed

Edges

WGCNA
Module

WGCNA Module
Description

Tissue
Expression

Normalized
Expression

Value (RPKM)

OsCAO1 Os10g0567400 9.80 0.24 20 5 Iron, Phytate, Phosphorus Seedling 249.5

OsSSI Os06g0160700 11.84 0.39 19 2 Grain size, Starch, Seed
storage protein, Glutelin Endsoperm 397.9

FLO2 Os04g0645100 10.16 0.33 19 2 Grain size, Starch, Seed
storage protein, Glutelin

Developing
seed 491.1

OsSULTR3;3 Os04g0652400 10.67 0.39 18 5 Iron, Phytate, Phosphorus Seedling 149.3

OsGAPDHB Os03g0129300 8.88 0.13 17 0 NA Seedling
and shoot 672.4

OsPTR6 Os04g0597800 12.63 0.48 16 0 NA Seedling 57.5
OsFRDL1 Os03g0216700 12.64 0.48 14 0 NA Endosperm 86.7

SSIIIa Os08g0191433 10.31 0.54 13 0 NA Endosperm 363.9
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Table 2. Cont.

Gene Name Gene ID Neighborhood
Connectivity

Clustering
Coefficient

Number of
Directed

Edges

WGCNA
Module

WGCNA Module
Description

Tissue
Expression

Normalized
Expression

Value (RPKM)

OsNRAMP5 Os07g0257200 13.92 0.67 13 4 Grain width, size, weight,
Cadmium, Copper, Caryopsis 136.4

GW2 Os02g0244100 12.54 0.56 13 2 Grain size, Starch, Seed
storage protein, Glutelin Seed 492.1

OsGZF1 Os07g0668600 10.67 0.68 12 6 Glutelin, Prolamine,
Selenite Seed 264.4

RSUS3 Os07g0616800 10.67 0.68 12 1 Starch, Chalkiness, Zinc
bioavailability, Sucrose Endosperm 665.1

qCdT7 Os07g0232900 14.42 0.74 12 3
Cd, Zn, Glumes,

Phosphorus, Arsenic,
Heavy metals,

Seedling 47.9

ALK Os06g0229800 10.67 0.68 12 1 Starch, Chalkiness, Zinc
bioavailability, Sucrose Seed 444.2

Ospho1 Os03g0758100 11.92 0.64 12 1 Starch, Chalkiness, Zinc
bioavailability, Sucrose Grain 1237.6

OsHMA4 Os02g0196600 14.25 0.61 12 4 Grain width, size, weight,
Cadmium, Copper, Seed 127.9

Osvpe1 Os04g0537900 11.45 0.64 11 2 Grain size, Starch, Seed
Storage protein, Glutelin Seed 370.6

OASA1D Os03g0826500 12.80 0.58 10 0 NA Seed 246.5

OsAPL2 Os01g0633100 11.60 0.80 10 1 Starch, Chalkiness, Zinc
bioavailability, Sucrose

Developing
seed 1138.6

3.5. Interaction of Transcription Factors and Nutritional Quality-Related Genes

A total of 1413 regulatory interactions were obtained between 211 transcription factors
and 80 genes governing rice cooking and nutritional quality (Table 3). Among the total
interactions, it was observed that 87 transcription factors possessed over-represented
targets in the input gene set under the cutoff p-value ≤ 0.05. As a result, transcription
factor LOC_Os05g03020 with target gene OsGZF1 had the highest number of binding sites
with 24. Similarly, transcription factor LOC_Os05g03020 belongs to the C2H2 family and
interacts with gene OsHAC1;1. Likewise, transcription factor enrichment analysis revealed
that LOC_Os03g60630 and LOC_Os07g13260 had the lowest p-values and most significant
results in terms of over-represented targets in the input gene set under cutoff <= 0.05. Here,
both the transcription factors belong to the Dof family.

Table 3. Details of transcription factors predicted to have interaction with cooking and nutritional
quality-related genes. Plant Transcriptional Regulatory Map (PlantRegMap) server [40] was used to
predict the interaction.

TF Common Name TF Family Query_All # Query_Bind $ p-Value ¥ q-Value

LOC_Os03g60630 OJ1754_E06.26 Dof 80 33 3.18 × 10−6 3.75 × 10−4

LOC_Os07g13260 Os07g0236700 Dof 80 37 3.56 × 10−6 3.75 × 10−4

LOC_Os01g53220 Os01g0733200 HSF 80 6 5.58 × 10−5 3.93 × 10−3

LOC_Os02g41510 Os02g0624300 MYB 80 11 2.28 × 10−4 8.59 × 10−3

LOC_Os04g43680 Os04g0517100 MYB 80 11 2.28 × 10−4 8.59 × 10−3

LOC_Os12g39400 Os12g0583700 C2H2 80 6 2.75 × 10−4 8.59 × 10−3

LOC_Os02g47810 OsJ_35953 Dof 80 26 2.85 × 10−4 8.59 × 10−3

LOC_Os11g29870 Os11g0490900 WRKY 80 6 4.24 × 10−4 1.12 × 10−2

LOC_Os05g09020 Os05g0183100 WRKY 80 8 4.79 × 10−4 1.12 × 10−2

LOC_Os04g50770 Os04g0594100 MYB 80 9 7.53 × 10−4 1.26 × 10−2

# ‘Query_all’ stand for the number of gene promoters that were examined for the existence of transcription factor
binding sites; $ ‘Query_bind’ represents the number of genes with a binding site for a specific transcription factor
in their promoter; ¥ p-value cutoffs of ≤0.05 was used to claim significant interaction.

4. Discussion

The increasing human population has led to increased demands for high-calorie and
nutrient-rich foods, which in turn have necessitated in-depth studies targeted at exploring
the available genomic and transcriptomic resources for developing high-yielding crop-
varieties. Several genes responsible for crop yield, abiotic and biotic stress resistance,
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grain quality, palatability, and cooking and nutritional quality-related traits have been
characterized [42,43]. The development of novel varieties with improved traits is hindered
by the lack of information about the sources of desirable alleles and the genetic background
of the donor lines. The whole-genome re-sequencing data available for over 4500 diverse
rice genotypes is an excellent resource for understanding the allelic diversity of well-
characterized genes governing important traits in rice. In the present study, based on
the analysis of 80 genes linked to nutritional and cooking quality traits, 133 deleterious
mutations within 39 genes were identified. The rest of the genes either did not show any
sequence variations or showed polymorphisms that were not functionally important for
the selected traits. Based on these sequence variations, haplotype analysis was conducted
to deduce the patterns of inheritance for the effective selection of informative SNPs. Thirty-
nine genes showed more than or equal to 10 haplotypes. Among these, the highest number
of haplotypes was observed in OsABCC1|MRP1, which is an ABC transporter followed by
two genes, DU3 and BADH2, which are involved in starch content regulation and aroma,
respectively. OsHAC1;1 showed the least number of haplotypes (4) and is involved in the
regulation of arsenic accumulation. Similarly, four haplotypes were observed for OsLCT,
which regulates cadmium accumulation in rice. In addition to this, haplotype networks
were generated to study the evolution of important haplotypes across nine rice isozyme
classification groups. To understand the expression of these genes across selected rice
tissues and different developmental stages, transcriptome data from 102 experiments in
four studies on rice have been analyzed. In terms of gene co-expression, we could finalize
a set of 19 genes with the highest gene co-expressions and these were termed as ‘hotspot’
genes. The hotspot genes depict both a strong positive as well as a negative correlation
with the rest of the genes. In addition, we have predicted the genetic regulation and a set of
87 transcription factors that were over-represented in the dataset. The transcription factors
were predicted to regulate the expression of 78 genes related to nutritional and cooking
quality-related traits. Gene sequence polymorphism, expression dynamics, and regulation
provide a multi-tiered approach in the selection of SNPs for crop improvement studies.
Recently, Angira et al. [44] identified two haplotypes of the SD1 gene, which is commonly
observed in the rice germplasm of the United States. Angira, Addison, Cerioli, Rebong,
Wang, Pumplin, Ham, Oard, Linscombe and Famoso [44] first identified six SNPs that
could differentiate all seven haplotypes present in the SD1 gene. Subsequent haplotype-
based marker development and screening of the rice germplasm of the US revealed that
the first and the third haplotypes are predominant. In the present study, 66 SNPs, nine
missense mutations, and 11 haplotypes including seven reported by Angira, Addison,
Cerioli, Rebong, Wang, Pumplin, Ham, Oard, Linscombe and Famoso [44] for the SD1 gene
were identified (Supplementary Table S1). Previously, seven haplotypes were identified for
the gene chalk5 on chromosome 5, based on sequence variations across a panel of 191 rice
accessions of indica and japonica type [45]. The haplotype groups were categorized into
two sub-groups: class A (hap 1–4) and class B (hap 5–7), based on phylogenetic analysis.
Class A haplotype groups represented accessions with white belly chalkiness trait. In our
study, we have identified 11 haplotype groups based on 19 missense mutations within
the chalk5 gene across indica, japonica, aus and intermediate subgroups. Our analysis
revealed five promising haplotypes for chalkiness trait based on the 11 nonsynonymous
SNPs after excluding heterozygous and missing SNPs in the haplotype groups. Among the
five haplotypes, haplotypes 1 and 2 were associated with transparent rice grains, whereas
haplotype 4 was associated with chalkiness of seeds. The present study demonstrated
haplotype and phenotype association for the chalkiness traits, which can be explored
further for haplotype-based breeding. Another example where haplotypic information was
used to identify the desired allele for the GS9 gene is reported by Zhao et al. (2018). Here, a
set of 114 diverse rice genotypes were used to identify five SNPs in GS9 which categorizes
the set in five haplotypes. The null mutation in the GS9 gene was found to improve grain
shape to a slender form whereas its overexpression resulted in round grains. However,
75 SNPs, including the eight nonsynonymous SNPs identified herein for GS9 provide an
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opportunity to identify novel alleles with the desired effects and consequently more genetic
resources (donor lines) for breeding (Supplementary Table S1). Several studies similar to
that of Zhao et al. [46] have explored of genetic variations to identify desired alleles and
to understand haplotypic variation; however, those are mostly focused on a single gene
(Supplementary Table S5). Notably, in the present study, haplotypic analysis of 80 genes
regulating nutritional and cooking quality-related traits provides numerous advantages,
including an understanding of allelic variability and evolution, the identification of desired
alleles and their sources simultaneously for different genes, and providing an opportunity
for haplotype-based precision breeding.

The non-synonymous SNPs identified in the candidate genes were further evaluated
with PROVEAN, which helped to associate the functional prediction to the haplotypes. The
probable functional impact of non-synonymous SNPs is higher than that of synonymous SNPs.
In this regard, PROVEAN scores were calculated based on the sequence level conservation
and properties of the amino acids, which have helped to predict the effect of non-synonymous
SNPs. An earlier study performed by Deshmukh et al. [47] has demonstrated the use of
PROVEAN to accurately predict the effect of amino acid change. They have used site-directed
mutagenesis to verify the deleterious and neutral effects predicted for the silicon transporter
genes from tomato, rice, and poplar [47]. Similarly, desired alleles for negative regulators can
be efficiently identified based on the PROVEAN score.

In addition to genomic information, the present study has explored extensive tran-
scriptomic data. The transcriptomic information provided here for the important genes
related to nutritional and cooking quality in rice will be helpful to better understand gene
regulation. Many of these genes might have pleiotropic effects which regulate other im-
portant traits. The OsFAD2|OsFAD2-1 gene, which affects lipid accumulation, has high
expression in 20-day-old leaves. Moreover, the gene OsMADS34|PAP2, which regulates
grain yield and quality, shows high gene expression in anther. Similarly, a co-expression
network developed here for the nutritional and cooking quality-related genes helped to
identify hub genes. The exploration of haplotype diversity for such genes could provide
a relatively high level of variation in the grain quality traits for future crop breeding and
improvement programs. In addition, such a network will be helpful for understanding the
interactions among the selected genes. Recently, a gene co-expression network has been
successfully used to identify substructures of gene modules responding to salt stress in
rice [48]. Similarly, a co-expression network developed for strawberry has been used to
identify genes regulating flower and fruit-related traits [49]. Additionally, a co-expression
network developed in rice identified modules associated with temperature-inducible and
photoperiod sensitive genes, which are important for the sterility transition [50]. Similarly,
496 hub genes and four modules showed a significant correlation with photo-sensitive
differentially expressed genes in rice [51]. Furthermore, weighted gene co-expression anal-
ysis has identified differentially expressed genes such as OsHSPs, OsHSFC2A, and OsDJA5
upon cadmium treatment in stem nodes of different rice genotypes [52]. Many of such
examples utilizing co-expression network information suggest the potential applications of
the network developed in the present study for the rice quality-related genes.

5. Conclusions

In this study, we aimed to understand the genetic variations, identify haplotypes, and
analyze the expression patterns of genes known to have a significant role in rice nutritional
and cooking quality-related traits. We have detailed the functionally important SNPs in
80 previously cloned genes known to regulate grain quality-related traits. The predicted
functional impact of the sequence variants will help to understand gene regulation as well
as the effect of haplotype on trait development. The generated resource will serve as a
basis for haplotype-based breeding programs of rice. The detailed haplotypic information
provided here will facilitate the identification of donor lines harboring the most desired
haplotype. In addition, starting with 80 functionally characterized genes, we have narrowed
down a list of 19 hotspot genes based on the co-expression network developed using
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extensive transcriptomic data. The information of hotspot genes can be further explored
to understand the gene interaction and interdependency of grain quality-related traits.
Subsequently, the efficacy of the approach was demonstrated by showing haplotypic
association with key nutritional and cooking quality traits like grain length, grain weight,
and chalkiness. The adopted approach and the information provided in the present study
will be helpful for understanding genetic variation for the nutritional and cooking quality
in rice and for accelerating haplotype-based breeding programs aimed at customizing
high-quality rice with the desired nutritional value.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells11071144/s1, Table S1. Details of Single nucleotide polymorphism
(SNPs), Insertions/deletions (InDels), and their haplotyping information for nutritional and cooking
quality related genes. The deleterious effect mutations are represented with an asterisk; Table S2.
Details of RNASeq datasets used in the present study. All the raw data was retrieved from NCBI SRA
database and analyzed using CLC Genomics workbench; Table S3: Diversity analysis of 80 nutritional
and cooking quality-related genes in terms of average pairwise divergence (π), estimated mutation
rate (θ) and Tajima’s D values; Table S4. Details of hub genes and their interactions identified by co-
expression network using RNAseq data; Table S5. Details of genetic variations previously reported for
nutritional and cooking quality related genes; Figure S1: Representative illustration showing genetic
variations observed in GL7 gene defining haplotypic diversity, evolution, and expression profile in
different tissues. (A) Intron-exon organization of GL7 gene showing single nucleotide polymorphism
sites; (B) haplotypic grouping based on the SNPs present in the GL7 gene; (C) Violin plot showing
the frequency distribution of haplotypes; (D) haplotypic network showing relatedness and allelic
evolution of GL7 gene; (E) expression profiling of GL7 gene in different tissues; Figure S2. The relative
expression level of FLO16, OsLTPL36, and glu4a in root, leaf, and seedling, measured with real-time
quantitative PCR (RT-qPCR). Bars show mean log(2) fold change± SEM of three biological samples;
Supplementary Dataset S1. Haplotypic network of 80 nutritional and cooking quality related genes
depicting number of haplotypes and their interactions with different rice types; Supplementary
Dataset S2. Diversity analysis between cultivated and wild rice accessions for 80 nutritional and
cooking quality related genes; Supplementary Dataset S3. Expression in different rice tissues among
three cultivars for 80 nutritional and cooking quality related genes. The genes highlighted have
specific expression in rice endosperm.
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