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Abstract: Raman microspectroscopy is a label-free technique which is very suited for the investigation
of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro.
However, the complexity of the spectra makes the identification of spectral patterns associated with
the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral
features to the inoculation time do not normally take into account the kinetics involved, and important
theoretical information which could assist in the elucidation of the relevant spectral signatures is
excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake
and subsequent cellular responses using Multivariate Curve Resolution-Alternating Least Squares
(MCR-ALS) and tailored kinetic constraints, based on a system of ordinary differential equations.
Advantages of and challenges to the methodology were evaluated using simulated Raman spectral
data sets and real Raman spectra acquired from A549 and Calu-1 human lung cells inoculated with
doxorubicin, in vitro. The results suggest a dependency of the outcome on the system of equations
used, and the importance of the temporal resolution of the data set to enable the use of complex
equations. Nevertheless, the use of tailored kinetic constraints during MCR-ALS allowed a more
comprehensive modelling of the system, enabling the elucidation of not only the time-dependent
concentration profiles and spectral features of the drug binding and cellular responses, but also an
accurate computation of the kinetic constants.

Keywords: Multivariate Curve Resolution-Alternating Least Squares; pharmacokinetics; Raman
microspectroscopy; chemometrics

1. Introduction

The development of microscopy in the 16th/17th centuries has changed our funda-
mental understanding of the world in which we live, revealing the complex structures of the
cellular building blocks of life itself. The emergence of labelling techniques in fluorescence
microscopy in the early 1900s [1] has enabled the elucidation of key biochemical processes
at a subcellular level. Technological developments such as confocality, laser rastering, res-
onance transfer, fluorescence lifetime, and more recently, super resolution imaging have
pushed the spatial resolution ever lower, such that microscopic imaging techniques have
become an essential tool in in vitro biological research, as well as in drug discovery and
development, and toxicology. However, there is a dearth of methodologies to visualize the
intracellular interactions of small molecules, critical to medicinal chemistry, and the ability
to visualize specific processes in cells is dependent on the introduction of colorimetric
labels, such as fluorescent tags of biomolecules or organelles, which act as sentinels of
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the specific processes identified, and only those processes. Notably, the labelling process
assumes an a priori knowledge of the pathway to be labelled, and monitoring the full
range of responses of a cell or cell population to an external stimulus requires multiple
labels and sources, as well as exhaustive replicate monitoring over multiple time-points
and exposure doses [2–4]. The cost implications for fundamental academic research are
limiting [5], and the limited information gleaned even from multimillion, automated High
Content Analysis (HCA) installations has restricted the exploitation of in vitro models at
the preclinical screening stage of drug development. Improved in vitro screening methods
to increase the speed and reduce cost of analysis are therefore highly desirable [6].

Vibrational spectroscopic microscopy (microspectroscopy) has emerged as a label-free
alternative, which can provide molecularly specific signatures of biological processes and
function. In particular, Raman microspectroscopy can be performed at visible wavelengths,
and in a confocal mode can provide molecularly specific detail at a subcellular level, of
live or fixed cells, in a label-free fashion [7,8]. In vitro spectroscopic studies of cells allow
a detailed analysis of the fundamental cell biology, or biochemical changes, for example,
as a result of an external agonist, toxicant or chemotherapeutic agent [9–11], promising
potential applications in fundamental cellular (cytological) research, medicinal chemistry,
and pharmacological/toxicological screening.

However, the analysis and the extraction of useful, actionable, information from the
data generated during label-free spectroscopic analyses remains challenging. In the absence
of labelled biomarkers, it is not trivial to interpret and represent the observations in terms
of biological processes. Due to the complexity of the biochemical milieu of cells or tissue,
spectral responses are convoluted, changes can be subtle and multivariate, and analysis
relies on an arsenal of multivariate chemometric techniques [12]. In the case of diagnostic
applications, classification methods, such as clustering or principal components analysis
(PCA), are commonly used. More sophisticated techniques, such as multivariate linear
regression analysis, have been employed, for example, for quantitative analysis of human
blood serum [13], and to explore the aetiology of disease [14], correlating the differential
evolution of spectral changes with a target variable, such as viral copy number per cell or
radiation dose [15,16]. In the case of chemotherapeutic agents, regression analysis such as
partial least squares regression (PLSR) has been employed, for example, to independently
elucidate the spectroscopic signatures of the direct chemical effects of the stimulus from the
subsequent cellular metabolic responses [17,18]. In linear methods such as PLSR a constant
response is assumed between the predictors (i.e., spectral variables) and the dependent
variable (i.e., time). However, the variation of biochemical composition within the cell
follows complex non-linear patterns established by the kinetic relationships between the
different players (e.g., drugs, metabolites, nucleic acids, cell responses) which cannot be
described using linear models.

Multivariate curve resolution-alternating least squares (MCR-ALS) has been proposed
as a more flexible approach to study cell uptake processes [19]. This methods allows the
resolution of chemical mixtures in time-dependent experiments and provides informa-
tion about the evolution of the chemical components, but requires the input of accurate
information about the system in order to avoid ambiguities.

A particular feature of MCR-ALS is the use of external information (e.g., initial estima-
tions of component concentrations or spectra) and constraints to guide the iterative process
by reducing the set of possible solutions of the bilinear curve resolution decomposition and
consequently reducing the ambiguity of the results, leading to chemically interpretable so-
lutions. One of these constraints involves the implementation of a hard-and-soft approach
which fits the evolution of the concentration profiles of the components to known chemical
kinetic reactions defined by rate constants. This method has been used to study kinetic
equations in the monitoring of simple reactions (e.g., A→ B, A→ B→ C, A + B→ C + D).
In this paper, we introduce a phenomenological rate equation approach to describe the
kinetics of the drug uptake by, and binding within biological cells, as well as their cellular
responses. This system is defined by a set of ordinary differential equations which can
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be implemented as a kinetic constraints during an iterative optimization process in the
MCR-ALS method. This strategy offers the possibility to data-mine the kinetic evolution
of the characteristic signatures of cellular uptake of the drug, its subcellular interactions,
and the subsequent cellular responses. The methodology is first demonstrated using simu-
lated data and then applied to empirical data from previous experiments concerning the
inoculation of A459 and Calu-1 human lung cells with doxorubicin (DOX), in vitro.

2. Materials and Methods
2.1. Hard-and-Soft MCR-ALS Modelling

MCR-ALS models the dataset of cell spectra measured at different inoculation times
by considering a set of components whose concentrations evolve at different rates and have
characteristic spectral features. MCR-ALS iteratively solves the following bilinear equation,

D = CST, (1)

where the experimental data matrix D (N × J) is decomposed in a pure spectral matrix
S (I × J) and a concentration matrix C (N × I), where N is the number of spectra, J the
number of spectral variables, and I the number of components.

The scheme depicted in Figure 1a shows the iterative process underpinning MCR-ALS.
Herein, we include a short description to describe the inclusion of the pharmacokinetic
equations within the modelling, but more detailed information can be found in selected
references [19,20]. Firstly, the number of components to be modelled is established by
considering previous or external information of the system or by using techniques such
as Singular Value Decomposition (SVD) [21]. Then, an initial estimation of concentration
matrix or spectra (in Figure 1a, we have used the concentration) is calculated by using
information about the chemical components involved or using other methods such as
Evolving Factor Analysis (EFA) [22]. The estimated concentration matrix is then constrained
using criteria which depend on the known features of the signals and components (i.e., non-
negativity) and then the dataset is used to obtain an estimated spectral matrix. This
estimated pure spectral matrix is constrained again (for example, eliminating possible
negative bands) and combined with the estimated concentration matrix to compute an
estimated dataset, which is compared with the actual one to calculate a fitting error. If
this error satisfies an established convergence condition, the iteration is stopped, or if
not, the empirical dataset and the constrained pure spectra are used to create a revised
estimated matrix of concentrations which is again introduced in the optimization process
until convergence. In a similar way to previous studies [23,24], the convergence was
achieved when the fitting error, measured as the sum of the squares of the residuals of the
reconstructed matrix with respect to the original one, increased or decreased less than 1%
for 20 iterations or the process reached a maximum of 200 iterations.

In this study, we incorporate a hard-and-soft approach by introducing kinetic con-
straints (Figure 1b) within the iterative process of MCR-ALS. For this purpose, a system of
differential equations describing the kinetic uptake of the drug as well as the corresponding
cellular responses, containing the relative concentration of the components and their kinetic
constants (k1, k2 . . . k), is considered. When this system is applied as a constraint, the
kinetic constants of the system at each MCR-ALS iteration are fitted using the lsqcurvefit
non-linear least squares solver of MATLAB (Mathworks, Natick, MA, USA), updating the
previous estimation of the constants (k0) at the relevant time points. The best estimated
values of ks are then used to calculate the constrained concentrations in the next iteration
of the MCR-ALS optimization process. Therefore, at each iteration, the proposed approach
includes the optimization of the concentration and spectral factor matrices and, in addition,
the optimization of the constants of the kinetic equations as shown in the next workflow.
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2.2. Data Analysis

Data analysis was carried out in MATLAB R2021a using in-house written func-
tions based on modified functions of the MCR-ALS toolbox (https://mcrals.wordpress.
com/download/mcr-als-2-0-toolbox/, accessed on 1 October 2021) and incorporating
the lsqcurvefit function from the MATLAB Optimization toolbox. The Calu-1 and A459
experimental datasets were obtained from, and the simulated datasets calculated on the
basis of, previous studies, using a time interval of 0.5 h over the range between 0 and 72 h
after inoculation [25,26]. Functions and scripts as well and datasets used are available in
the Zenodo repository (10.5281/zenodo.6385490). In order to start the MCR-ALS analy-
sis, an initial guess of the concentration profiles (C0) was calculated by solving ordinary
differential equations (ODEs) at pre-established initial kinetic constant (kn) values. These
initial guesses of the kn values can be selected arbitrarily or by using known information
about the kinetics of the system. Non negativity constraints were introduced for both
concentration and spectral matrix, and the initial datasets were normalized using the area
of the phenylalanine band obtained by integrating the 988–1023 cm−1 using a baseline
fitted in the 986–990 cm−1 and 1021–1025 cm−1 regions.

3. Results
3.1. Simulated Datasets

To initially demonstrate the validity of the approach, we used simulated data. Follow-
ing a previous model [24], we considered the inoculation of A549 cells by a single dose
of DOX (D). We simulated the uptake Nb and cell responses Nr using the following two
differential equations;

dNb
dt

=
(

Nrecp − Nb
)
KupD, (2)

dNr

dt
=

(
Nresp − Nr

)
KrespNb, (3)

https://mcrals.wordpress.com/download/mcr-als-2-0-toolbox/
https://mcrals.wordpress.com/download/mcr-als-2-0-toolbox/
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where Kup is the uptake rate of the drug into the cell, Kresp is the response rate, Nrecp is the
number of drug receptors, and the Nresp is a measure of the cellular response. The two latter
constants act as limiting factors to the drug uptake and response observed experimentally.

The constants were chosen to describe a typical rapid uptake followed by a saturation,
as has been experimentally observed (Figure 2a) [25]. The associated spectral changes,
characteristic of the drug binding, are depicted in cyan in Figure 2b, and include typical
bands from DOX (460, 440, and 1211 cm−1), the spectrum of which is shown in dark blue in
Figure 2b, as well as changes in the RNA/DNA bands caused by the drug binding (785 and
811 cm−1). In order to simulate the observed effect of the binding on the RNA/DNA bands,
manifest as a decrease of the Raman intensity, the “binding” spectrum was subtracted rather
than added. Equation (3) describes the response of the cell, which is slower than the initial
drug uptake and binding, as it is produced as a result of the drug binding to RNA/DNA
(Figure 2a). The associated spectrum, shown as green in Figure 2b, was created to represent
changes in the protein bands (1450 cm−1). A simulated dataset of 145 spectra was created
by adding the spectral contributions of the drug uptake and of their RNA/DNA binding
multiplied by the concentration changes calculated by resolving the Equations (1) and (2)
between 0 and 72 h. A total of 1% of noise was added using the rand function from Matlab.
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Figure 2. (a) Kinetic evolution of simulated drug uptake and binding (dark blue), and cellular response
(green), (b) Raman spectrum of the drug, doxorubicin (dark blue), simulated spectral signature of
drug binding (cyan) and of the subsequent cellular response (green), (c) predicted kinetic evolution
of the MCR-ALS components, (d) MCR-ALS components, extracted after 50 iterations, (e) evolution
of the kinetic constraint constants over 200 iterations of the MCR-ALS algorithm, (f) initial and final
(after 200 iterations) constants employed in the MCR-ALS model.

This simulated dataset was then analyzed using the proposed hard-and-soft MCR-ALS
method. The goal of this data analysis was to assess whether, under the assumption of
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known kinetics, MCR-ALS can resolve the correct spectral and concentration profiles, as
well as the rate constants associated with the proposed kinetic equations. A set of initial
values for the kinetic constants were arbitrarily selected as initial conditions (Figure 2f),
being values very different from the ones used in the simulation. Three components were
used, considering results from SVD, which is a rank method used to establish the number
of components in MCR-ALS. In short, it shows the percentage of variance captured by the
different components, and the user selects the minimum number of components which
explain considerable variance, ensuring that components related just to pure noise are
not selected. The three components selected in principle represent the two variable effects
(responses) introduced and the aspects of the cellular spectra which are not affected by the
drug uptake. The latter could have been eliminated by subtracting the spectrum of the
untreated, control cell from the entire the dataset. However, considering that one of the
effects of the drug is a reduction of the DNA/RNA bands, ref. [25] the initial component
spectra has more intense bands than the cell spectra inoculated with the drugs. This
could have resulted in undesirable negative peaks caused by negative contributions of
the RNA/DNA interactions, so we decided to not subtract the unaffected cell spectra
and include it as a component on the MRC-ALS model. Figure 2c shows the predicted
kinetic evolution of the component concentrations, while Figure 2d shows their spectral
profiles, after 200 iterations. The kinetic evolution matches well that of the simulated
dataset (Figure 2a), and notably, Component 3 (orange), which matches well the spectrum
of the untreated cell, is constant over time, as expected. The other components showed
clear similarities with the simulated effects. Component 1 (blue) showed a rapid evolution,
similar to the simulated drug binding (Figure 2a), and its spectral profile matches well
that of the combination of the drug and the negative bands associated with the binding
(Figure 2c). Component 2 (green) shows a slower evolution, similar to the simulated
response (Figure 2a), and the spectral profiles accurately reproduce the simulated response
(Figure 2d).

In addition, the model provided an estimation of the constants of differential
Equations (2) and (3), which are shown in Figure 2e. With each iteration, the estimation
of the rate constants, Kup and Kresp, evolved from their initial input value (with units
of h−1), converging to accurately reproduce the value used in the simulation (Figure 2f).
In the case of the constants Nrecp and Nresp, quantifying the amount of uptake and cellular
response, the estimated values also converge, although their absolute values differ from
the theoretical ones due to the spectra normalization used during the ALS optimization.
This intensity ambiguity in the units of the estimated constants can only be resolved by
calibrating the strength of the Raman spectral response with the amount of substance
measured (concentrations). In summary, the analysis of this simulated dataset indicates
that, based on an appropriate set of equations describing the kinetics of the system the
hard-and-soft MCR-ALS modelling of the spectral data is capable of extracting the infor-
mation about the cellular drug uptake process, including the spectral and concentration
profiles, as well as the rate constants.

3.2. Real Dataset 1: Study of DOX Uptake by A549 Cells In Vitro Using
Raman Microspectroscopy

Next, we tested the proposed approach on real data using results of a previous experi-
ment in which the uptake of DOX by A549 cells in vitro was monitored in different com-
partments of the cell, the nucleolus, nuclei and cytoplasm, using Raman microspectroscopy
(Figure 3a) [25,27]. The main goal was to establish how the hard-and-soft MCR-ALS method
can be used to investigate differences in the uptake rates in the different cellular regions, so
each dataset for the nucleolus, nuclei and cytoplasm was treated independently. For this
purpose, two components were modelled initially, for each cellular region. One was left
unconstrained, while the second one was constrained through the hard-and-soft model
approach by using Equation (2), with the same initial estimates used in the previous section.
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The result of the three different hard-and-soft models can be seen in Figure 3b–g. For
each cellular region, the modelling identified two components, the first one (Component
1-green) was the one not affected by the constraints. In all cases, this component was
relatively constant over time (Figure 3c), and its spectrum represents a typical cellular
profile, featuring, for example, the phenalanine and amide III and I bands found at 1005,
1490, and 1640 cm−1, respectively. In general, the pure spectra of the three systems show
similar bands (see Supplementary Material for a full comparison), except for nucleic acid
bands found in the 750–850 cm−1 region, which show larger intensities in the nucleus
and nucleolus. In contrast, the concentrations of the second component, shown as blue in
Figure 3b–d, evolved significantly with time. The concentration profile for all the compart-
ments increased, albeit at different rates. In the nucleolus, it increased sharply, reaching a
plateau within ~10 h. For the nucleus, the increase was slower, and the plateau was reached
only after ~40 h. In the case of the cytoplasm, however, the increase was so slow that the
saturation was not reached within the 72 h time span of the experiment.

In all cellular regions, the spectrum of the second (Component 2-blue) clearly shows
bands from DOX at 460, 440, and 1211 cm−1. The spectral and concentration profiles
therefore indicate that the constrained component incudes the signatures of the increasing
uptake of DOX in the different cellular regions as a function of time. Furthermore, in the
case of the nucleolus, negative features of the nucleic acids bands at 785 and 811 cm−1

are observed, indicating that Component 2 also captures changes in cellular features
caused by the rapid binding of DOX to the biomolecules, including the decreasing of
the intensity if DNA/RNA bands. In comparison, the spectra for the DOX components
in this wavenumber region shows no absorption bands for the cytoplasm and positive
bands for the nucleus, indicating the normal intensity of unbound nucleic acids. Most
importantly, the proposed approach could estimate the kinetic uptake constants (Kup in
Equation (2)) for the three components, being 0.25, 0.16, and 0.075 h−1 for nucleoli, nucleus,
and cytoplasm, respectively. This quantifies the changes in accumulation rates for the three
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cellular regions, and the results are consistent with the experimental observation of rapid
accumulation and saturation initially in the nucleoli of the cell, followed by the nucleus
and finally cytoplasm [25,28].

In an attempt to extract the subsequent evolution of the cellular response, three com-
ponents were also considered in the model, corresponding to the initial cell spectrum, the
drug uptake and binding, and the subsequent response, described by Equations (2) and (3).
In a similar way to the simulated data, we used Equations (2) and (3) as input to define the
kinetic constraints, with the same initial estimate for the constants. After the first iteration,
the modelling confused the binding and subsequent responses, making the kinetics of
the response faster than the uptake. Results of this experiment indicated that MCR-ALS
was not able to extract information of the response from the experimental Raman dataset.
Notably, however, the experimental results only contained data points at discrete times
of 1, 2, 4, 6, 12, 24, 48, and 72 h, in contrast to the simulated dataset, which had data at 0.
Five-hour intervals, and therefore, although the short-term evolution could be well mod-
elled, the performance for the longer-term responses is not satisfactory. The experiment
was designed with high temporal resolution in the first 24 h of inoculation to monitor the
uptake and binding in detail. The secondary response, whose impact is more notable after
the binding of the cell, was more difficult to track over the prolonged timescales.

3.3. Real Dataset 2: Study of DOX Uptake by Calu-1 Cells

A second real dataset was employed to further test the proposed approach, which was
composed by spectra of cytoplasm, nucleus and nucleolus in an incubation experiment
performed in Calu-1 cells with DOX. Similar to the A459 experiment, two components
were modelled. The first was constrained to represent the uptake and the second one was
left unconstrained to model the cell components unaffected by the drug. Figure 4a depicts
the calculated spectra of the kinetically constrained component, showing again the typical
spectra of DOX. The nucleolus spectra also show the negative bands of the nucleic bands
in the 750–850 cm−1 region, indicating, once again, the interaction of the drug with DNA
and RNA.
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In this case, however, the computed profiles of this component (see Figure 4c) indicate
a faster saturation in the nucleus than in the nucleolus, with also a very slow uptake in
the cytoplasm. These uptake values of 0.007, 0.092, and 0.015 h−1 for cytoplasm, nucleus
and nucleolus, respectively, indicate a different uptake behavior compared with the A549
cells. Finally, the second cell component spectra depicted in Figure 4b shows the typical
spectra of biological compounds and their kinetic evolution for all components (Figure 4d)
is constant with time.

4. Discussion

Cellular physiology is a complex, dynamic system of highly synergistic processes,
which is poorly represented by static omics models, based on a limited set of biomarkers.
However, prompted by the need for a more in depth and integrated understanding of
whole cell function, fundamental to strategies underpinning human healthcare, nutrition,
and pharmacology, approaches to representing and understanding the mammalian cell
metabolism based on kinetic physicochemical models are becoming increasingly sophisti-
cated and popular [29,30].

Identifying key biomarkers in such pathways is critical, however, and conventional ap-
proaches can be blinkered by a priori assumptions. In contrast, label-free approaches such
as confocal Raman microspectroscopy can provide a holistic, real-time representation of
the biochemistry of the whole cell, at subcellular levels, and has previously been employed
for characterization of the biochemical processes during cell culture and mitosis [31,32],
proliferation [33], differentiation and activation [34–36], adhesion [37], death [38], and inva-
sion [39]. Subcellular screening of drug uptake and mechanisms of action [10,25,40–42], and
nanoparticle toxicity [9,43–46], in multiple cell lines have demonstrated a remarkable repro-
ducibility of the subcellular signatures, suggesting a “spectralomics” approach to label-free
characterization of cellular processes according to characteristic spectroscopic signatures is
feasible. In this context, accurately data mining the characteristic signatures of the subcellu-
lar interactions and processes represents a challenge. Perez-Guaita et al. have previously
demonstrated the application of MCR-ALS to gain insight into the pharmacodynamics
and biochemical changes associated with drug exposure in an in vitro cellular model, as
measured using Raman microspectroscopy [23], and a multimodal combination of Raman
and Infrared microspectroscopies [24]. Similarly, making use of simulated datasets, and
guided by kinetic constraints, the MCR-ALS method was demonstrated to be able to extract
rather accurately the characteristic signatures of the drug uptake, intracellular binding, and
subsequent cellular response.

The current study demonstrates that the methodology can be more precisely con-
strained using a phenomenological rates equation approach describing the kinetics of the
system. Accurate quantitative evaluations of key rates can be then employed to charac-
terize the process, and, for example, to compare the responses of two different cell lines.
The comparison of the performance of the proposed MCR-ALS method in the analysis
of simulated and experimental data has, however, highlighted the importance of having
sufficiently rich time course measurement datasets.

In general, the trend of results matches the previous experimental observations, al-
though it should be noted that the previous analysis was of the principal component
loadings which differentiated the spectra at a fixed timepoint from those of the unexposed
control [25]. The kinetic analysis differentiates the trafficking of the drug in the two cell
lines, indicating an initial accumulation in the nucleolus of A549 cells, whereas in Calu-1
cells, the nucleolar uptake is somewhat slower. Such kinetic analysis may be key to un-
derstanding, for example, the differences in cytotoxicity responses of the two cell lines to
DOX [27,28], and similar rate equation approaches have been applied to nanoparticle [47,48]
and drug uptake [49] by cell populations, and subsequent cellular responses, guided by
classical toxicological analyses, faithfully reproducing a range of cytotoxicological response
paradigms [50]. The emergence of open source resources such as Cell Designer [51], which
enable biochemical pathway models to be simply drawn, but also kinetically modelled by
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the user, have made the approaches much more accessible. Model/Graphical representation
by Systems Biology Markup Language (SBML) [52] and Systems Biology Graphical Nota-
tion (SBGN) [53], respectively, means that the user defined models can be interfaced with
many other databases, for pathway enrichment [54], a technique becoming increasingly
popular in predictive toxicology [55].

Results obtained for both the simulated and real datasets also point to some of the
limitations of the hard soft MCR-ALS approach. Firstly, the secondary response, which
was accurately tracked in the simulated dataset, was not found in the empirical datasets,
probably due to the low temporal resolution used in the later stages of the experiment.
This indicates that the technique only works when adequate timepoints representing the
kinetic process of interest are measured. This issue relates to the challenges of preparing
and measuring multiple replicates of inoculated and fixed cells over prolonged timescales,
and can be addressed with the introduction of new live measurement techniques as well as
more rapid Raman instruments.

Another important limitation is the specificity of Raman for some molecules. The
Raman spectra only represent a limited number of biomolecules which provide intensities
significantly above the noise. Although these biocomponents can be modelled in the kinetic
model within the hard-and-soft approach, they may introduce ambiguity which reduces the
capacity to identify and track the relevant components. Thus, in principle only biological
processes with a significant number of components represented in the Raman spectra can
be modelled. Furthermore, when increasing the complexity and number of the reactions
involved in the process, the number of kinetic constants to model also increases, increasing
the risk of obtaining ambiguous solutions by exchanging constants.

5. Conclusions

In conclusion, a framework of label-free, subcellular Raman microspectroscopic analy-
sis, combined with a kinetic, mechanistic modelling approach, to underpin chemometric
analysis protocols, may provide a basis for the unambiguous interpretation of the evolu-
tion of the characteristic spectroscopic signatures. The approach lays the foundation for
a spectralomics paradigm of label-free high content spectroscopic analysis technique for
analysis of cellular function, providing a holistic view of the cellular processes to augment
conventional labelled and omics approaches.
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