A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Donors
2.2. adMSC Isolation and Cell Culture
2.3. Three-Dimensional Cell Culture
2.4. Adipogenic Stimulation
2.5. Determination of Cell Numbers and Cell Analysis
2.6. Analysis of 3D Culture Spheroids
2.7. Preparation of Microscopic Slides for Histological Analysis
2.8. Immunofluorescence Staining and Image Analysis
2.9. Quantification of Adipokines by Multiplex Analysis
2.10. Statistical Analysis
3. Results
3.1. Phenotype of 3D Cultured Unstimulated and Adipogenically Stimulated adMSC
3.2. Dependence of the Cell Number Development and the Single Cell Diameter on the Cell Culture Model and Differentiation
3.3. Adipogenic Differentiation of adMSC in 2D and 3D Cultures
3.4. Morphology and Adipogenic Differentiation of the Spheroids Shown by Histological Sections
3.5. Changes in the Release of Adipokines Dependent on 2D and 3D Cultivation and the Differentiation Status
4. Discussion
4.1. Morphology of Unstimulated and Adipogenically Stimulated MSC Spheroids
4.2. Adipokine Release of adMSC in 2D and 3D Culture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antoni, D.; Burckel, H.; Josset, E.; Noel, G. Three-Dimensional Cell Culture: A Breakthrough in Vivo. Int. J. Mol. Sci. 2015, 16, 5517–5527. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.C.; Moreira, A.F.; de Melo-Diogo, D.; Gaspar, V.M.; Carvalho, M.P.; Correia, I.J. 3d Tumor Spheroids: An Overview on the Tools and Techniques Used for Their Analysis. Biotechnol. Adv. 2016, 34, 1427–1441. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.P.; Gaspar, V.M.; Mano, J.F. Design of Spherically Structured 3d in Vitro Tumor Models—Advances and Prospects. Acta Biomater. 2018, 75, 11–34. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.; Teng, Y. Is It Time to Start Transitioning from 2d to 3d Cell Culture? Front. Mol. Biosci. 2020, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almany, L.; Seliktar, D. Biosynthetic Hydrogel Scaffolds Made from Fibrinogen and Polyethylene Glycol for 3d Cell Cultures. Biomaterials 2005, 26, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.A.; Liu, W.; Jimenez, A.; Yang, J.; Akpek, A.; Liu, X.; Pi, Q.; Mu, X.; Hu, N.; Schiffelers, R.M.; et al. 3d Bioprinting: From Benches to Translational Applications. Small 2019, 15, e1805510. [Google Scholar] [CrossRef]
- Siller, I.G.; Epping, N.M.; Lavrentieva, A.; Scheper, T.; Bahnemann, J. Customizable 3d-Printed (Co-)Cultivation Systems for in Vitro Study of Angiogenesis. Materials 2020, 13, 4290. [Google Scholar] [CrossRef]
- De Dios-Figueroa, G.T.; Aguilera-Marquez, J.D.R.; Camacho-Villegas, T.A.; Lugo-Fabres, P.H. 3d Cell Culture Models in COVID-19 Times: A Review of 3d Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021, 9, 602. [Google Scholar] [CrossRef]
- Langhans, S.A. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front. Pharmacol. 2018, 9, 6. [Google Scholar] [CrossRef]
- Payr, S.; Rosado-Balmayor, E.; Tiefenboeck, T.; Schuseil, T.; Unger, M.; Seeliger, C.; van Griensven, M. Direct Comparison of 3d and 2d Cultivation Reveals Higher Osteogenic Capacity of Elderly Osteoblasts in 3d. J. Orthop. Surg. Res. 2021, 16, 13. [Google Scholar] [CrossRef]
- Randall, M.J.; Jungel, A.M.; Wuertz-Kozak, K. Advances in the Biofabrication of 3d Skin in Vitro: Healthy and Pathological Models. Front. Bioeng. Biotechnol. 2018, 6, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nii, T.; Makino, K.; Tabata, Y. Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers 2020, 12, 2754. [Google Scholar] [CrossRef] [PubMed]
- Nii, T.; Makino, K.; Tabata, Y. A Cancer Invasion Model Combined with Cancer-Associated Fibroblasts Aggregates Incorporating Gelatin Hydrogel Microspheres Containing a P53 Inhibitor. Tissue Eng. Part. C Methods 2019, 25, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Nii, T.; Kuwahara, T.; Makino, K.; Tabata, Y. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng. Part A 2020, 26, 1272–1282. [Google Scholar] [CrossRef]
- Ho, B.X.; Pek, N.M.Q.; Soh, B.S. Disease Modeling Using 3d Organoids Derived from Human Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2018, 19, 936. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Oikonomopoulos, A.; Sayed, N.; Wu, J.C. Modeling Human Diseases with Induced Pluripotent Stem Cells: From 2d to 3d and beyond. Development 2018, 145, dev156166. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Itaka, K.; Ohba, S.; Nishiyama, N.; Chung, U.I.; Yamasaki, Y.; Kataoka, K. 3d Spheroid Culture System on Micropatterned Substrates for Improved Differentiation Efficiency of Multipotent Mesenchymal Stem Cells. Biomaterials 2009, 30, 2705–2715. [Google Scholar] [CrossRef]
- Sankar, S.; Sharma, C.S.; Rath, S.N. Enhanced Osteodifferentiation of Msc Spheroids on Patterned Electrospun Fiber Mats—An Advanced 3d Double Strategy for Bone Tissue Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 703–712. [Google Scholar] [CrossRef]
- Galderisi, U.; Peluso, G.; Di Bernardo, G. Clinical Trials Based on Mesenchymal Stromal Cells Are Exponentially Increasing: Where Are We in Recent Years? Stem Cell Rev. Rep. 2022, 18, 23–36. [Google Scholar] [CrossRef]
- Ambele, M.A.; Dhanraj, P.; Giles, R.; Pepper, M.S. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int. J. Mol. Sci. 2020, 21, 4283. [Google Scholar] [CrossRef]
- Eckel-Mahan, K.; Ribas Latre, A.; Kolonin, M.G. Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells 2020, 9, 863. [Google Scholar] [CrossRef] [PubMed]
- Gkastaris, K.; Goulis, D.G.; Potoupnis, M.; Anastasilakis, A.D.; Kapetanos, G. Obesity, Osteoporosis and Bone Metabolism. J. Musculoskelet Neuronal Interact. 2020, 20, 372–381. [Google Scholar]
- Apostolopoulos, V.; de Courten, M.P.; Stojanovska, L.; Blatch, G.L.; Tangalakis, K.; de Courten, B. The Complex Immunological and Inflammatory Network of Adipose Tissue in Obesity. Mol. Nutr. Food Res. 2016, 60, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Falcao-Pires, I.; Castro-Chaves, P.; Miranda-Silva, D.; Lourenco, A.P.; Leite-Moreira, A.F. Physiological, Pathological and Potential Therapeutic Roles of Adipokines. Drug Discov. Today 2012, 17, 880–889. [Google Scholar] [CrossRef]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos Rep. 2020, 18, 388–400. [Google Scholar] [PubMed]
- Kaji, H. Adipose Tissue-Derived Plasminogen Activator Inhibitor-1 Function and Regulation. Compr. Physiol. 2016, 6, 1873–1896. [Google Scholar]
- Mancuso, P. The Role of Adipokines in Chronic Inflammation. Immunotargets Ther. 2016, 5, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef] [PubMed]
- Majka, S.M.; Barak, Y.; Klemm, D.J. Concise Review: Adipocyte Origins: Weighing the Possibilities. Stem Cells 2011, 29, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar]
- Girdlestone, J. Mesenchymal Stromal Cells with Enhanced Therapeutic Properties. Immunotherapy 2016, 8, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krawczenko, A.; Klimczak, A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int. J. Mol. Sci. 2022, 23, 2425. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.K.; Chakraborty, S.; Sugii, S. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine. Biomolecules 2021, 11, 918. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova-Jatniece, A.; Berzins, U.; Kozlovska, T. Growth Properties and Pluripotency Marker Expression of Spontaneously Formed Three-Dimensional Aggregates of Human Adipose-Derived Stem Cells. Int. J. Stem Cells 2014, 7, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Hoefner, C.; Muhr, C.; Horder, H.; Wiesner, M.; Wittmann, K.; Lukaszyk, D.; Radeloff, K.; Winnefeld, M.; Becker, M.; Blunk, T.; et al. Human Adipose-Derived Mesenchymal Stromal/Stem Cell Spheroids Possess High Adipogenic Capacity and Acquire an Adipose Tissue-Like Extracellular Matrix Pattern. Tissue Eng. Part A 2020, 26, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Sung, I.Y.; Cho, Y.C.; Kang, M.S.; Rho, G.J.; Byun, J.H.; Park, W.U.; Son, M.G.; Park, B.W.; Lee, H.J.; et al. Three-Dimensional Spheroid Formation of Cryopreserved Human Dental Follicle-Derived Stem Cells Enhances Pluripotency and Osteogenic Induction Properties. Tissue Eng. Regen. Med. 2019, 16, 513–523. [Google Scholar] [CrossRef]
- Abou Ali, E.; Bordacahar, B.; Mestas, J.L.; Batteux, F.; Lafon, C.; Camus, M.; Prat, F. Ultrasonic Cavitation Induces Necrosis and Impairs Growth in Three-Dimensional Models of Pancreatic Ductal Adenocarcinoma. PLoS ONE 2018, 13, e0209094. [Google Scholar] [CrossRef]
- Natania de Souza-Araujo, C.; Rodrigues Tonetti, C.; Cardoso, M.R.; Lucci de Angelo Andrade, L.A.; Fernandes da Silva, R.; Romani Fernandes, L.G.; Guimaraes, F. Three-Dimensional Cell Culture Based on Magnetic Fields to Assemble Low-Grade Ovarian Carcinoma Cell Aggregates Containing Lymphocytes. Cells 2020, 9, 635. [Google Scholar] [CrossRef] [Green Version]
- Vu, B.; Souza, G.R.; Dengjel, J. Scaffold-Free 3d Cell Culture of Primary Skin Fibroblasts Induces Profound Changes of the Matrisome. Matrix Biol. Plus 2021, 11, 100066. [Google Scholar] [CrossRef]
- Meyer, J.; Salamon, A.; Herzmann, N.; Adam, S.; Kleine, H.D.; Matthiesen, I.; Ueberreiter, K.; Peters, K. Isolation and Differentiation Potential of Human Mesenchymal Stem Cells from Adipose Tissue Harvested by Water Jet-Assisted Liposuction. Aesthet Surg. J. 2015, 35, 1030–1039. [Google Scholar] [CrossRef] [Green Version]
- Klemenz, A.C.; Meyer, J.; Ekat, K.; Bartels, J.; Traxler, S.; Schubert, J.K.; Kamp, G.; Miekisch, W.; Peters, K. Differences in the Emission of Volatile Organic Compounds (Vocs) between Non-Differentiating and Adipogenically Differentiating Mesenchymal Stromal/Stem Cells from Human Adipose Tissue. Cells 2019, 8, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kilian, K.A. Bridging the Gap: From 2d Cell Culture to 3d Microengineered Extracellular Matrices. Adv. Healthc Mater. 2015, 4, 2780–2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Chen, Y.; Yoshitomi, T.; Kawazoe, N.; Yang, Y.; Chen, G. Osteogenic and Adipogenic Differentiation of Mesenchymal Stem Cells in Gelatin Solutions of Different Viscosities. Adv. Healthc Mater. 2020, 9, e2000617. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, B.T.; Al-Ghadban, S.; Ives, C.J.; L’Ecuyer, M.P.; Monjure, T.A.; Romero-Lopez, M.; Li, Z.; Goodman, S.B.; Lin, H.; Tuan, R.S.; et al. Adipose Tissue-Derived Stem Cells Retain Their Adipocyte Differentiation Potential in Three-Dimensional Hydrogels and Bioreactors (Dagger). Biomolecules 2020, 10, 1070. [Google Scholar] [CrossRef]
- Shen, J.X.; Couchet, M.; Dufau, J.; de Castro Barbosa, T.; Ulbrich, M.H.; Helmstadter, M.; Kemas, A.M.; Zandi Shafagh, R.; Marques, M.A.; Hansen, J.B.; et al. 3d Adipose Tissue Culture Links the Organotypic Microenvironment to Improved Adipogenesis. Adv. Sci. 2021, 8, e2100106. [Google Scholar] [CrossRef]
- Daquinag, A.C.; Souza, G.R.; Kolonin, M.G. Adipose Tissue Engineering in Three-Dimensional Levitation Tissue Culture System Based on Magnetic Nanoparticles. Tissue Eng. Part C Methods 2013, 19, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Tseng, H.; Balaoing, L.R.; Grigoryan, B.; Raphael, R.M.; Killian, T.C.; Souza, G.R.; Grande-Allen, K.J. A Three-Dimensional Co-Culture Model of the Aortic Valve Using Magnetic Levitation. Acta Biomater. 2014, 10, 173–182. [Google Scholar] [CrossRef]
- Tseng, H.; Gage, J.A.; Raphael, R.M.; Moore, R.H.; Killian, T.C.; Grande-Allen, K.J.; Souza, G.R. Assembly of a Three-Dimensional Multitype Bronchiole Coculture Model Using Magnetic Levitation. Tissue Eng. Part C Methods 2013, 19, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Sant, S.; Johnston, P.A. The Production of 3d Tumor Spheroids for Cancer Drug Discovery. Drug Discov. Today Technol. 2017, 23, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Regmi, S.; Raut, P.K.; Pathak, S.; Shrestha, P.; Park, P.H.; Jeong, J.H. Enhanced Viability and Function of Mesenchymal Stromal Cell Spheroids Is Mediated Via Autophagy Induction. Autophagy 2020, 16, 2991–3010. [Google Scholar] [CrossRef]
- Zhang, Q.; Nguyen, A.L.; Shi, S.; Hill, C.; Wilder-Smith, P.; Krasieva, T.B.; Le, A.D. Three-Dimensional Spheroid Culture of Human Gingiva-Derived Mesenchymal Stem Cells Enhances Mitigation of Chemotherapy-Induced Oral Mucositis. Stem Cells Dev. 2012, 21, 937–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, A.C.; Liu, Y.; Yuan, X.; Ma, T. Compaction, Fusion, and Functional Activation of Three-Dimensional Human Mesenchymal Stem Cell Aggregate. Tissue Eng. Part A 2015, 21, 1705–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, C.; Potekhina, E.; Belousov, V.V.; Lavrentieva, A. Hypoxia Onset in Mesenchymal Stem Cell Spheroids: Monitoring with Hypoxia Reporter Cells. Front. Bioeng. Biotechnol. 2021, 9, 611837. [Google Scholar] [CrossRef] [PubMed]
- Bartosh, T.J.; Ylostalo, J.H.; Mohammadipoor, A.; Bazhanov, N.; Coble, K.; Claypool, K.; Lee, R.H.; Choi, H.; Prockop, D.J. Aggregation of Human Mesenchymal Stromal Cells (Mscs) into 3d Spheroids Enhances Their Antiinflammatory Properties. Proc. Natl. Acad. Sci. USA 2010, 107, 13724–13729. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, S.A.; Chen, C.S. Emergence of Patterned Stem Cell Differentiation within Multicellular Structures. Stem Cells 2008, 26, 2921–2927. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Salamon, A.; Mispagel, S.; Kamp, G.; Peters, K. Energy Metabolic Capacities of Human Adipose-Derived Mesenchymal Stromal Cells in Vitro and Their Adaptations in Osteogenic and Adipogenic Differentiation. Exp. Cell Res. 2018, 370, 632–642. [Google Scholar] [CrossRef]
- Yu, J.; Li, P. The Size Matters: Regulation of Lipid Storage by Lipid Droplet Dynamics. Sci. China Life Sci. 2017, 60, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Ioannidou, A.; Alatar, S.; Schipper, R.; Baganha, F.; Ahlander, M.; Hornell, A.; Fisher, R.M.; Hagberg, C.E. Hypertrophied Human Adipocyte Spheroids as in Vitro Model of Weight Gain and Adipose Tissue Dysfunction. J. Physiol. 2021, 599, 869–883. [Google Scholar] [CrossRef]
- Louis, F.; Kitano, S.; Mano, J.F.; Matsusaki, M. 3d Collagen Microfibers Stimulate the Functionality of Preadipocytes and Maintain the Phenotype of Mature Adipocytes for Long Term Cultures. Acta Biomater 2019, 84, 194–207. [Google Scholar] [CrossRef]
- Hagberg, C.E.; Li, Q.; Kutschke, M.; Bhowmick, D.; Kiss, E.; Shabalina, I.G.; Harms, M.J.; Shilkova, O.; Kozina, V.; Nedergaard, J.; et al. Flow Cytometry of Mouse and Human Adipocytes for the Analysis of Browning and Cellular Heterogeneity. Cell Rep. 2018, 24, 2746–2756.e5. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styner, M.; Sen, B.; Xie, Z.; Case, N.; Rubin, J. Indomethacin Promotes Adipogenesis of Mesenchymal Stem Cells through a Cyclooxygenase Independent Mechanism. J. Cell Biochem. 2010, 111, 1042–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.U.; Qu, R.; Fan, T.; Ouyang, J.; Dai, J. A Glance on the Role of Actin in Osteogenic and Adipogenic Differentiation of Mesenchymal Stem Cells. Stem Cell Res. Ther. 2020, 11, 283. [Google Scholar] [CrossRef]
- Oswal, A.; Yeo, G. Leptin and the Control of Body Weight: A Review of Its Diverse Central Targets, Signaling Mechanisms, and Role in the Pathogenesis of Obesity. Obesity 2010, 18, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, H.S.; Min, B.H.; Kim, B.G.; Kim, S.A.; Nam, H.; Lee, M.; Kim, M.; Hwang, H.Y.; Leesong, A.I.; et al. Enhancement of Anti-Inflammatory and Immunomodulatory Effects of Adipose-Derived Human Mesenchymal Stem Cells by Making Uniform Spheroid on the New Nano-Patterned Plates. Biochem. Biophys. Res. Commun. 2021, 552, 164–169. [Google Scholar] [CrossRef]
- Munir, H.; Ward, L.S.C.; Sheriff, L.; Kemble, S.; Nayar, S.; Barone, F.; Nash, G.B.; McGettrick, H.M. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner. Stem Cells 2017, 35, 1636–1646. [Google Scholar] [CrossRef] [Green Version]
2D | 3D | ||||
---|---|---|---|---|---|
Analyte | US | AS | US | AS | |
Adiponectin | Day 7 | 0 | 17,923 | 0 | 53,454 |
Day 14 | 0 | 38,056 | 0 | 150,746 | |
PAI-1 | Day 7 | 21,983 | 22,154 | 3809 | 2435 |
Day 14 | 12,219 | 20,027 | 3702 | 2791 | |
IL-6 | Day 7 | 4010 | 1006 | 601 | 51 |
Day 14 | 2561 | 423 | 485 | 36 | |
MCP-1 | Day 7 | 3565 | 1166 | 522 | 59 |
Day 14 | 2988 | 598 | 305 | 73 | |
IL-8 | Day 7 | 276 | 86 | 81 | 22 |
Day 14 | 418 | 71 | 40 | 20 | |
HGF | Day 7 | 62 | 261 | 305 | 140 |
Day 14 | 181 | 243 | 232 | 49 | |
Leptin | Day 7 | 2.5 | 20 | 0 | 0 |
Day 14 | 15 | 13 | 0 | 0.7 | |
Resistin | Day 7 | 0.5 | 2.5 | 0.7 | 0.6 |
Day 14 | 0.1 | 1.8 | 0.3 | 0 | |
NGF | Day 7 | 1.4 | 1.0 | 0.1 | 0.1 |
Day 14 | 1.0 | 0.8 | 0.1 | 0.1 | |
IL-1β | Day 7 | 0.1 | 0.3 | 0.1 | 0 |
Day 14 | 0.1 | 0.3 | 0.1 | 0.1 | |
TNF | Day 7 | 0 | 0.2 | 0 | 0 |
Day 14 | 0 | 0.1 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolff, A.; Frank, M.; Staehlke, S.; Peters, K. A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022, 11, 1313. https://doi.org/10.3390/cells11081313
Wolff A, Frank M, Staehlke S, Peters K. A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells. 2022; 11(8):1313. https://doi.org/10.3390/cells11081313
Chicago/Turabian StyleWolff, Anne, Marcus Frank, Susanne Staehlke, and Kirsten Peters. 2022. "A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture" Cells 11, no. 8: 1313. https://doi.org/10.3390/cells11081313
APA StyleWolff, A., Frank, M., Staehlke, S., & Peters, K. (2022). A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells, 11(8), 1313. https://doi.org/10.3390/cells11081313