Interleukin-6 at the Host-Tumor Interface: STAT3 in Biomolecular Condensates in Cancer Cells
Abstract
:1. Introduction
2. IL-6 Triggers Enhanced Cell Motility and an Epithelial to Mesenchymal Transformation (EMT) in Breast Cancer Cells
3. IL-6 as a Sex-Specific Determinant in Hepatocellular Carcinoma
4. p53 Mutants Enhance IL-6 Expression and Change Responsiveness in Cancer Cells
5. Phase-Separated STAT3 Cytoplasmic and Nuclear Bodies
6. Discrepant Measurements of IL-6 in the Human Circulation
7. Chaperone (Enhancing) Effect of Anti-IL-6 “Neutralizing” Antibodies on IL-6 In Vivo
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACT | α1-antichymotrpsin |
aFGF | acidic fibroblast growth factor |
DEN | diethynitrosamine |
E2 | estradiol-17β |
EMT | epithelial to mesenchymal transformation |
ER | estradiol receptor |
FRAP | fluorescence recovery after photobleaching |
GR | glucocorticoid receptor |
HCC | hepatocellular carcinoma |
IL-6 | interleukin-6 |
LPS | lipopolysaccharide |
mAb | monoclonal antibody |
MLO | membraneless organelle |
MRE | multiple response element |
SASP | senescence-associated secretory phenotype |
References
- Sehgal, P.B.; Tosato, G.; Grieninger, G. Regulation of the acute phase and immune responses: Interleukin-6. Ann. N.Y. Acad. Sci. 1989, 557, 1–583. [Google Scholar]
- Tabibzadeh, S.S.; Poubouridis, D.; May, L.T.; Sehgal, P.B. Interleukin-6 immunoreactivity in human tumors. Am. J. Pathol. 1989, 134, 427–433. [Google Scholar]
- Tamm, I.; Cardinale, I.; Krueger, J.; Murphy, J.S.; May, L.T.; Sehgal, P.B. Interleukin-6 decreases cell-cell association and increases motility of ductal breast carcinoma cells. J. Exp. Med. 1989, 170, 1649–1669. [Google Scholar] [CrossRef] [PubMed]
- Tamm, I.; Kikuchi, T.; Cardinale, I.; Murphy, J.S.; Krueger, J.G. Cytokines in breast cancer cell dyshesion. In Molecular Aspects of Cancer and Its Therapy; Mackiewicz, A., Sehgal, P.B., Eds.; Birkhauser: Basel, Switzerland, 1998; pp. 21–43. [Google Scholar]
- Sehgal, P.B. Interleukin-6 induces increased motility, cell-cell and cell-substrate dyshesion and epithelial-to-mesenchymal transformation in breast cancer cells. Oncogene 2010, 29, 2599–2600. [Google Scholar] [CrossRef] [Green Version]
- Chang, Q.; Bournazou, E.; Sansone, P.; Berishaj, M.; Gao, S.P.; Daly, L.; Wels, J.; Theilen, T.; Granitto, S.; Zhang, X.; et al. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 2013, 15, 848–862. [Google Scholar] [CrossRef] [Green Version]
- Felcher, C.M.; Bogni, E.S.; Kordon, E.C. IL-6 cytokine family: A putative target for breast cancer prevention and treatment. Intl. J. Mol. Sci. 2022, 23, 1809. [Google Scholar] [CrossRef]
- Hirano, T.; Kishimoto, T. Interleukin 6 and plasma cell neoplasias. Prog. Growth Factor Res. 1989, 1, 133–142. [Google Scholar] [CrossRef]
- Suematsu, S.; Hibi, M.; Sugita, T.; Sato, M.; Murakami, M.; Matsusaka, T.; Matsuda, T.; Hirano, T.; Taga, T.; Kishimoto, T. Interleukin 6 (IL-6) and its receptor (IL-6R) in myeloma/plasmacytoma. Curr. Topics Microbiol. Immunol. 1990, 166, 13–22. [Google Scholar]
- Pattengale, P.K. Role of interleukin-6 in the pathogenesis of murine plasmacytoma and human multiple myeloma. Am. J. Pathol. 1997, 151, 647–649. [Google Scholar]
- Kang, S.; Narazaki, M.; Metwally, H.; Kishimoto, T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 2020, 217, e20190347. [Google Scholar] [CrossRef] [Green Version]
- Strassmann, G.; Fong, M.; Kenney, J.S.; Jacob, C.O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Investig. 1992, 89, 1681–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupert, J.E.; Narasimhan, A.; Jengelley, D.H.A.; Jiang, Y.; Liu, J.; Au, E.; Silverman, L.M.; Sandusky, G.; Bonetto, A.; Cao, S.; et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J. Exp. Med. 2021, 218, e20190450. [Google Scholar] [CrossRef] [PubMed]
- Paval, D.R.; Patton, R.; McDonald, J.; Skipworth, R.J.E.; Gallagher, I.J.; Laird, B.J. A systematic review examining the relationship between cytokines and cachexia in incurable cancer. J. Cachexia Sarcopenia Muscle 2022. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S.; Matsumoto, S.; Harada, S.; Fujisaki, J.; Kawano, M.; Ogata, E. Pheochromocytoma with pyrexia and marked inflammatory signs: A paraneoplastic syndrome with possible relation to interleukin-6 production. J. Clin. Endocrinol. Metab. 1991, 73, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, T.; Kumamoto, Y.; Miyao, N.; Masomori, N.; Takahashi, A.; Yanase, M. Interleukin-6 in renal cell carcinoma. J. Urol. 1992, 148, 1778–1782. [Google Scholar] [CrossRef]
- Mackiewicz, A.; Koj, A.; Sehgal, P.B. Interleukin-6-type cytokines. Ann. N. Y. Acad. Sci. 1995, 762, 1–522. [Google Scholar]
- May, L.T.; Ghrayeb, J.; Santhanam, U.; Tatter, S.B.; Sthoeger, Z.; Helfgott, D.C.; Chiorazzi, N.; Grieninger, G.; Sehgal, P.B. Synthesis and secretion of multiple forma of beta-2 interferon/B-cell differentiation factor 2/hepatocyte-stimulating factor by human fibroblasts and monocytes. J. Biol. Chem. 1988, 263, 7760–7766. [Google Scholar] [CrossRef]
- Helfgott, D.C.; Tatter, S.B.; Santhanam, U.; Clarick, R.H.; Bhardwaj, N.; May, L.T.; Sehgal, P.B. Multiple forms of IFN-β2/IL-6 in serum and body fluids during acute bacterial infection. J. Immunol. 1989, 142, 948–953. [Google Scholar]
- May, L.T.; Shaw, J.E.; Khanna, A.K.; Zabriskie, J.B.; Sehgal, P.B. Marked cell-ty-specific differences in glycosylation of human interleukin-6. Cytokine 1991, 3, 204–211. [Google Scholar] [CrossRef]
- May, L.T.; Santhanam, U.; Sehgal, P.B. On the multimeric nature of natural human interleukin-6. J. Biol. Chem. 1991, 266, 9950–9955. [Google Scholar] [CrossRef]
- May, L.T.; Viguet, H.; Kenney, J.S.; Ida, N.; Allison, A.C.; Sehgal, P.B. High levels of “complexed” interleukin-6 in human blood. J. Biol. Chem. 1992, 267, 19698–19704. [Google Scholar] [CrossRef]
- May, L.T.; Patel, K.; Garcia, D.; Ndubuisi, M.I.; Ferrone, S.; Mittelman, A.; Mackiewicz, A.; Sehgal, P.B. Sustained high levels of circulating chaperoned interleukin-6 after active specific cancer immunotherapy. Blood 1994, 84, 1887–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, A.; Zhang, D.H.; Siegel, M.D.; Ray, P. Regulation of interleukin-6 gene expression by steroids. Ann. N. Y. Acad. Sci. 1995, 762, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Sassone-Corsi, P.; Sehgal, P.B. A multiple cytokine and second messenger-responsive element in the enhancer of the human interleukin-6 gene: Similarities with c-fos gene regulation. Mol. Cell. Biol. 1989, 9, 5537–5547. [Google Scholar] [PubMed] [Green Version]
- Ray, A.; LaForge, K.S.; Sehgal, P.B. On the mechanism for efficient repression of the interleukin-6 promoter by glucocorticoids: Enhancer, TATA box and RNA start site (Inr) occlusion. Mol. Cell. Biol. 1990, 10, 5736–5746. [Google Scholar]
- Kohase, M.; Henriksen-DeStefano, D.; Sehgal, P.B.; Vilcek, J. Dexamethasone inhibits feedback regulation of the mitogenic activity of tumor necrosis factor, interleukin-1, and epidermal growth factor in human fibroblasts. J. Cell Physiol. 1987, 132, 271–278. [Google Scholar] [CrossRef]
- Tabibzadeh, S.S.; Santhanam, U.; Sehgal, P.B.; May, L.T. Cytokine-induced production of IFN-beta-2/IL-6 by freshly explanted human endometrial stromal cells: Modulation by estradiol-17β. J. Immunol. 1989, 142, 3134–3139. [Google Scholar]
- Ray, A.; Prefontaine, K.E.; Ray, P. Down-modulation of interleukin-6 gene expression by 17β-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J. Biol. Chem. 1994, 269, 12940–12946. [Google Scholar] [CrossRef]
- Ray, A.; Prefontaine, K.E. Physical association and functional antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 1994, 91, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.; Ghosh, S.K.; Zhang, D.H.; Ray, A. Repression of interleukin-6 gene expression by 17β-estradiol: Inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-κB by the estrogen receptor. FEBS Lett. 1997, 409, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Goel, A.; Ray, A. Steroids in COVID-19: Tailor-made or “one size fits all”? Adv. Respir. Med. 2022, 90, 94–96. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijer, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef] [PubMed]
- Naugler, W.E.; Sakurai, T.; Kim, S.; Maeda, S.; Kim, K.; Elsharkawy, A.M.; Karin, M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007, 317, 121–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppe, J.P.; Patil, C.K.; Rodier, F.; Sun, Y.; Munoz, D.P.; Goldstein, J.; Nelson, P.S.; Desprez, P.Y.; Campisi, J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Montero, P.; Londono-Vallejo, A.; Vernot, J.P. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/ inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell. Commun. Signal. 2017, 15, 17. [Google Scholar] [CrossRef] [Green Version]
- Santhanam, U.; Ray, A.; Sehgal, P.B. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. USA 1991, 88, 7605–7609. [Google Scholar] [CrossRef] [Green Version]
- Margulies, L.; Sehgal, P.B. Modulation of the human interleukin-6 promoter (IL-6) and transcription factor C/EBPβ (NF-IL6) activity by p53 species. J. Biol. Chem. 1993, 268, 15096–15100. [Google Scholar] [CrossRef]
- de Reijke, T.M.; Vos, P.C.; de Boer, E.C.; Bevers, R.F.; de Muinck-Keizer, W.H.; Kurth, K.H.; Schamhart, D.H. Cytokine production by the human bladder carcinoma cell line T24 in the presence of bacillus Calmette-Guerin (BCG). Urol. Res. 1993, 21, 349–352. [Google Scholar] [CrossRef]
- Steube, K.G.; Meyer, C.; Drexler, H.G. Constitutive secretion of hematopoietic cytokines by human carcinoma cell lines and its up-regulation by interleukin-1 and phorbol ester. Oncol. Rep. 1999, 6, 427–432. [Google Scholar] [CrossRef]
- Krueger, J.; Ray, A.; Tamm, I.; Sehgal, P.B. Expression and function of interleukin-6 in epithelial cells. J. Cell. Biochem. 1991, 45, 327–334. [Google Scholar] [CrossRef]
- Grossman, R.M.; Krueger, J.; Yournish, D.; Granelli-Piperno, A.; Durphy, D.P.; May, L.T.; Kupper, T.S.; Sehgal, P.B.; Gottlieb, A.B. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. USA 1989, 86, 6367–6371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamm, I.; Cardinale, I.; Sehgal, P.B. Interleukin-6 and 12-O-tetradecanoyl phorbol-13-acetate act synergistically in inducing cell-cell separation and migration of human breast carcinoma cells. Cytokine 1991, 3, 212–223. [Google Scholar] [CrossRef]
- Tamm, I.; Cardinale, I.; Murphy, J.S. Decreased adherence of interleukin-6-treated breast carcinoma cells can lead to separation from neighbors after mitosis. Proc. Natl. Acad. Sci. USA 1991, 88, 4414–4418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamm, I.; Kikuchi, T.; Cardinale, I.; Krueger, J.G. Cell adhesion-disrupting action of interleukin-6 in human ductal breast carcinoma cells. Proc. Natl. Acad. Sci. USA 1994, 91, 3329–3333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamm, I.; Cardinale, I.; Kikuchi, T.; Krueger, J.G. E-cadherin distribution in interleukin-6-induced cell-cell separation of ductal breast carcinoma cells. Proc. Natl. Acad. Sci. USA 1994, 91, 4338–4342. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Shulman, L.M.; Revel, M. IL-6 receptors and sensitivity to growth inhibition by IL-6 in clones of human breast carcinoma cells. J. Biol. Regulat. Homeostat. Agent 1991, 5, 125–136. [Google Scholar]
- Asgeirsson, K.S.; Olafsdottir, K.; Jonasson, J.G.; Ogmundsdottir, H.M. The effects of IL-6 on cell adhesion and E-cadherin expression in breast cancer. Cytokine 1998, 10, 720–728. [Google Scholar] [CrossRef]
- Sullivan, N.J.; Sasser, A.K.; Axel, A.E.; Vesuna, F.; Raman, V.; Ramirez, N.; Oberyszyn, T.M.; Hall, B.M. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009, 28, 2940–2947. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.; Liang, S.; Ghosh, S.; Hornsby, P.J.; Li, R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 2009, 28, 2745–2755. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ren, G.; Wang, T.; Chen, Y.; Gong, C.; Bai, Y.; Wang, B.; Qi, H.; Shen, J.; Zhu, L.; et al. Aberrantly expressed Fra-1 by IL-6/STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial-mesenchymal transition. Carcinogenesis 2015, 36, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Chen, Y.C.; Nör, F.; Warner, K.A.; Andrews, A.; Wagner, V.P.; Zhang, Z.; Zhang, Z.; Martins, M.D.; Pearson, A.T.; et al. Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels. Oncotarget 2017, 8, 100339–100352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.W.; Wang, D.; Cai, H.; Cao, M.Q.; Zhang, Y.Y.; Zhuang, P.Y.; Shen, J. IL-6 plays a crucial role in epithelial-mesenchymal transition and pro-metastasis induced by sorafenib in liver cancer. Oncol. Rep. 2021, 45, 1105–1117. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, X.; Li, H.; Li, X. Dihydroartemisinin inhibits IL-6-induced epithelial-mesenchymal transition in laryngeal squamous cell carcinoma vis the miR-130b-2p/STAT3/β-catenin signaling pathway. J. Intl. Med. Res. 2021, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kumar, B.; Datta, J.; Teknos, T.N.; Kumar, P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathways. Angiogenesis Metastasis Cell. Environ. 2011, 9, 1658–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.S.; Chung, I.; Wong, W.F.; Masamune, A.; Sim, M.S.; Looi, C.Y. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathways in pancreatic cancer cells. Biochim. Biophys. Acta 2017, 1861, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Shim, J.W.; Eum, D.Y.; Kim, S.D.; Choi, S.H.; Yang, K.; Heo, K.; Park, M.T. Downregulation of UHRF1 increases tumor malignancy by activating the CXCR4/AKT-JNK/IL-6/Snail signaling axis in hepatocellular carcinoma cells. Sci. Rep. 2017, 7, 2798. [Google Scholar] [CrossRef] [Green Version]
- Steinbichler, T.B.; Savic, D.; Dejaco, D.; Romani, A.; Kofler, B.; Skvortsoma, I.I.; Reichelman, H.; Dudas, J. Pleitropic effects of epithelial mesenchymal crosstalk on head and neck cancer: EMT and beyond. Cancer Microenviron. 2019, 12, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalle, L.; Raggi, L.; Monteleone, E.; Savino, A.; Viavattene, D.; Statello, L.; Camperi, A.; Stabile, S.A.; Salemme, V.; De Marzo, N.; et al. STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts. Oncogene 2022, 41, 1456–1467. [Google Scholar] [CrossRef]
- Nakatani, T.; Roy, G.; Fujimoto, N.; Asahara, T.; Ito, A. Sex hormone dependency of diethylnitrosamine-induced liver tumors in mice and chemoprevention by leuprorelin. Jpn. J. Cancer Res. 2001, 92, 249–256. [Google Scholar] [CrossRef]
- Prieto, J. Inflammation, HCC and sex: IL-6 in the centre of the triangle. J. Hepatol. 2008, 48, 380–381. [Google Scholar] [CrossRef]
- Sehgal, P.B.; Margulies, L. Cell-type- and promoter-dependent ts phenotype of p53 Val135. Oncogene 1993, 8, 3417–3419. [Google Scholar] [PubMed]
- Wang, L.; Rayanade, R.J.; Garcia, D.; Patel, K.; Pan, H.; Sehgal, P.B. Modulation of interleukin-6-induced plasma protein secretion in hepatoma cells by p53 species. J. Biol. Chem. 1995, 270, 23159–23165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayanade, R.J.; Patel, K.; Ndubuisi, M.; Sharma, S.; Omura, S.; Etlinger, J.D.; Pine, R.; Sehgal, P.B. Proteasome- and p53-depndent masking of signal transducer and activator of transcription (STAT) factors. J. Biol. Chem. 1997, 272, 4659–4662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, P.B. Biomolecular condensates in cancer cell biology: Interleukin-6-induced cytoplasmic and nuclear STAT3/PY-STAT3 condensates in hepatoma cells. Contemp. Oncol. (Pozn.) 2019, 23, 16–22. [Google Scholar] [CrossRef]
- Cheteh, E.H.; Sarne, V.; Ceder, S.; Bianchi, J.; Augsten, M.; Rundquist, H.; Egvad, L.; Ostman, A.; Wiman, K.G. Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells. Cell Death Discov. 2020, 6, 42. [Google Scholar] [CrossRef]
- Hermann, A.; Sommer, U.; Pranada, A.L.; Giese, B.; Kuster, A.; Haan, S.; Becker, W.; Heinrich, P.C.; Muller-Newen, G. STAT3 is enriched in nuclear bodies. J. Cell. Sci. 2004, 117, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, P.B.; Westley, J.; Lerea, K.M.; DiSenso-Browne, S.; Etlinger, J.D. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs). Anal. Biochem. 2020, 597, 113691. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, H.; Yue, M.; Pan, H.; Chen, L.; Feng, X.; Yan, X.; Zhu, X.; Ji, H. Phase separation of EML4-ALK in firing downstream signaling and promoting lung tumorigenesis. Cell Discovery 2021, 7, 33. [Google Scholar] [CrossRef]
- Ndubuisi, M.; Patel, K.; Rayanade, R.J.; Mittelman, A.; May, L.T.; Sehgal, P.B. Distinct classes of chaperoned IL-6 in human blood: Differential immunological and biological activity. J. Immunol. 1998, 160, 494–501. [Google Scholar]
- Chaturvedi, S.; Siegel, D.; Wagner, C.L.; Park, J.; van de Velde, H.; Vermeulen, J.; Fung, M.C.; Reddy, M.; Hall, B.; Sasser, K. Development and validation of panoptic Meso scale discovery assay to quantify total systemic interleukin-6. Brit. J. Clin. Pharmacol. 2015, 80, 687–697. [Google Scholar] [CrossRef] [Green Version]
- van Zaanen, H.C.; Koopmans, R.P.; Aarden, L.A.; Rensink, H.J.; Stouthard, J.M.; Warnaar, S.O.; Lokhorst, H.M.; van Oers, M.H. Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop. J. Clin. Investig. 1996, 98, 1441–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, L.T.; Neta, R.; Moldawer, L.L.; Kenney, J.S.; Patel, K.; Sehgal, P.B. Antibodies chaperone circulating IL-6. Paradoxical effects of anti-IL-6 “neutralizing” antibodies in vivo. J. Immunol. 1993, 151, 3225–3236. [Google Scholar] [PubMed]
- Villaescusa, L.; Zaragoza, F.; Gayo-Abeleira, I.; Zaragoza, C. A new approach to the management of COVID-19. Antagonists of IL-6: Siltuximab. Adv. Ther. 2022, 39, 1126–1148. [Google Scholar] [CrossRef]
- Chen, F.; Teachey, D.J.; Pequignot, E.; Frey, N.; Porter, D.; Maude, S.L.; Grupp, S.A.; June, C.H.; Melenhorst, J.J.; Lacey, S.F. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J. Immunol. Methods 2016, 434, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Locke, F.L.; Lin, Y.; Jain, N.; Daver, N.; Gulbis, A.M.; Adkins, S.; et al. Toxicity management after chimeric antigen receptor T cell therapy: One size does not fit “ALL”. Nat. Rev. Clin. Oncol. 2018, 15, 218. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Xu, J.; Zhang, R.; Zhu, H.; Wu, Y.; Zhu, L.; Li, J.; Chen, L. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp. Hematol. Oncol. 2021, 10, 16. [Google Scholar] [CrossRef]
- Finkelman, F.D.; Madden, K.B.; Morris, S.C.; Holmes, J.M.; Boiani, N.; Katona, I.M.; Maliszewski, C.R. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J. Immunol. 1993, 151, 1235–1244. [Google Scholar]
- Tomala, J.; Kovar, M. IL-2/anti-IL-2 mAb immunocomplexes: A renaissance of IL-2 in cancer immunotherapy? Oncoimmunology 2015, 5, e1102829. [Google Scholar] [CrossRef]
- Shulgin, B.; Helmlinger, G.; Kosinsky, Y. A generic mechanism for enhanced cytokine signaling via cytokine-neutralizing antibodies. PLoS ONE 2016, 11, e0149154. [Google Scholar] [CrossRef]
- O’Hear, C.E.; Foote, J. Antibody buffering of a ligand in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 40–44. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sehgal, P.B. Interleukin-6 at the Host-Tumor Interface: STAT3 in Biomolecular Condensates in Cancer Cells. Cells 2022, 11, 1164. https://doi.org/10.3390/cells11071164
Sehgal PB. Interleukin-6 at the Host-Tumor Interface: STAT3 in Biomolecular Condensates in Cancer Cells. Cells. 2022; 11(7):1164. https://doi.org/10.3390/cells11071164
Chicago/Turabian StyleSehgal, Pravin B. 2022. "Interleukin-6 at the Host-Tumor Interface: STAT3 in Biomolecular Condensates in Cancer Cells" Cells 11, no. 7: 1164. https://doi.org/10.3390/cells11071164
APA StyleSehgal, P. B. (2022). Interleukin-6 at the Host-Tumor Interface: STAT3 in Biomolecular Condensates in Cancer Cells. Cells, 11(7), 1164. https://doi.org/10.3390/cells11071164