HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Transposon Vector Plasmids
2.3. Transfection and Establishment of Stable Cell Clones
2.4. Determining Heat Treatment Conditions
2.5. Immunostaining
2.6. Liver Function Analyses
2.7. Gene Expression Analysis Using DNA Microarrays
2.8. Statistical Analysis
3. Results
3.1. Optimization of Heat Treatment Conditions
3.2. Screening HepG2/8F_HS Cells and Liver Function Analyses
3.3. Fractioning Cells with Enhanced Liver Functions on the Basis of EGFP Fluorescence Intensity
3.4. Spheroid Culture of HepG2/8F_HS Cells
3.5. Whole-Genome Expression Analysis of HepG2/8F_HS Cells Using DNA Microarrays
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, G.B.; Huang, W.J.; Zeng, M.; Zhou, X.; Wu, H.P.; Liu, C.C.; Wu, H.; Weng, J.; Zhang, H.D.; Cai, Y.C.; et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res. 2019, 29, 8–22. [Google Scholar] [CrossRef]
- Katsuda, T.; Matsuzaki, J.; Yamaguchi, T.; Yamada, Y.; Prieto-Vila, M.; Hosaka, K.; Takeuchi, A.; Saito, Y.; Ochiya, T. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. Elife 2019, 8, e47313. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, K.; Lee, S.B.; Seo, D.; Yoon, S.; Kim, S.J.; Jang, K.; Jung, Y.K.; Lee, K.G.; Factor, V.M.; et al. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J. Hepatol. 2019, 70, 97–107. [Google Scholar] [CrossRef]
- Liu, H.; Kim, Y.; Sharkis, S.; Marchionni, L.; Jang, Y.Y. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci. Transl. Med. 2011, 3, 82ra39. [Google Scholar] [CrossRef] [Green Version]
- Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.R.; Ueno, Y.; Zheng, Y.W.; Koike, N.; et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013, 499, 481–484. [Google Scholar] [CrossRef]
- Zhu, S.; Rezvani, M.; Harbell, J.; Mattis, A.N.; Wolfe, A.R.; Benet, L.Z.; Willenbring, H.; Ding, S. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 2014, 508, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Ang, L.T.; Tan, A.K.Y.; Autio, M.I.; Goh, S.H.; Choo, S.H.; Lee, K.L.; Tan, J.; Pan, B.; Lee, J.J.H.; Lum, J.J.; et al. A roadmap for human liver differentiation from pluripotent stem cells. Cell Rep. 2018, 22, 2190–2205. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Sun, D.; Liang, Z.; Wang, J.; Zhong, X.; Lyu, Y.; Cao, J.; Lin, Z.; Du, Y.; Miao, Z.; et al. Generation of human hepatocytes from extended pluripotent stem cells. Cell Res. 2020, 30, 810–813. [Google Scholar] [CrossRef] [Green Version]
- Knowlton, S.; Tasoglu, S. A bioprinted liver-on-a-chip for drug screening applications. Trends Biotechnol. 2016, 34, 681–682. [Google Scholar] [CrossRef]
- Štampar, M.; Tomc, J.; Filipič, M.; Žegura, B. Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing. Arch. Toxicol. 2019, 93, 3321–3333. [Google Scholar] [CrossRef]
- Enosawa, S.; Miyashita, T.; Saito, T.; Omasa, T.; Matsumura, T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant. 2006, 15, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Coward, S.M.; Legallais, C.; David, B.; Thomas, M.; Foo, Y.; Mavri-Damelin, D.; Hodgson, H.J.; Selden, C. Alginate-encapsulated HepG2 cells in a fluidized bed bioreactor maintain function in human liver failure plasma. Artif. Organs 2009, 33, 1117–1126. [Google Scholar] [CrossRef]
- Iwamoto, M.; Watashi, K.; Tsukuda, S.; Aly, H.H.; Fukasawa, M.; Fujimoto, A.; Suzuki, R.; Aizaki, H.; Ito, T.; Koiwai, O.; et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem. Biophys. Res. Commun. 2014, 443, 808–813. [Google Scholar] [CrossRef] [Green Version]
- König, A.; Döring, B.; Mohr, C.; Geipel, A.; Geyer, J.; Glebe, D. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J. Hepatol. 2014, 61, 867–875. [Google Scholar] [CrossRef] [Green Version]
- Benner, S.A.; Sismour, A.M. Synthetic biology. Nat. Rev. Genet. 2005, 6, 533–543. [Google Scholar] [CrossRef]
- Ausländer, S.; Fussenegger, M. From gene switches to mammalian designer cells: Present and future prospects. Trends Biotechnol. 2013, 31, 155–168. [Google Scholar] [CrossRef]
- Cameron, D.E.; Bashor, C.J.; Collins, J.J. A brief history of synthetic biology. Nat. Rev. Microbiol. 2014, 12, 381–390. [Google Scholar] [CrossRef]
- Riglar, D.T.; Giessen, T.W.; Baym, M.; Kerns, S.J.; Niederhuber, M.J.; Bronson, R.T.; Kotula, J.W.; Gerber, G.K.; Way, J.C.; Silver, P.A. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 2017, 35, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Riglar, D.T.; Silver, P.A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 2018, 16, 214–225. [Google Scholar] [CrossRef]
- Xu, P.; Li, L.; Zhang, F.; Stephanopoulos, G.; Koffas, M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. USA 2014, 111, 11299–11304. [Google Scholar] [CrossRef] [Green Version]
- Seok, J.Y.; Yang, J.; Choi, S.J.; Lim, H.G.; Choi, U.J.; Kim, K.J.; Park, S.; Yoo, T.H.; Jung, G.Y. Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metab. Eng. 2018, 47, 113–120. [Google Scholar] [CrossRef]
- Webster, D.P.; TerAvest, M.A.; Doud, D.F.R.; Chakravorty, A.; Holmes, E.C.; Radens, C.M.; Sureka, S.; Gralnick, J.A.; Angenent, L.T. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens. Bioelectron. 2014, 62, 320–324. [Google Scholar] [CrossRef]
- Hoynes-O’Connor, A.; Shopera, T.; Hinman, K.; Creamer, J.P.; Moon, T.S. Enabling complex genetic circuits to respond to extrinsic environmental signals. Biotechnol. Bioeng. 2017, 114, 1626–1631. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ito, A.; Okamoto, N.; Kawabe, Y.; Kamihira, M. Heat-inducible transgene expression system incorporating a positive feedback loop of transcriptional amplification for hyperthermia-induced gene therapy. J. Biosci. Bioeng. 2012, 114, 460–465. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kawabe, Y.; Ito, A.; Kamihira, M. Enhanced liver functions in mouse hepatoma cells by induced overexpression of liver-enriched transcription factors. Biochem. Eng. J. 2012, 60, 67–73. [Google Scholar] [CrossRef]
- Yamamoto, H.; Tonello, J.M.; Sambuichi, T.; Kawabe, Y.; Ito, A.; Kamihira, M. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors. J. Biosci. Bioeng. 2018, 125, 131–139. [Google Scholar] [CrossRef]
- Kitano, H.; Nagae, Y.; Kawabe, Y.; Ito, A.; Kamihira, M. Development of a genetically modified hepatoma cell line with heat-inducible high liver function. Cytotechnology 2021, 73, 353–362. [Google Scholar] [CrossRef]
- Ito, A.; Teranishi, R.; Kamei, K.; Yamaguchi, M.; Ono, A.; Masumoto, S.; Sonoda, Y.; Horie, M.; Kawabe, Y.; Kamihira, M. Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. J. Biosci. Bioeng. 2019, 128, 355–364. [Google Scholar] [CrossRef]
- Kitano, H.; Souvervielle, S.M.; Sonoda, Y.; Kawabe, Y.; Ito, A.; Kamihira, M. Generation of gene-engineered human hepatoma cells with heat-inducible liver functions. MATEC Web Conf. 2021, 333, 07007. [Google Scholar] [CrossRef]
- Bou-Nader, M.; Caruso, S.; Donne, R.; Celton-Morizur, S.; Calderaro, J.; Gentric, G.; Cadoux, M.; L’Hermitte, A.; Klein, C.; Guilbert, T.; et al. Polyploidy spectrum: A new marker in HCC classification. Gut 2020, 69, 355–364. [Google Scholar] [CrossRef]
- Kostadinova, R.; Boess, F.; Applegate, D.; Suter, L.; Weiser, T.; Singer, T.; Naughton, B.; Roth, A. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol. Appl. Pharmacol. 2013, 268, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, S. Three-dimensional liver culture systems to maintain primary hepatic properties for toxicological analysis in vitro. Int. J. Mol. Sci. 2021, 22, 10214. [Google Scholar] [CrossRef] [PubMed]
- Takebe, T.; Sekine, K.; Kimura, M.; Yoshizawa, E.; Ayano, S.; Koido, M.; Funayama, S.; Nakanishi, N.; Hisai, T.; Kobayashi, T.; et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 2017, 21, 2661–2670. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Wang, W.; Ninomiya, T.; Nagano, H.; Ohta, K.; Itoh, H. Liver enriched transcription factors and differentiation of hepatocellular carcinoma. Mol. Pathol. 1999, 52, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Sekiya, S.; Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011, 475, 390–393. [Google Scholar] [CrossRef]
- Huang, P.; He, Z.; Ji, S.; Sun, H.; Xiang, D.; Liu, C.; Hu, Y.; Wang, X.; Hui, L. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011, 475, 386–389. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, L.; Gao, Y.; He, Z.; Yao, D.; Wu, Z.; Cen, J.; Chen, X.; Liu, C.; Hu, Y.; et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014, 14, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Schrooders, Y.; Hauser, D.; van Herwijnen, M.; Albrecht, W.; ter Braak, B.; Brecklinghaus, T.; Castell, J.V.; Elenschneider, L.; Escher, S.; et al. Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Arch. Toxicol. 2021, 95, 573–589. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitano, H.; Kawabe, Y.; Kamihira, M. HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells 2022, 11, 1194. https://doi.org/10.3390/cells11071194
Kitano H, Kawabe Y, Kamihira M. HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells. 2022; 11(7):1194. https://doi.org/10.3390/cells11071194
Chicago/Turabian StyleKitano, Hiroyuki, Yoshinori Kawabe, and Masamichi Kamihira. 2022. "HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions" Cells 11, no. 7: 1194. https://doi.org/10.3390/cells11071194
APA StyleKitano, H., Kawabe, Y., & Kamihira, M. (2022). HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells, 11(7), 1194. https://doi.org/10.3390/cells11071194