CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis
Abstract
:1. Introduction
2. Airway Infections in Cystic Fibrosis
3. CFTR Modulators and CF Microbiology
Possible Causes of Infection Persistence
4. CFTR Modulators and Chronic Airway Infections/Recurrent Exacerbations
4.1. CFTR Modulators and Chronic Airway Infections
4.1.1. Ivacaftor
4.1.2. Lumacaftor/Ivacaftor
4.1.3. Elexacaftor/Tezacaftor/Ivacaftor
4.2. CFTR Modulators and Recurrent Infectious Exacerbations
4.2.1. Ivacaftor
4.2.2. Lumacaftor/Ivacaftor
4.2.3. Tezacaftor/Ivacaftor
4.2.4. Elexacaftor/Tezacaftor/Ivacaftor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratjen, F.; Bell, S.C.; Rowe, S.M.; Goss, C.H.; Quittner, A.L.; Bush, A. Cystic Fibrosis. Nat. Rev. Dis. Primers 2015, 1, 15010. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.S. Cystic Fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- de Boeck, K. Cystic Fibrosis in the Year 2020: A Disease with a New Face. Acta Paediatr. 2020, 109, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic Fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- de Rose, V. Mechanisms and Markers of Airway Inflammation in Cystic Fibrosis. Eur. Respir. J. 2002, 19, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizur, A.; Cannon, C.L.; Ferkol, T.W. Airway Inflammation in Cystic Fibrosis. Chest 2008, 133, 489–495. [Google Scholar] [CrossRef]
- Pillarisetti, N.; Williamson, E.; Linnane, B.; Skoric, B.; Robertson, C.F.; Robinson, P.; Massie, J.; Hall, G.L.; Sly, P.; Stick, S.; et al. Infection, Inflammation, and Lung Function Decline in Infants with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2011, 184, 75–81. [Google Scholar] [CrossRef]
- Ranganathan, S.C.; Parsons, F.; Gangell, C.; Brennan, S.; Stick, S.M.; Sly, P.D. Evolution of Pulmonary Inflammation and Nutritional Status in Infants and Young Children with Cystic Fibrosis. Thorax 2011, 66, 408–413. [Google Scholar] [CrossRef] [Green Version]
- Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in Cystic Fibrosis Lung Disease: Pathogenesis and Therapy. J. Cyst. Fibros. 2015, 14, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Roesch, E.A.; Nichols, D.P.; Chmiel, J.F. Inflammation in Cystic Fibrosis: An Update. Pediatr. Pulmonol. 2018, 53, S30–S50. [Google Scholar] [CrossRef] [Green Version]
- Perrem, L.; Ratjen, F. Anti-inflammatories and Mucociliary Clearance Therapies in the Age of CFTR Modulators. Pediatr. Pulmonol. 2019, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergeron, C.; Cantin, A.M. Cystic Fibrosis: Pathophysiology of Lung Disease. Semin. Respir. Crit. Care Med. 2019, 40, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Quon, B.S.; Rowe, S.M. New and Emerging Targeted Therapies for Cystic Fibrosis. BMJ 2016, i859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman, K.; Dobra, R.; Davies, J.C. Disease-Modifying Drug Therapy in Cystic Fibrosis. Paediatr. Respir. Rev. 2018, 26, 7–9. [Google Scholar] [CrossRef]
- Mall, M.A.; Mayer-Hamblett, N.; Rowe, S.M. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am. J. Respir. Crit. Care Med. 2020, 201, 1193–1208. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.-R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The Future of Cystic Fibrosis Care: A Global Perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [Green Version]
- US 2019 Patient Registry Annual Data Report. Available online: https://www.cff.org/Research/Researcher-Resources/Patient-Registry/ (accessed on 29 December 2021).
- Saiman, L. Improving Outcomes of Infections in Cystic Fibrosis in the Era of CFTR Modulator Therapy. Pediatr. Pulmonol. 2019, 54. [Google Scholar] [CrossRef] [Green Version]
- Collin, A.M.; Lecocq, M.; Noel, S.; Detry, B.; Carlier, F.M.; Aboubakar Nana, F.; Bouzin, C.; Leal, T.; Vermeersch, M.; de Rose, V.; et al. Lung Immunoglobulin A Immunity Dysregulation in Cystic Fibrosis. EBioMedicine 2020, 60, 102974. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Crabbé, A.; Kümmerli, R.; LiPuma, J.J.; Bomberger, J.M.; Davies, J.C.; Limoli, D.; Phelan, V.V.; Bliska, J.B.; DePas, W.H.; et al. Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions. mBio 2021, 12, e01763-21. [Google Scholar] [CrossRef]
- Gannon, A.D.; Darch, S.E. Same Game, Different Players: Emerging Pathogens of the CF Lung. mBio 2021, 12, e01217-20. [Google Scholar] [CrossRef]
- Menetrey, Q.; Sorlin, P.; Jumas-Bilak, E.; Chiron, R.; Dupont, C.; Marchandin, H. Achromobacter Xylosoxidans and Stenotrophomonas Maltophilia: Emerging Pathogens Well-Armed for Life in the Cystic Fibrosis Patients’ Lung. Genes 2021, 12, 610. [Google Scholar] [CrossRef] [PubMed]
- Cystic Fibrosis Foundation Patient Registry. 2020 Annual Data Report. Bethesda, Maryland. 2021. Available online: https://www.cff.org/medical-professionals/patient-registry (accessed on 29 December 2021).
- European Cystic Fibrosis Society. ECFSPR Annual Report 2019. 2021. Available online: www.ecfs.eu/ecfspr (accessed on 29 December 2021).
- Schwerdt, M.; Neumann, C.; Schwartbeck, B.; Kampmeier, S.; Herzog, S.; Görlich, D.; Dübbers, A.; Große-Onnebrink, J.; Kessler, C.; Küster, P.; et al. Staphylococcus aureus in the Airways of Cystic Fibrosis Patients - A Retrospective Long-Term Study. Int. J. Med. Microbiol. 2018, 308, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, C.; Lange, J.; Schwartbeck, B.; Kahl, B.C. Staphylococcus aureus and Cystic Fibrosis—A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021, 10, 1177. [Google Scholar] [CrossRef] [PubMed]
- Garbacz, K.; Piechowicz, L.; Podkowik, M.; Mroczkowska, A.; Empel, J.; Bania, J. Emergence and Spread of Worldwide Staphylococcus aureus clones among Cystic Fibrosis Patients. Infect. Drug Resist. 2018, 11, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, J.; Heidenreich, K.; Higelin, K.; Dyck, K.; Marx, V.; Reichel, C.; van Wamel, W.; den Reijer, M.; Görlich, D.; Kahl, B.C. Staphylococcus aureus Pathogenicity in Cystic Fibrosis Patients—Results from an Observational Prospective Multicenter Study Concerning Virulence Genes, Phylogeny, and Gene Plasticity. Toxins 2020, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Zilm, P.S.; Kidd, S.P. Novel Research Models for Staphylococcus Aureus Small Colony Variants (SCV) Development: Co-Pathogenesis and Growth Rate. Front. Microbiol. 2020, 11, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, E.; Harrington, N.E.; Harley Henriques, A.G.; Hassan, M.M.; Crealock-Ashurst, B.; Smyth, A.R.; Hurley, M.N.; Tormo-Mas, M.Á.; Harrison, F. An Ex Vivo Cystic Fibrosis Model Recapitulates Key Clinical Aspects of Chronic Staphylococcus Aureus Infection. Microbiology 2021, 167, 000987. [Google Scholar] [CrossRef]
- Limoli, D.H.; Hoffman, L.R. Help, Hinder, Hide and Harm: What Can We Learn from the Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during Respiratory Infections? Thorax 2019, 74, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Wolter, D.J.; Onchiri, F.M.; Emerson, J.; Precit, M.R.; Lee, M.; McNamara, S.; Nay, L.; Blackledge, M.; Uluer, A.; Orenstein, D.M.; et al. Prevalence and Clinical Associations of Staphylococcus Aureus Small-Colony Variant Respiratory Infection in Children with Cystic Fibrosis (SCVSA): A Multicentre, Observational Study. Lancet Respir. Med. 2019, 7, 1027–1038. [Google Scholar] [CrossRef]
- Wolter, D.J.; Emerson, J.C.; McNamara, S.; Buccat, A.M.; Qin, X.; Cochrane, E.; Houston, L.S.; Rogers, G.B.; Marsh, P.; Prehar, K.; et al. Staphylococcus aureus Small-Colony Variants Are Independently Associated with Worse Lung Disease in Children with Cystic Fibrosis. Clin. Infect. Dis. 2013, 57, 384–391. [Google Scholar] [CrossRef]
- Lucca, F.; Guarnieri, M.; Ros, M.; Muffato, G.; Rigoli, R.; da Dalt, L. Antibiotic Resistance Evolution of Pseudomonas aeruginosa in Cystic Fibrosis Patients (2010-2013). Clin. Respir. J. 2018, 12, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Reece, E.; de Almeida Bettio, P.H.; Renwick, J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics 2021, 10, 827. [Google Scholar] [CrossRef] [PubMed]
- Vandeplassche, E.; Tavernier, S.; Coenye, T.; Crabbé, A. Influence of the Lung Microbiome on Antibiotic Susceptibility of Cystic Fibrosis Pathogens. Eur. Respir. Rev. 2019, 28, 190041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, G.B.; Taylor, S.L.; Hoffman, L.R.; Burr, L.D. The Impact of CFTR Modulator Therapies on CF Airway Microbiology. J. Cyst. Fibros. 2020, 19, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Stanton, B.A.; Coutermarsh, B.; Barnaby, R.; Hogan, D. Pseudomonas Aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells. PLoS ONE 2015, 10, e0127742. [Google Scholar] [CrossRef] [PubMed]
- Maillé, É.; Ruffin, M.; Adam, D.; Messaoud, H.; Lafayette, S.L.; McKay, G.; Nguyen, D.; Brochiero, E. Quorum Sensing Down-Regulation Counteracts the Negative Impact of Pseudomonas Aeruginosa on CFTR Channel Expression, Function and Rescue in Human Airway Epithelial Cells. Front. Cell. Infect. Microbiol. 2017, 7, 470. [Google Scholar] [CrossRef] [Green Version]
- Gentzsch, M.; Cholon, D.M.; Quinney, N.L.; Boyles, S.E.; Martino, M.E.B.; Ribeiro, C.M.P. The Cystic Fibrosis Airway Milieu Enhances Rescue of F508del in a Pre-Clinical Model. Eur. Respir. J. 2018, 52, 1801133. [Google Scholar] [CrossRef]
- Ruffin, M.; Roussel, L.; Maillé, É.; Rousseau, S.; Brochiero, E. Vx-809/Vx-770 Treatment Reduces Inflammatory Response to Pseudomonas Aeruginosa in Primary Differentiated Cystic Fibrosis Bronchial Epithelial Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L635–L641. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, K.L.; Lung, T.W.F.; Dach, F.; Annavajhala, M.K.; Gabryszewski, S.J.; Groves, R.A.; Drikic, M.; Francoeur, N.J.; Sridhar, S.H.; Smith, M.L.; et al. Staphylococcus aureus Induces an Itaconate-Dominated Immunometabolic Response That Drives Biofilm Formation. Nat. Commun. 2021, 12, 1399. [Google Scholar] [CrossRef]
- Thammavongsa, V.; Kim, H.K.; Missiakas, D.; Schneewind, O. Staphylococcal Manipulation of Host Immune Responses. Nat. Rev. Microbiol. 2015, 13, 529–543. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, S.A.; Liimatta, K.; Wong Fok Lung, T.; Fields, B.; Ahn, D.; Chen, D.; Lozano, C.; Sáenz, Y.; Uhlemann, A.-C.; Kahl, B.C.; et al. Pseudomonas Aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation. Cell Metab. 2020, 31, 1091–1106. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, S.A.; Lozano, C.; Moustafa, A.M.; Liimatta, K.; Tomlinson, K.L.; Britto, C.; Khanal, S.; Gill, S.K.; Narechania, A.; Azcona-Gutiérrez, J.M.; et al. CFTR-PTEN–Dependent Mitochondrial Metabolic Dysfunction Promotes Pseudomonas aeruginosa Airway Infection. Sci. Transl. Med. 2019, 11, eaav4634. [Google Scholar] [CrossRef] [PubMed]
- Cigana, C.; Lorè, N.I.; Riva, C.; de Fino, I.; Spagnuolo, L.; Sipione, B.; Rossi, G.; Nonis, A.; Cabrini, G.; Bragonzi, A. Tracking the Immunopathological Response to Pseudomonas Aeruginosa during Respiratory Infections. Sci. Rep. 2016, 6, 21465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saliu, F.; Rizzo, G.; Bragonzi, A.; Cariani, L.; Cirillo, D.M.; Colombo, C.; Daccò, V.; Girelli, D.; Rizzetto, S.; Sipione, B.; et al. Chronic Infection by Nontypeable Haemophilus Influenzae Fuels Airway Inflammation. ERJ Open Res. 2021, 7, 00614-2020. [Google Scholar] [CrossRef] [PubMed]
- Vongthilath, R.; Richaud Thiriez, B.; Dehillotte, C.; Lemonnier, L.; Guillien, A.; Degano, B.; Dalphin, M.-L.; Dalphin, J.-C.; Plésiat, P. Clinical and Microbiological Characteristics of Cystic Fibrosis Adults Never Colonized by Pseudomonas Aeruginosa: Analysis of the French CF Registry. PLoS ONE 2019, 14, e0210201. [Google Scholar] [CrossRef] [PubMed]
- VandenBranden, S.L.; McMullen, A.; Schechter, M.S.; Pasta, D.J.; Michaelis, R.L.; Konstan, M.W.; Wagener, J.S.; Morgan, W.J.; McColley, S.A. Lung Function Decline from Adolescence to Young Adulthood in Cystic Fibrosis. Pediatr. Pulmonol. 2012, 47, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Tiringer, K.; Treis, A.; Fucik, P.; Gona, M.; Gruber, S.; Renner, S.; Dehlink, E.; Nachbaur, E.; Horak, F.; Jaksch, P.; et al. A Th17- and Th2-Skewed Cytokine Profile in Cystic Fibrosis Lungs Represents a Potential Risk Factor for Pseudomonas aeruginosa Infection. Am. J. Respir. Crit. Care Med. 2013, 187, 621–629. [Google Scholar] [CrossRef]
- Riquelme, S.A.; Wong Fok Lung, T.; Prince, A. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Hector, A.; Schäfer, H.; Pöschel, S.; Fischer, A.; Fritzsching, B.; Ralhan, A.; Carevic, M.; Öz, H.; Zundel, S.; Hogardt, M.; et al. Regulatory T-Cell Impairment in Cystic Fibrosis Patients with Chronic Pseudomonas Infection. Am. J. Respir. Crit. Care Med. 2015, 191, 914–923. [Google Scholar] [CrossRef]
- Westhölter, D.; Beckert, H.; Straßburg, S.; Welsner, M.; Sutharsan, S.; Taube, C.; Reuter, S. Pseudomonas Aeruginosa Infection, but Not Mono or Dual-Combination CFTR Modulator Therapy Affects Circulating Regulatory T Cells in an Adult Population with Cystic Fibrosis. J. Cyst. Fibros. 2021, 20, 1072–1079. [Google Scholar] [CrossRef]
- Bartlett, J.A.; Ramachandran, S.; Wohlford-Lenane, C.L.; Barker, C.K.; Pezzulo, A.A.; Zabner, J.; Welsh, M.J.; Meyerholz, D.K.; Stoltz, D.A.; McCray, P.B. Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. Am. J. Respir. Crit. Care Med. 2016, 194, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieneke, M.K.; Dach, F.; Neumann, C.; Görlich, D.; Kaese, L.; Thißen, T.; Dübbers, A.; Kessler, C.; Große-Onnebrink, J.; Küster, P.; et al. Association of Diverse Staphylococcus Aureus Populations with Pseudomonas Aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection. mSphere 2021, 6, e00358-21. [Google Scholar] [CrossRef] [PubMed]
- Trouvé, P.; Férec, C.; Génin, E. The Interplay between the Unfolded Protein Response, Inflammation and Infection in Cystic Fibrosis. Cells 2021, 10, 2980. [Google Scholar] [CrossRef] [PubMed]
- Jarosz-Griffiths, H.H.; Scambler, T.; Wong, C.H.; Lara-Reyna, S.; Holbrook, J.; Martinon, F.; Savic, S.; Whitaker, P.; Etherington, C.; Spoletini, G.; et al. Different CFTR Modulator Combinations Downregulate Inflammation Differently in Cystic Fibrosis. Elife 2020, 9, e54556. [Google Scholar] [CrossRef] [PubMed]
- Harwood, K.H.; McQuade, R.M.; Jarnicki, A.; Schneider-Futschik, E.K. Anti-Inflammatory Influences of Cystic Fibrosis Transmembrane Conductance Regulator Drugs on Lung Inflammation in Cystic Fibrosis. Int. J. Mol. Sci. 2021, 22, 7606. [Google Scholar] [CrossRef]
- Keown, K.; Brown, R.; Doherty, D.F.; Houston, C.; McKelvey, M.C.; Creane, S.; Linden, D.; McAuley, D.F.; Kidney, J.C.; Weldon, S.; et al. Airway Inflammation and Host Responses in the Era of CFTR Modulators. Int. J. Mol. Sci. 2020, 21, 6379. [Google Scholar] [CrossRef]
- Siegmann, N.; Worbs, D.; Effinger, F.; Bormann, T.; Gebhardt, M.; Ulrich, M.; Wermeling, F.; Müller-Hermelink, E.; Biedermann, T.; Tighe, M.; et al. Invariant Natural Killer T (INKT) Cells Prevent Autoimmunity, but Induce Pulmonary Inflammation in Cystic Fibrosis. Cell. Physiol. Biochem. 2014, 34, 56–70. [Google Scholar] [CrossRef]
- Schlesinger, R. Interspecies Differences in the Phagocytic Activity of Pulmonary Macrophages Subjected to Acidic Challenge. Fundam. Appl. Toxicol. 1992, 19, 584–589. [Google Scholar] [CrossRef]
- Zhang, S.; Shrestha, C.L.; Kopp, B.T. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators Have Differential Effects on Cystic Fibrosis Macrophage Function. Sci. Rep. 2018, 8, 17066. [Google Scholar] [CrossRef] [Green Version]
- Hisert, K.B.; Birkland, T.P.; Schoenfelt, K.Q.; Long, M.E.; Grogan, B.; Carter, S.; Liles, W.C.; McKone, E.F.; Becker, L.; Manicone, A.M.; et al. CFTR Modulator Therapy Enhances Peripheral Blood Monocyte Contributions to Immune Responses in People with Cystic Fibrosis. Front. Pharmacol. 2020, 11, 1219. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Heijerman, H.G.M.; McKone, E.F.; Downey, D.G.; van Braeckel, E.; Rowe, S.M.; Tullis, E.; Mall, M.A.; Welter, J.J.; Ramsey, B.W.; McKee, C.M.; et al. Efficacy and Safety of the Elexacaftor plus Tezacaftor plus Ivacaftor Combination Regimen in People with Cystic Fibrosis Homozygous for the F508del Mutation: A Double-Blind, Randomised, Phase 3 Trial. Lancet 2019, 394, 1940–1948. [Google Scholar] [CrossRef]
- Coburn, B.; Wang, P.W.; Diaz Caballero, J.; Clark, S.T.; Brahma, V.; Donaldson, S.; Zhang, Y.; Surendra, A.; Gong, Y.; Elizabeth Tullis, D.; et al. Lung Microbiota across Age and Disease Stage in Cystic Fibrosis. Sci. Rep. 2015, 5, 10241. [Google Scholar] [CrossRef] [PubMed]
- Delhaes, L.; Monchy, S.; Fréalle, E.; Hubans, C.; Salleron, J.; Leroy, S.; Prevotat, A.; Wallet, F.; Wallaert, B.; Dei-Cas, E.; et al. The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management. PLoS ONE 2012, 7, e36313. [Google Scholar] [CrossRef] [Green Version]
- Rabin, H.R.; Surette, M.G. The Cystic Fibrosis Airway Microbiome. Curr. Opin. Pulm. Med. 2012, 18, 622–627. [Google Scholar] [CrossRef]
- Lim, Y.W.; Schmieder, R.; Haynes, M.; Willner, D.; Furlan, M.; Youle, M.; Abbott, K.; Edwards, R.; Evangelista, J.; Conrad, D.; et al. Metagenomics and Metatranscriptomics: Windows on CF-Associated Viral and Microbial Communities. J. Cyst. Fibros. 2013, 12, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Schloss, P.D.; Kalikin, L.M.; Carmody, L.A.; Foster, B.K.; Petrosino, J.F.; Cavalcoli, J.D.; VanDevanter, D.R.; Murray, S.; Li, J.Z.; et al. Decade-Long Bacterial Community Dynamics in Cystic Fibrosis Airways. Proc. Natl. Acad. Sci. USA 2012, 109, 5809–5814. [Google Scholar] [CrossRef] [Green Version]
- Einarsson, G.G.; Ronan, N.J.; Mooney, D.; McGettigan, C.; Mullane, D.; NiChroinin, M.; Shanahan, F.; Murphy, D.M.; McCarthy, M.; McCarthy, Y.; et al. Extended-Culture and Culture-Independent Molecular Analysis of the Airway Microbiota in Cystic Fibrosis Following CFTR Modulation with Ivacaftor. J. Cyst. Fibros. 2021, 20, 747–753. [Google Scholar] [CrossRef]
- Yi, B.; Dalpke, A.H.; Boutin, S. Changes in the Cystic Fibrosis Airway Microbiome in Response to CFTR Modulator Therapy. Front. Cell. Infect. Microbiol. 2021, 11, 184. [Google Scholar] [CrossRef]
- Hisert, K.B.; Heltshe, S.L.; Pope, C.; Jorth, P.; Wu, X.; Edwards, R.M.; Radey, M.; Accurso, F.J.; Wolter, D.J.; Cooke, G.; et al. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections. Am. J. Respir. Crit. Care Med. 2017, 195, 1617–1628. [Google Scholar] [CrossRef]
- Waters, V. Beneath the Surface: Assessing Cystic Fibrosis Pulmonary Infections in the Era of Highly Effective Modulator Therapy. J. Cyst. Fibros. 2021, 20, 723–724. [Google Scholar] [CrossRef] [PubMed]
- Duckers, J.; Lesher, B.; Thorat, T.; Lucas, E.; McGarry, L.J.; Chandarana, K.; de Iorio, F. Real-World Outcomes of Ivacaftor Treatment in People with Cystic Fibrosis: A Systematic Review. J. Clin. Med. 2021, 10, 1527. [Google Scholar] [CrossRef] [PubMed]
- Graeber, S.Y.; Boutin, S.; Wielpütz, M.O.; Joachim, C.; Frey, D.L.; Wege, S.; Sommerburg, O.; Kauczor, H.-U.; Stahl, M.; Dalpke, A.H.; et al. Effects of Lumacaftor–Ivacaftor on Lung Clearance Index, Magnetic Resonance Imaging, and Airway Microbiome in Phe508del Homozygous Patients with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2021, 18, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Neerincx, A.H.; Whiteson, K.; Phan, J.L.; Brinkman, P.; Abdel-Aziz, M.I.; Weersink, E.J.M.; Altenburg, J.; Majoor, C.J.; Maitland-van der Zee, A.H.; Bos, L.D.J. Lumacaftor/Ivacaftor Changes the Lung Microbiome and Metabolome in Cystic Fibrosis Patients. ERJ Open Res. 2021, 7, 00731-2020. [Google Scholar] [CrossRef] [PubMed]
- Sosinski, L.M.; H, C.M.; Neugebauer, K.A.; Ghuneim, L.-A.J.; Guzior, D.V.; Castillo-Bahena, A.; Mielke, J.; Thomas, R.; McClelland, M.; Conrad, D.; et al. A Restructuring of Microbiome Niche Space Is Associated with Elexacaftor-Tezacaftor-Ivacaftor Therapy in the Cystic Fibrosis Lung. J. Cyst. Fibros. 2021. [Google Scholar] [CrossRef] [PubMed]
- Durfey, S.L.; Pipavath, S.; Li, A.; Vo, A.T.; Ratjen, A.; Carter, S.; Morgan, S.J.; Radey, M.C.; Grogan, B.; Salipante, S.J.; et al. Combining Ivacaftor and Intensive Antibiotics Achieves Limited Clearance of Cystic Fibrosis Infections. mBio 2021, 12, e03148-21. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Cigana, C.; Giannella, R.; Alcalá-Franco, B.; D’Aurora, M.; Colavolpe, A.; Giustra, M.; Bragonzi, A. 468: Impact of CFTR Modulators on Antibiotic Susceptibility and Virulence of Pseudomonas aeruginosa and Staphylococcus aureus. J. Cyst. Fibros. 2021, 20, S221. [Google Scholar] [CrossRef]
- Robledo, F.; Kopp, B.; Partida-Sanchez, S. 493: Effects of Elexacaftor/Tezacaftor/Ivacaftor on Antimicrobial Functions of CF Neutrophils. J. Cyst. Fibros. 2021, 20, S233. [Google Scholar] [CrossRef]
- Shteinberg, M.; Taylor-Cousar, J.L. Impact of CFTR Modulator Use on Outcomes in People with Severe Cystic Fibrosis Lung Disease. Eur. Respir. Rev. 2020, 29, 190112. [Google Scholar] [CrossRef] [Green Version]
- Bruscia, E.M.; Bonfield, T.L. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. J. Innate Immun. 2016, 8, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Hazlett, H.F.; Hampton, T.H.; Aridgides, D.S.; Armstrong, D.A.; Dessaint, J.A.; Mellinger, D.L.; Nymon, A.B.; Ashare, A. Altered Iron Metabolism in Cystic Fibrosis Macrophages: The Impact of CFTR Modulators and Implications for Pseudomonas aeruginosa Survival. Sci. Rep. 2020, 10, 10935. [Google Scholar] [CrossRef]
- Shrestha, C.L.; Zhang, S.; Wisniewski, B.; Häfner, S.; Elie, J.; Meijer, L.; Kopp, B.T. (R)-Roscovitine and CFTR Modulators Enhance Killing of Multi-Drug Resistant Burkholderia Cenocepacia by Cystic Fibrosis Macrophages. Sci. Rep. 2020, 10, 21700. [Google Scholar] [CrossRef] [PubMed]
- Gur, M.; Bar-Yoseph, R.; Toukan, Y.; Hanna, M.; Masarweh, K.; Bentur, L. Twelve Years of Progressive Mycobacterium abscessus Lung Disease in CF—Response to Trikafta. Pediatr. Pulmonol. 2021, 56, 4048–4050. [Google Scholar] [CrossRef] [PubMed]
- Ibberson, C.B.; Whiteley, M. The Staphylococcus Aureus Transcriptome during Cystic Fibrosis Lung Infection. mBio 2019, 10, e02774-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorth, P.; Staudinger, B.J.; Wu, X.; Hisert, K.B.; Hayden, H.; Garudathri, J.; Harding, C.L.; Radey, M.C.; Rezayat, A.; Bautista, G.; et al. Regional Isolation Drives Bacterial Diversification within Cystic Fibrosis Lungs. Cell Host Microbe 2015, 18, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.M.; Heltshe, S.L.; Gonska, T.; Donaldson, S.H.; Borowitz, D.; Gelfond, D.; Sagel, S.D.; Khan, U.; Mayer-Hamblett, N.; van Dalfsen, J.M.; et al. Clinical Mechanism of the Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor in G551D-Mediated Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 175–184. [Google Scholar] [CrossRef]
- Heltshe, S.L.; Mayer-Hamblett, N.; Burns, J.L.; Khan, U.; Baines, A.; Ramsey, B.W.; Rowe, S.M. Pseudomonas Aeruginosa in Cystic Fibrosis Patients With G551D-CFTR Treated With Ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef]
- Hubert, D.; Dehillotte, C.; Munck, A.; David, V.; Baek, J.; Mely, L.; Dominique, S.; Ramel, S.; Danner Boucher, I.; Lefeuvre, S.; et al. Retrospective Observational Study of French Patients with Cystic Fibrosis and a Gly551Asp-CFTR Mutation after 1 and 2 Years of Treatment with Ivacaftor in a Real-World Setting. J. Cyst. Fibros. 2018, 17, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Strang, A.; Fischer, A.J.; Chidekel, A. Pseudomonas Eradication and Clinical Effectivness of Ivacaftor in Four Hispanic Patients with S549N. Pediatr. Pulmonol. 2017, 52, E37–E39. [Google Scholar] [CrossRef]
- Millar, B.C.; McCaughan, J.; Rendall, J.C.; Downey, D.G.; Moore, J.E. Pseudomonas aeruginosa in Cystic Fibrosis Patients with c.1652G›A (G551D)-CFTR Treated with Ivacaftor-Changes in Microbiological Parameters. J. Clin. Pharm. Ther. 2018, 43, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, B.C.; Rendall, J.C.; Downey, D.G.; Moore, J.E. Does Ivacaftor Interfere with the Antimicrobial Activity of Commonly Used Antibiotics against Pseudomonas aeruginosa—Results of an in Vitro Study. J. Clin. Pharm. Ther. 2018, 43, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Frost, F.J.; Nazareth, D.S.; Charman, S.C.; Winstanley, C.; Walshaw, M.J. Ivacaftor Is Associated with Reduced Lung Infection by Key Cystic Fibrosis Pathogens. A Cohort Study Using National Registry Data. Ann. Am. Thorac. Soc. 2019, 16, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Volkova, N.; Moy, K.; Evans, J.; Campbell, D.; Tian, S.; Simard, C.; Higgins, M.; Konstan, M.W.; Sawicki, G.S.; Elbert, A.; et al. Disease Progression in Patients with Cystic Fibrosis Treated with Ivacaftor: Data from National US and UK Registries. J. Cyst. Fibros. 2020, 19, 68–79. [Google Scholar] [CrossRef]
- Guimbellot, J.S.; Baines, A.; Paynter, A.; Heltshe, S.L.; VanDalfsen, J.; Jain, M.; Rowe, S.M.; Sagel, S.D. Long Term Clinical Effectiveness of Ivacaftor in People with the G551D CFTR Mutation. J. Cyst. Fibros. 2021, 20, 213–219. [Google Scholar] [CrossRef]
- Harris, J.K.; Wagner, B.D.; Zemanick, E.T.; Robertson, C.E.; Stevens, M.J.; Heltshe, S.L.; Rowe, S.M.; Sagel, S.D. Changes in Airway Microbiome and Inflammation with Ivacaftor Treatment in Patients with Cystic Fibrosis and the G551D Mutation. Ann. Am. Thorac. Soc. 2020, 17, 212–220. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Choo, J.M.; Langan, K.M.; Edgeworth, D.; Keating, D.; Wilson, J.; Rogers, G.B.; Kotsimbos, T. Antibiotic Exposure and Interpersonal Variance Mask the Effect of Ivacaftor on Respiratory Microbiota Composition. J. Cyst. Fibros. 2018, 17, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Fischer, A. 23: CFTR Modulators and New Bacterial Acquisition: A Registry-Based Analysis Using Data from the CFFPR. J. Cyst. Fibros. 2021, 20, S12. [Google Scholar] [CrossRef]
- Bichl, S.; Laguna, T.; Rychlik, K. 172: Resolution of Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis Following Initiation of Highly Effective Modulators: A Case Series. J. Cyst. Fibros. 2021, 20, S85. [Google Scholar] [CrossRef]
- de Jong, E.; Garratt, L.W.; Looi, K.; Lee, A.H.Y.; Ling, K.-M.; Smith, M.L.; Falsafi, R.; Sutanto, E.N.; Hillas, J.; Iosifidis, T.; et al. Ivacaftor or Lumacaftor/Ivacaftor Treatment Does Not Alter the Core CF Airway Epithelial Gene Response to Rhinovirus. J. Cyst. Fibros. 2021, 20, 97–105. [Google Scholar] [CrossRef]
- Sheikh, S.; Britt, R.; Khan, A.; Ryan-Wenger, N.; Johnson, T.; Mccoy, K.; Kopp, B. Impact Of Cystic Fibrosis Transmembrane Conductance Regulator Modulator Elexacaftor-Tezacaftor-Ivacaftor On Lung Function, Bmi, Bacterial Colonization, And Adaptive Immune Responses In Patients With Cystic Fibrosis. Chest 2021, 160, A1446–A1447. [Google Scholar] [CrossRef]
- Lenhan, B.; Fitzgerald, L.; Gifford, A.; Jia, S. 463: Clearance of Colonized Bacterial Species in CF Patients before and after Elexacaftor/Tezacaftor/Ivacaftor. J. Cyst. Fibros. 2021, 20, S219. [Google Scholar] [CrossRef]
- Morgan, S.; Vo, A.; Ni, W.; Radey, M.; McGeer, K.; Rowe, S.; Jorth, P.; Singh, S.; Nichols, D.; Singh, P. 429: Effects of Elexacaftor/Tezacaftor/Ivacaftor on the CF Sputum Microbiome: Preliminary Analysis from the Promise Study. J. Cyst. Fibros. 2021, 20, S201–S202. [Google Scholar] [CrossRef]
- Quinn, R.; Sosinski, L.; Quinn, R.; Neugebauer, K.; Ghuneim, L.; Guzior, D.; Castillo-Bahena, A.; Mielke, J.; McClelland, M.; Thomas, R.; et al. 525: Elexacaftor/Tezacaftor/Ivacaftor Therapy Alters the CF Lung Mucus Metabolome, Reshaping Microbiome Niche Space. J. Cyst. Fibros. 2021, 20, S248. [Google Scholar] [CrossRef]
- Davies, J.C.; Wainwright, C.E.; Canny, G.J.; Chilvers, M.A.; Howenstine, M.S.; Munck, A.; Mainz, J.G.; Rodriguez, S.; Li, H.; Yen, K.; et al. Efficacy and Safety of Ivacaftor in Patients Aged 6 to 11 Years with Cystic Fibrosis with a G551D Mutation. Am. J. Respir. Crit. Care Med. 2013, 187, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, D.; Carnovale, V.; Iacotucci, P.; Braggion, C.; Castellani, C.; Cimino, G.; Colangelo, C.; Francalanci, M.; Leonetti, G.; Lucidi, V.; et al. Effectivenesss of Ivacaftor in Severe Cystic Fibrosis Patients and Non-G551D Gating Mutations. Pediatr. Pulmonol. 2019, 54, 1398–1403. [Google Scholar] [CrossRef]
- Fink, A.; Sawicki, G.S.; Morgan, W.J.; Schechter, M.S.; Rosenfeld, M.; Marshall, B.C. Treatment Response to Ivacaftor in Clinical Practice: Analysis of the US. CF Foundation Patient Registry. Pediatr. Pulmonol. 2015, 50, 361. [Google Scholar]
- Bessonova, L.; Volkova, N.; Higgins, M.; Bengtsson, L.; Tian, S.; Simard, C.; Konstan, M.W.; Sawicki, G.S.; Sewall, A.; Nyangoma, S.; et al. Data from the US and UK Cystic Fibrosis Registries Support Disease Modification by CFTR Modulation with Ivacaftor. Thorax 2018, 73, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Kawala, C.R.; Ma, X.; Sykes, J.; Stanojevic, S.; Coriati, A.; Stephenson, A.L. Real-World Use of Ivacaftor in Canada: A Retrospective Analysis Using the Canadian Cystic Fibrosis Registry. J. Cyst. Fibros. 2021, 20, 1040–1045. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Elborn, J.S.; Ramsey, B.W.; Marigowda, G.; Huang, X.; Cipolli, M.; Colombo, C.; Davies, J.C.; de Boeck, K.; Flume, P.A.; et al. Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N. Engl. J. Med. 2015, 373, 220–231. [Google Scholar] [CrossRef] [Green Version]
- McColley, S.A.; Konstan, M.W.; Ramsey, B.W.; Stuart Elborn, J.; Boyle, M.P.; Wainwright, C.E.; Waltz, D.; Vera-Llonch, M.; Marigowda, G.; Jiang, J.G.; et al. Lumacaftor/Ivacaftor Reduces Pulmonary Exacerbations in Patients Irrespective of Initial Changes in FEV1. J. Cyst. Fibros. 2019, 18, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratjen, F.; Hug, C.; Marigowda, G.; Tian, S.; Huang, X.; Stanojevic, S.; Milla, C.E.; Robinson, P.D.; Waltz, D.; Davies, J.C.; et al. Efficacy and Safety of Lumacaftor and Ivacaftor in Patients Aged 6–11 Years with Cystic Fibrosis Homozygous for F508del-CFTR: A Randomised, Placebo-Controlled Phase 3 Trial. Lancet Respir. Med. 2017, 5, 557–567. [Google Scholar] [CrossRef]
- McNamara, J.J.; McColley, S.A.; Marigowda, G.; Liu, F.; Tian, S.; Owen, C.A.; Stiles, D.; Li, C.; Waltz, D.; Wang, L.T.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of Lumacaftor and Ivacaftor Combination Therapy in Children Aged 2–5 Years with Cystic Fibrosis Homozygous for F508del-CFTR: An Open-Label Phase 3 Study. Lancet Respir. Med. 2019, 7, 325–335. [Google Scholar] [CrossRef]
- Konstan, M.W.; McKone, E.F.; Moss, R.B.; Marigowda, G.; Tian, S.; Waltz, D.; Huang, X.; Lubarsky, B.; Rubin, J.; Millar, S.J.; et al. Assessment of Safety and Efficacy of Long-Term Treatment with Combination Lumacaftor and Ivacaftor Therapy in Patients with Cystic Fibrosis Homozygous for the F508del-CFTR Mutation (PROGRESS): A Phase 3, Extension Study. Lancet Respir. Med. 2017, 5, 107–118. [Google Scholar] [CrossRef]
- Taylor-Cousar, J.L.; Jain, M.; Barto, T.L.; Haddad, T.; Atkinson, J.; Tian, S.; Tang, R.; Marigowda, G.; Waltz, D.; Pilewski, J. Lumacaftor/Ivacaftor in Patients with Cystic Fibrosis and Advanced Lung Disease Homozygous for F508del-CFTR. J. Cyst. Fibros. 2018, 17, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.; Barker, D.; France, M.; Burr, L.; Greville, H.; Visser, S.; Middleton, P.; Wainwright, C.; Dorahy, D.; Wark, P. Lumacaftor/Ivacaftor Reduces Exacerbations in Adults Homozygous for Phe508del Mutation with Severe Lung Disease. J. Cyst. Fibros. 2020, 19, 415–420. [Google Scholar] [CrossRef]
- Burgel, P.-R.; Munck, A.; Durieu, I.; Chiron, R.; Mely, L.; Prevotat, A.; Murris-Espin, M.; Porzio, M.; Abely, M.; Reix, P.; et al. Real-Life Safety and Effectiveness of Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2020, 201, 188–197. [Google Scholar] [CrossRef]
- Burgel, P.-R.; Durieu, I.; Chiron, R.; Mely, L.; Prevotat, A.; Murris-Espin, M.; Porzio, M.; Abely, M.; Reix, P.; Marguet, C.; et al. Clinical Response to Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis According to Baseline Lung Function. J. Cyst. Fibros. 2021, 20, 220–227. [Google Scholar] [CrossRef]
- Taylor-Cousar, J.L.; Munck, A.; McKone, E.F.; van der Ent, C.K.; Moeller, A.; Simard, C.; Wang, L.T.; Ingenito, E.P.; McKee, C.; Lu, Y.; et al. Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del. N. Engl. J. Med. 2017, 377, 2013–2023. [Google Scholar] [CrossRef]
- Rowe, S.M.; Daines, C.; Ringshausen, F.C.; Kerem, E.; Wilson, J.; Tullis, E.; Nair, N.; Simard, C.; Han, L.; Ingenito, E.P.; et al. Tezacaftor–Ivacaftor in Residual-Function Heterozygotes with Cystic Fibrosis. N. Engl. J. Med. 2017, 377, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, K.M.; O’Carroll, O.M.; Carroll, C.; Grogan, B.; Connolly, A.; O’Shaughnessy, L.; Nicholson, T.T.; Gallagher, C.G.; McKone, E.F. Efficacy of Elexacaftor/Tezacaftor/Ivacaftor in Patients with Cystic Fibrosis and Advanced Lung Disease. Eur. Respir. J. 2021, 57, 2003079. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, V.; Bailey, E.; Mortimer, K.; Lou, Y.; Yuan, J.; Mulder, K.; Topuria, I.; Cerf, S.; Elder, K.; Booth, J.; et al. 56: Real-World Clinical Effectiveness of Elexacaftor/Tezacaftor/Ivacaftor and Ivacaftor in People with CF: Interim Results from the HELIO Study. J. Cyst. Fibros. 2021, 20, S28–S29. [Google Scholar] [CrossRef]
- Menten, E.; Saroya, T.; DiMango, E.; Keating, C. 177: Impact of Elexacaftor/Tezacaftor/Ivacaftor Therapy Use on Pulmonary Exacerbation Rates during the COVID-19 Pandemic. J. Cyst. Fibros. 2021, 20, S87–S88. [Google Scholar] [CrossRef]
Modulator (Commercial Name) | Responsive Mutations | Age Eligibility | Approval Year |
---|---|---|---|
Ivacaftor (Kalydeco® USA/EU) | G551D, S549N, G1244E, G178R, S1251N, G551S, G1349D, S1255P, R117H, E56K, K1060T, P67L, E193K, A1067T, R74W, L206W, G1069R, D110E, R347H, D579G, R1070Q, D1270N, D110H, R352Q, S945L, R1070W, R117C, A455E, S977F, F1074L, F1052V, D115H; 3849 + 10 kb C>T, 2789 + 5G>A, 3273-26A>G, 711 + 3A>G, E831X | ≥4 months | 2012 |
Lumacaftor-Ivacaftor (Orkambi® USA/EU) | Two copies of F508del | ≥2 years | 2015 |
Tezacaftor-Ivacaftor (Symdeko® USA) (Symkevi® EU) | Two copies of F508del One copy of F508del in association with E56K, K1060T, P67L, E193K, A1067T, R74W, L206W, D110E, D110H, R347H, D579G, R1070Q, D1270N, R352Q, S945L, R1070W, R117C, A455E, S977F, F1074L, F1052V, D1152H, 3849 + 10 kb C>T, 2789 + 5G>A, 327326A>G, 711 + 3A>G | ≥6 years | 2018 |
Elexacaftor-Tezacaftor-Ivacaftor (Trikafta® USA) (Kaftrio® EU) | One copy of F508del | ≥12 years | 2019 (USA) 2020 (EU) |
Study | Patients’ Characteristics | Findings (Related to Airway Microbiology/Infection) | ||||
---|---|---|---|---|---|---|
First Author; Year [Reference] | CFTR Modulator 1 | Treatment Duration | Patients Number | Age (Years) | Genotype 2 | Airway Microbiology/Infections 3 |
Rowe S.M.; 2014 [90] | IVA | 6 months | 133 | ≥6 | G551D | ↓ PA burden and ↑ Prevotella |
Heltshe S.L.; 2015 [91] | IVA | 6 months | 151 | ≥6 | G551D | 29% of patients positive for PA the year prior to IVA use were culture negative the year following treatment 88% of those PA free remained uninfected. No change in SA or MRSA |
Hisert K.B.; 2017 [73] | IVA | 2 years | 12 | ≥18 | G551D | ↓ PA load but any eradication ↑ Streptococcus, Prevotella, Veilonnella |
Hubert D.; 2018 [92] | IVA | 2 years | 57 | ≥6 | G551D | ↓ PA and SA colonization ↓ N. of antibiotic courses |
Strang A.; 2017 [93] | IVA | 2 years | 4 | 10–16 | S549N/F508del | Eradication of PA in 3 patients |
Millar B.C.; 2018 [95] | IVA | 2 years | 15 | ≥18 | G551D | ↓ Rate of isolation of mucoid-PA ↓ Density of M-PA |
Frost F.L.; 2019 [96] | IVA | 5 years | 276 vs. 5296 | ≥6 | G551D | ↓ PA in sputum |
Volkova N.; 2020 [97] | IVA | 5 years | 635 vs. 1874 comparators | 0–≥18 | Class I-III | ↓ PA prevalence |
Guimbellot J.S.; 2021 [98] | IVA | 5.5 years | 96 | ≥6 | G551D | ↓ PA prevalence |
Harris J.K.; 2020 [99] | IVA | 6 months | 31 | ≥10 | G551D | Any significant change |
Einarsson G.C.; 2021 [71] | IVA | 1 year | 14 | ≥13 | G551D | Greater bacterial diversity, “healthier” microbiome. No change in PA infection |
Peleg A.Y.; 2018 [100] | IVA | 1 month | 20 | ≥18 | G551D | Not significant change in microbiota in IVA vs. placebo. Significant changes associated with any change in ATB exposure |
Singh S.; 2021 [101] | IVA LUMA/IVA | 3 years | 173 | ≥12 | G551D F508del/F508del | Only in IVA group ↓ new infection with both SA and PA. |
Neerincx A.H.; 2021 [77] | LUMA/IVA | 1 year | 20 | ≥18 | F508del/F508del | No significant effect on microbiological composition |
Graeber S.Y.; 2021 [76] | LUMA/IVA | 8–16 weeks | 30 | ≥12 | F508del/F508del | ↓ Total sputum bacteria load ↑ Diversity in airway microbiome |
De Jong E.; 2021 [103] | LUMA/IVA | NA 4 | In vitro study | NA | F508del/F508del F508del/G551D | No significant impact of LUMA/IVA on CF epithelium response to Rhinovirus |
Sosinski LM; 2021 [78] | ETI | 1 year | 24 | ≥18 | At least one copy of F508del | Reshape microbiome niche space in CF mucus |
Study | Patients’ Characteristics | Findings (Related to Pulmonary Exacerbations) | ||||
---|---|---|---|---|---|---|
First Author; Year [Reference] | CFTR Modulator 1 | Treatment Duration | Patients Number | Age (Years) | Genotype 2 | Pulmonary Exacerbation 3 |
Duckers J.; 2021 [75] | IVA | Between 2012–2019 | ≥6 for each study | ≥12 | G551D | ↓ |
Ramsey B.; 2011 [80] | IVA | 48 weeks | 84 IVA/83 placebo | ≥12 | G551D | ↓ 55% vs. placebo |
Salvatore D.; 2019 [109] | IVA | 12 months | 13 with severe lung disease | ≥10 | At least one CFTR gating mutation (G178R, S549N, S549R, G551S, G970R, G1244E, S1251N, S1255P, and G1349D) | ↓ Mean number of PEx/patient/year from 4.38 (1.8) before to 2.15 (1.99) after starting IVA |
Fink A.; 2015 [110] | IVA | 1 year | 403 | ≥6 | G551D | Mean difference −1.2 (SD:1.1) |
Bessonova L; 2018 [111] | IVA | 2 years | 1667 IVA vs. 8269 comparators | 0–≥18 | Class I-III Class IV-VI Unknown | 27.8% IVA vs. 43.3% comparators |
Kawala C.R.; 2021 [112] | IVA | >4 up to 9 years | 144 | Median (IQR): 22.5 (11.1–34.4) | Class III (124) Class IV–V (20) | ↓ 18% (non-significant) |
Wainwright C.E.; 2015 [113] | LUMA/IVA | 24 weeks | 1108 | ≥12 | F508del/F508del | ↓ 30–39% vs. placebo |
McColley S.A.; 2019 [114] | LUMA/IVA | 24 weeks | 369 | ≥12 | F508del/F508del | ↓ even in patients without early lung function improvement. |
Konstan WN; 2017 [117] | LUMA/IVA | 96 weeks | 1030 | ≥12 | F508del/F508del | ↓ compared to placebo |
Taylor-Cousar J.L.; 2018 [118] | LUMA/IVA | 24 weeks | 46 | ≥12 | F508del/F508del | ↓ Annualized hospitalization rate (rate ratio: 0.41) ↓ IV atb duration (mean difference: −8.52 days) through study week 24. |
Tong K.; 2020 [119] | LUMA/IVA | 12 months | 72 | ≥12 | F508del/F508del | ↓ ↑ Time to first exacerbation |
Taylor-Cousar J.L.; 2017 [122] | TEZA/IVA | 24 weeks | 510 | ≥12 | F508del/F508del | ↓ 35% in the TEZA/IVA group than in the placebo group |
Rowe S.M.; 2017 [123] | TEZA/IVA | 8–16 weeks | 248 | ≥12 | F508del/F508del | ↓ Rate but not statistically significant |
Middleton P.G.; 2019 [64] | ETI | 24 weeks | 403 | ≥12 | F508del/MF | ↓ 63% vs. placebo |
O’Shea K.M.; 2021 [124] | ETI | 4.9 months | 14 (severe lung disease) | 19–46 | F508del/F508del F508del/MF | ↓ Exacerbations requiring hospitalization |
Ganapathy V; 2021 [125] | ETI | 96 weeks | 100 | ≥12 | F508del/MF F508del/F508del | ↓ from 1.24 to 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saluzzo, F.; Riberi, L.; Messore, B.; Loré, N.I.; Esposito, I.; Bignamini, E.; De Rose, V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022, 11, 1243. https://doi.org/10.3390/cells11071243
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells. 2022; 11(7):1243. https://doi.org/10.3390/cells11071243
Chicago/Turabian StyleSaluzzo, Francesca, Luca Riberi, Barbara Messore, Nicola Ivan Loré, Irene Esposito, Elisabetta Bignamini, and Virginia De Rose. 2022. "CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis" Cells 11, no. 7: 1243. https://doi.org/10.3390/cells11071243
APA StyleSaluzzo, F., Riberi, L., Messore, B., Loré, N. I., Esposito, I., Bignamini, E., & De Rose, V. (2022). CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells, 11(7), 1243. https://doi.org/10.3390/cells11071243