O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells
Abstract
:1. Introduction
2. Overview of O-GlcNAcylated Proteins Involved in the Regulation of Vesicle Trafficking
3. COPII and COPI Machineries
3.1. COPII-Mediated Anterograde Transport
3.1.1. Sec23A Inner Coat Protein
3.1.2. Sec24 Inner Coat Protein
3.1.3. Sec31A Outer Coat Protein
3.2. COPI-Dependent Retrograde Transport
3.3. Arf-GAP and Arf-GEF
4. Clathrin-Mediated Vesicle Trafficking
4.1. O-GlcNAcylation of Clathrin and Endocytic Accessory Proteins
4.2. Clathrin-Coated Pits Formation and Transmembrane Receptors Endocytosis
5. Effect of O-GlcNAc Cycling on Cargo Trafficking
5.1. E-cadherin Trafficking
5.2. GLUT4 Trafficking
5.3. Trafficking of GluA2-Containing AMPARs
5.4. Amyloid-β Peptide Trafficking
5.5. Trafficking of Hyaluronan Synthases
5.6. Megalin-Mediated Albumin Endocytosis
5.7. O-GlcNAcylation of HGS Controls the Endosomal Sorting of Internalized Membrane Receptors
5.7.1. Endosomal Sorting of EGFR
5.7.2. Endosomal Sorting of PD-L1
6. Clathrin-Independent Endocytosis
6.1. Regulation of the Secretion of Galectin 3
6.2. Fast Endophilin-Mediated Endocytosis
6.3. Caveolae-Mediated Endocytosis
7. Unconventional Secretory Pathways
7.1. Placental OGT Expression and Maternal Circulating EVs
7.2. O-GlcNAc Cycling Regulates the Encapsulation of Molecules into Extracellular Vesicles
7.3. O-GlcNAc Cycling Regulates the Formation of SNARE Complexes Required for Exosome Secretion
7.4. O-GlcNAcylation of SNAP29 Regulates the Formation of Complexes Involved in Autophagy
7.5. GRASP55 O-GlcNAcylation Regulates the Autophagic Flux under Nutritional Stress Conditions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Szul, T.; Sztul, E. COPII and COPI Traffic at the ER-Golgi Interface. Physiology 2011, 26, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Béthune, J.; Wieland, F.T. Assembly of COPI and COPII Vesicular Coat Proteins on Membranes. Annu. Rev. Biophys. 2018, 47, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Peotter, J.; Kasberg, W.; Pustova, I.; Audhya, A. COPII-Mediated Trafficking at the ER/ERGIC Interface. Traffic 2019, 20, 491–503. [Google Scholar] [CrossRef]
- Scita, G.; Di Fiore, P.P. The Endocytic Matrix. Nature 2010, 463, 464–473. [Google Scholar] [CrossRef]
- Wu, L.-G.; Hamid, E.; Shin, W.; Chiang, H.-C. Exocytosis and Endocytosis: Modes, Functions, and Coupling Mechanisms. Annu. Rev. Physiol. 2014, 76, 301–331. [Google Scholar] [CrossRef] [PubMed]
- Stalder, D.; Gershlick, D.C. Direct Trafficking Pathways from the Golgi Apparatus to the Plasma Membrane. Semin. Cell Dev. Biol. 2020, 107, 112–125. [Google Scholar] [CrossRef]
- Meldolesi, J. Unconventional Protein Secretion Dependent on Two Extracellular Vesicles: Exosomes and Ectosomes. Front. Cell Dev. Biol. 2022, 10, 877344. [Google Scholar] [CrossRef]
- Rabouille, C. Pathways of Unconventional Protein Secretion. Trends Cell Biol. 2017, 27, 230–240. [Google Scholar] [CrossRef]
- Tan, J.Z.A.; Gleeson, P.A. Cargo Sorting at the Trans-Golgi Network for Shunting into Specific Transport Routes: Role of Arf Small G Proteins and Adaptor Complexes. Cells 2019, 8, 531. [Google Scholar] [CrossRef]
- D’Souza-Schorey, C.; Chavrier, P. ARF Proteins: Roles in Membrane Traffic and Beyond. Nat. Rev. Mol. Cell Biol. 2006, 7, 347–358. [Google Scholar] [CrossRef]
- Goud, B.; Gleeson, P.A. TGN Golgins, Rabs and Cytoskeleton: Regulating the Golgi Trafficking Highways. Trends Cell Biol. 2010, 20, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Hutagalung, A.H.; Novick, P.J. Role of Rab GTPases in Membrane Traffic and Cell Physiology. Physiol. Rev. 2011, 91, 119–149. [Google Scholar] [CrossRef] [PubMed]
- Jahn, R.; Scheller, R.H. SNAREs—Engines for Membrane Fusion. Nat. Rev. Mol. Cell Biol. 2006, 7, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Acconcia, F.; Sigismund, S.; Polo, S. Ubiquitin in Trafficking: The Network at Work. Exp. Cell Res. 2009, 315, 1610–1618. [Google Scholar] [CrossRef]
- Foot, N.; Henshall, T.; Kumar, S. Ubiquitination and the Regulation of Membrane Proteins. Physiol. Rev. 2017, 97, 253–281. [Google Scholar] [CrossRef]
- Shen, C.-H.; Chou, C.-C.; Lai, T.-Y.; Hsu, J.-E.; Lin, Y.-S.; Liu, H.-Y.; Chen, Y.-K.; Ho, I.-L.; Hsu, P.-H.; Chuang, T.-H.; et al. ZNRF1 Mediates Epidermal Growth Factor Receptor Ubiquitination to Control Receptor Lysosomal Trafficking and Degradation. Front. Cell Dev. Biol. 2021, 9, 642625. [Google Scholar] [CrossRef]
- Farhan, H.; Wendeler, M.W.; Mitrovic, S.; Fava, E.; Silberberg, Y.; Sharan, R.; Zerial, M.; Hauri, H.-P. MAPK Signaling to the Early Secretory Pathway Revealed by Kinase/Phosphatase Functional Screening. J. Cell Biol. 2010, 189, 997–1011. [Google Scholar] [CrossRef]
- Sharpe, L.J.; Luu, W.; Brown, A.J. Akt Phosphorylates Sec24: New Clues into the Regulation of ER-to-Golgi Trafficking. Traffic 2011, 12, 19–27. [Google Scholar] [CrossRef]
- Koreishi, M.; Yu, S.; Oda, M.; Honjo, Y.; Satoh, A. CK2 Phosphorylates Sec31 and Regulates ER-To-Golgi Trafficking. PLoS ONE 2013, 8, e54382. [Google Scholar] [CrossRef]
- Rahmani, S.; Defferrari, M.S.; Wakarchuk, W.W.; Antonescu, C.N. Energetic Adaptations: Metabolic Control of Endocytic Membrane Traffic. Traffic 2019, 20, 912–931. [Google Scholar] [CrossRef]
- Luo, P.M.; Boyce, M. Directing Traffic: Regulation of COPI Transport by Post-Translational Modifications. Front. Cell Dev. Biol. 2019, 7, 190. [Google Scholar] [CrossRef] [PubMed]
- Chia, J.; Wang, S.-C.; Wee, S.; Gill, D.J.; Tay, F.; Kannan, S.; Verma, C.S.; Gunaratne, J.; Bard, F.A. Src Activates Retrograde Membrane Traffic through Phosphorylation of GBF1. eLife 2021, 10, e68678. [Google Scholar] [CrossRef] [PubMed]
- Mettlen, M.; Chen, P.-H.; Srinivasan, S.; Danuser, G.; Schmid, S.L. Regulation of Clathrin-Mediated Endocytosis. Annu. Rev. Biochem. 2018, 87, 871–896. [Google Scholar] [CrossRef] [PubMed]
- Liljedahl, M.; Maeda, Y.; Colanzi, A.; Ayala, I.; Van Lint, J.; Malhotra, V. Protein Kinase D Regulates the Fission of Cell Surface Destined Transport Carriers from the Trans-Golgi Network. Cell 2001, 104, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, G.; Filograna, A.; Schembri, L.; Lo Monte, M.; Di Martino, R.; Pirozzi, M.; Spano, D.; Beccari, A.R.; Parashuraman, S.; Luini, A.; et al. PKD-Dependent PARP12-Catalyzed Mono-ADP-Ribosylation of Golgin-97 Is Required for E-Cadherin Transport from Golgi to Plasma Membrane. Proc. Natl. Acad. Sci. USA 2022, 119, e2026494119. [Google Scholar] [CrossRef]
- King, D.; Males, A.; Davies, G.J.; Vocadlo, D. Molecular Mechanisms Regulating O-Linked N-Acetylglucosamine (O-GlcNAc)–Processing Enzymes. Curr. Opin. Chem. Biol. 2019, 53, 131–144. [Google Scholar] [CrossRef]
- Stephen, H.M.; Adams, T.M.; Wells, L. Regulating the Regulators: Mechanisms of Substrate Selection of the O-GlcNAc Cycling Enzymes OGT and OGA. Glycobiology 2021, 31, 724–733. [Google Scholar] [CrossRef]
- Hart, G.W. Nutrient Regulation of Signaling and Transcription. J. Biol. Chem. 2019, 294, 2211–2231. [Google Scholar] [CrossRef]
- Chatham, J.C.; Zhang, J.; Wende, A.R. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol. Rev. 2021, 101, 427–493. [Google Scholar] [CrossRef]
- Liu, J.; Hao, Y.; He, Y.; Li, X.; Sun, D.-E.; Zhang, Y.; Yang, P.-Y.; Chen, X. Quantitative and Site-Specific Chemoproteomic Profiling of Protein O-GlcNAcylation in the Cell Cycle. ACS Chem. Biol. 2021, 16, 1917–1923. [Google Scholar] [CrossRef]
- Zhu, Y.; Willems, L.I.; Salas, D.; Cecioni, S.; Wu, W.B.; Foster, L.J.; Vocadlo, D.J. Tandem Bioorthogonal Labeling Uncovers Endogenous Cotranslationally O-GlcNAc Modified Nascent Proteins. J. Am. Chem. Soc. 2020, 142, 15729–15739. [Google Scholar] [CrossRef] [PubMed]
- Levine, Z.G.; Potter, S.C.; Joiner, C.M.; Fei, G.Q.; Nabet, B.; Sonnett, M.; Zachara, N.E.; Gray, N.S.; Paulo, J.A.; Walker, S. Mammalian Cell Proliferation Requires Noncatalytic Functions of O-GlcNAc Transferase. Proc. Natl. Acad. Sci. USA 2021, 118, e2016778118. [Google Scholar] [CrossRef] [PubMed]
- Bond, M.R.; Hanover, J.A. O-GlcNAc cycling: A link between metabolism and chronic disease. Annu. Rev. Nutr. 2013, 33, 205–229. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Han, D.; Kim, K.; Kang, Y.; Kim, Y. O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. Bioch. Biophys. Acta 2009, 1794, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shu, H.; Liu, J.; Jin, X.; Wang, L.; Qu, Y.; Xia, M.; Peng, P.; Feng, Y.; Wei, M. EGF promotes PKM2 O-GlcNAcylation by stimulating O-GlcNAc transferase phosphorylation at Y976 and their subsequent association. J. Biol. Chem. 2022, 298, 102340. [Google Scholar] [CrossRef]
- Leturcq, M.; Mortuaire, M.; Hardivillé, S.; Schulz, C.; Lefebvre, T.; Vercoutter-Edouart, A.-S. O-GlcNAc Transferase Associates with the MCM2-7 Complex and Its Silencing Destabilizes MCM-MCM Interactions. Cell Mol. Life Sci. 2018, 75, 4321–4339. [Google Scholar] [CrossRef]
- Hardivillé, S.; Banerjee, P.S.; Selen Alpergin, E.S.; Smith, D.M.; Han, G.; Ma, J.; Talbot, C.C.; Hu, P.; Wolfgang, M.J.; Hart, G.W. TATA-Box Binding Protein O-GlcNAcylation at T114 Regulates Formation of the B-TFIID Complex and Is Critical for Metabolic Gene Regulation. Mol. Cell 2020, 77, 1143–1152.e7. [Google Scholar] [CrossRef]
- Hu, C.W.; Xie, J.; Jiang, J. The Emerging Roles of Protein Interactions with O-GlcNAc Cycling Enzymes in Cancer. Cancers 2022, 14, 5135. [Google Scholar] [CrossRef]
- Galesic, A.; Rakshit, A.; Cutolo, G.; Pacheco, R.P.; Balana, A.T.; Moon, S.P.; Pratt, M.R. Comparison of N-Acetyl-Glucosamine to Other Monosaccharides Reveals Structural Differences for the Inhibition of α-Synuclein Aggregation. ACS Chem. Biol. 2021, 16, 14–19. [Google Scholar] [CrossRef]
- Nosella, M.L.; Tereshchenko, M.; Pritišanac, I.; Chong, P.A.; Toretsky, J.A.; Lee, H.O.; Forman-Kay, J.D. O-Linked-N-Acetylglucosaminylation of the RNA-Binding Protein EWS N-Terminal Low Complexity Region Reduces Phase Separation and Enhances Condensate Dynamics. J. Am. Chem. Soc. 2021, 143, 11520–11534. [Google Scholar] [CrossRef]
- Trinidad, J.C.; Barkan, D.T.; Gulledge, B.F.; Thalhammer, A.; Sali, A.; Schoepfer, R.; Burlingame, A.L. Global Identification and Characterization of Both O-GlcNAcylation and Phosphorylation at the Murine Synapse. Mol. Cell. Proteom. 2012, 11, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.-B.; Nie, Y.; Yang, X. Regulation of Protein Degradation by O-GlcNAcylation: Crosstalk with Ubiquitination. Mol. Cell. Proteom. 2013, 12, 3489–3497. [Google Scholar] [CrossRef] [PubMed]
- van der Laarse, S.A.M.; Leney, A.C.; Heck, A.J.R. Crosstalk between Phosphorylation and O-GlcNAcylation: Friend or Foe. FEBS J. 2018, 285, 3152–3167. [Google Scholar] [CrossRef] [PubMed]
- Bourré, G.; Cantrelle, F.-X.; Kamah, A.; Chambraud, B.; Landrieu, I.; Smet-Nocca, C. Direct Crosstalk between O-GlcNAcylation and Phosphorylation of Tau Protein Investigated by NMR Spectroscopy. Front. Endocrinol. 2018, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Masclef, L.; Dehennaut, V.; Mortuaire, M.; Schulz, C.; Leturcq, M.; Lefebvre, T.; Vercoutter-Edouart, A.-S. Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation. Front. Endocrinol. 2019, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, J.; Liu, T.; Zhang, Z.; Qin, W.; Qian, X. A New Tandem Enrichment Strategy for the Simultaneous Profiling of O-GlcNAcylation and Phosphorylation in RNA-Binding Proteome. Analyst 2021, 146, 1188–1197. [Google Scholar] [CrossRef]
- Kamemura, K.; Hayes, B.K.; Comer, F.I.; Hart, G.W. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: Alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J. Biol. Chem. 2002, 277, 19229–19235. [Google Scholar] [CrossRef]
- Tarrant, M.K.; Rho, H.S.; Xie, Z.; Jiang, Y.L.; Gross, C.; Culhane, J.C.; Yan, G.; Qian, J.; Ichikawa, Y.; Matsuoka, T.; et al. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat. Chem. Biol. 2012, 8, 262–269. [Google Scholar] [CrossRef]
- Bullen, J.W.; Balsbaugh, J.L.; Chanda, D.; Shabanowitz, J.; Hunt, D.F.; Neumann, D.; Hart, G.W. Cross-talk between Two Essential Nutrient-Sensitive Enzymes: O-GlcNAc Transferase (OGT) and AMP-activated Protein Kinase (AMPK). J. Biol. Chem. 2014, 289, 10592–10606. [Google Scholar] [CrossRef]
- Very, N.; Vercoutter-Edouart, A.-S.; Lefebvre, T.; Hardivillé, S.; El Yazidi-Belkoura, I. Cross-Dysregulation of O-GlcNAcylation and PI3K/AKT/MTOR Axis in Human Chronic Diseases. Front. Endocrinol. 2018, 9, 602. [Google Scholar] [CrossRef]
- Zhu, Y.; Hart, G.W. Nutrient Regulation of the Flow of Genetic Information by O-GlcNAcylation. Biochem. Soc. Trans. 2021, 49, 867–880. [Google Scholar] [CrossRef]
- Fahie, K.M.M.; Papanicolaou, K.N.; Zachara, N.E. Integration of O-GlcNAc into Stress Response Pathways. Cells 2022, 11, 3509. [Google Scholar] [CrossRef] [PubMed]
- Ciraku, L.; Esquea, E.M.; Reginato, M.J. O-GlcNAcylation Regulation of Cellular Signaling in Cancer. Cell Signal. 2022, 90, 110201. [Google Scholar] [CrossRef] [PubMed]
- Krick, S.; Helton, E.S.; Hutcheson, S.B.; Blumhof, S.; Garth, J.M.; Denson, R.S.; Zaharias, R.S.; Wickham, H.; Barnes, J.W. FGF23 Induction of O-Linked N-Acetylglucosamine Regulates IL-6 Secretion in Human Bronchial Epithelial Cells. Front. Endocrinol. 2018, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Qiang, A.; Slawson, C.; Fields, P.E. The Role of O-GlcNAcylation in Immune Cell Activation. Front. Endocrinol. 2021, 12, 596617. [Google Scholar] [CrossRef]
- Ouyang, M.; Yu, C.; Deng, X.; Zhang, Y.; Zhang, X.; Duan, F. O-GlcNAcylation and Its Role in Cancer–Associated Inflammation. Front. Immunol. 2022, 13, 861559. [Google Scholar] [CrossRef]
- Zhao, M.; Ren, K.; Xiong, X.; Xin, Y.; Zou, Y.; Maynard, J.C.; Kim, A.; Battist, A.P.; Koneripalli, N.; Wang, Y.; et al. Epithelial STAT6 O-GlcNAcylation Drives a Concerted Anti-Helminth Alarmin Response Dependent on Tuft Cell Hyperplasia and Gasdermin C. Immunity 2022, 55, 623–638.e5. [Google Scholar] [CrossRef]
- Wulff-Fuentes, E.; Berendt, R.R.; Massman, L.; Danner, L.; Malard, F.; Vora, J.; Kahsay, R.; Olivier-Van Stichelen, S. The Human O-GlcNAcome Database and Meta-Analysis. Sci. Data 2021, 8, 25. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Hou, C.; Wu, C. O-GlcNAcAtlas: A Database of Experimentally Identified O-GlcNAc Sites and Proteins. Glycobiology 2021, 31, 719–723. [Google Scholar] [CrossRef]
- Colley, K.J.; Varki, A.; Haltiwanger, R.S.; Kinoshita, T. Cellular Organization of Glycosylation. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; pp. 43–52. [Google Scholar]
- Sun, X.; Tie, H.C.; Chen, B.; Lu, L. Glycans Function as a Golgi Export Signal to Promote the Constitutive Exocytic Trafficking. J. Biol. Chem. 2020, 295, 14750–14762. [Google Scholar] [CrossRef]
- Guo, Y.; Sirkis, D.W.; Schekman, R. Protein Sorting at the Trans-Golgi Network. Annu. Rev. Cell Dev. Biol. 2014, 30, 169–206. [Google Scholar] [CrossRef] [PubMed]
- Shestakova, A.; Zolov, S.; Lupashin, V. COG Complex-Mediated Recycling of Golgi Glycosyltransferases Is Essential for Normal Protein Glycosylation. Traffic 2006, 7, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Fisher, P.; Ungar, D. Bridging the Gap between Glycosylation and Vesicle Traffic. Front. Cell Dev. Biol. 2016, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Doray, B.; Kornfeld, S. Recycling of Golgi Glycosyltransferases Requires Direct Binding to Coatomer. Proc. Natl. Acad. Sci. USA 2018, 115, 8984–8989. [Google Scholar] [CrossRef]
- Kitano, M.; Kizuka, Y.; Sobajima, T.; Nakano, M.; Nakajima, K.; Misaki, R.; Itoyama, S.; Harada, Y.; Harada, A.; Miyoshi, E.; et al. Rab11-Mediated Post-Golgi Transport of the Sialyltransferase ST3GAL4 Suggests a New Mechanism for Regulating Glycosylation. J. Biol. Chem. 2021, 296, 100354. [Google Scholar] [CrossRef]
- Linders, P.T.A.; Peters, E.; Ter Beest, M.; Lefeber, D.J.; van den Bogaart, G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int. J. Mol. Sci. 2020, 21, 4654. [Google Scholar] [CrossRef]
- Fath, S.; Mancias, J.D.; Bi, X.; Goldberg, J. Structure and Organization of Coat Proteins in the COPII Cage. Cell 2007, 129, 1325–1336. [Google Scholar] [CrossRef]
- Chatterjee, S.; Choi, A.J.; Frankel, G. A Systematic Review of Sec24 Cargo Interactome. Traffic 2021, 22, 412–424. [Google Scholar] [CrossRef]
- Whittle, J.R.R.; Schwartz, T.U. Structure of the Sec13-Sec16 Edge Element, a Template for Assembly of the COPII Vesicle Coat. J. Cell Biol. 2010, 190, 347–361. [Google Scholar] [CrossRef]
- Aridor, M. COPII Gets in Shape: Lessons Derived from Morphological Aspects of Early Secretion. Traffic 2018, 19, 823–839. [Google Scholar] [CrossRef]
- Klinkenberg, D.; Long, K.R.; Shome, K.; Watkins, S.C.; Aridor, M. A Cascade of ER Exit Site Assembly That Is Regulated by P125A and Lipid Signals. J. Cell Sci. 2014, 127, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.J.; Unlu, G.; Bisnett, B.J.; Meister, T.R.; Condon, B.; Luo, P.M.; Smith, T.J.; Hanna, M.; Chhetri, A.; Soderblom, E.J.; et al. Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway. Biochemistry 2018, 57, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Mook-Jung, I. O-GlcNAcylation Regulates Endoplasmic Reticulum Exit Sites through Sec31A Modification in Conventional Secretory Pathway. FASEB J. 2018, 32, 4641–4657. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Corpina, R.A.; Goldberg, J. Structure of the Sec23/24-Sar1 Pre-Budding Complex of the COPII Vesicle Coat. Nature 2002, 419, 271–277. [Google Scholar] [CrossRef]
- Raote, I.; Saxena, S.; Campelo, F.; Malhotra, V. TANGO1 Marshals the Early Secretory Pathway for Cargo Export. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183700. [Google Scholar] [CrossRef]
- Ma, W.; Goldberg, J. TANGO1/CTAGE5 Receptor as a Polyvalent Template for Assembly of Large COPII Coats. Proc. Natl. Acad. Sci. USA 2016, 113, 10061–10066. [Google Scholar] [CrossRef]
- Woo, C.M.; Lund, P.J.; Huang, A.C.; Davis, M.M.; Bertozzi, C.R.; Pitteri, S.J. Mapping and Quantification of Over 2000 O-Linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Mol. Cell Proteom. 2018, 17, 764–775. [Google Scholar] [CrossRef]
- Adolf, F.; Rhiel, M.; Hessling, B.; Gao, Q.; Hellwig, A.; Béthune, J.; Wieland, F.T. Proteomic Profiling of Mammalian COPII and COPI Vesicles. Cell Rep. 2019, 26, 250–265.e5. [Google Scholar] [CrossRef]
- Bisnett, B.J.; Condon, B.M.; Linhart, N.A.; Lamb, C.H.; Huynh, D.T.; Bai, J.; Smith, T.J.; Hu, J.; Georgiou, G.R.; Boyce, M. Evidence for Nutrient-Dependent Regulation of the COPII Coat by O-GlcNAcylation. Glycobiology 2021, 31, 1102–1120. [Google Scholar] [CrossRef]
- Kettenbach, A.N.; Schweppe, D.K.; Faherty, B.K.; Pechenick, D.; Pletnev, A.A.; Gerber, S.A. Quantitative Phosphoproteomics Identifies Substrates and Functional Modules of Aurora and Polo-like Kinase Activities in Mitotic Cells. Sci. Signal. 2011, 4, rs5. [Google Scholar] [CrossRef]
- Dudognon, P.; Maeder-Garavaglia, C.; Carpentier, J.-L.; Paccaud, J.-P. Regulation of a COPII Component by Cytosolic O-Glycosylation during Mitosis. FEBS Lett. 2004, 561, 44–50. [Google Scholar] [CrossRef]
- Bisnett, B.J.; Condon, B.M.; Lamb, C.H.; Georgiou, G.R.; Boyce, M. Export Control: Post-Transcriptional Regulation of the COPII Trafficking Pathway. Front. Cell Dev. Biol. 2020, 8, 618652. [Google Scholar] [CrossRef] [PubMed]
- Prescott, A.R.; Farmaki, T.; Thomson, C.; James, J.; Paccaud, J.P.; Tang, B.L.; Hong, W.; Quinn, M.; Ponnambalam, S.; Lucocq, J. Evidence for Prebudding Arrest of ER Export in Animal Cell Mitosis and Its Role in Generating Golgi Partitioning Intermediates. Traffic 2001, 2, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Mook-Jung, I. Amyloid Beta Regulates ER Exit Sites Formation through O-GlcNAcylation Triggered by Disrupted Calcium Homeostasis. Biol. Cell 2020, 112, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cai, J.; Wang, H.; Liang, X.; Zhou, Q.; Ding, C.; Zhu, Y.; Fu, T.; Guo, Q.; Xu, Z.; et al. Coupling of COPII Vesicle Trafficking to Nutrient Availability by the IRE1α-XBP1s Axis. Proc. Natl. Acad. Sci. USA 2019, 116, 11776–11785. [Google Scholar] [CrossRef]
- Dragic, H.; Barthelaix, A.; Duret, C.; Le Goupil, S.; Laprade, H.; Martin, S.; Brugière, S.; Couté, Y.; Machon, C.; Guitton, J.; et al. The Hexosamine Pathway and Coat Complex II Promote Malignant Adaptation to Nutrient Scarcity. Life Sci. Alliance 2022, 5, e202101334. [Google Scholar] [CrossRef]
- Arakel, E.C.; Schwappach, B. Formation of COPI-Coated Vesicles at a Glance. J. Cell Sci. 2018, 131, jcs209890. [Google Scholar] [CrossRef]
- Deng, R.-P.; He, X.; Guo, S.-J.; Liu, W.-F.; Tao, Y.; Tao, S.-C. Global Identification of O-GlcNAc Transferase (OGT) Interactors by a Human Proteome Microarray and the Construction of an OGT Interactome. Proteomics 2014, 14, 1020–1030. [Google Scholar] [CrossRef]
- Cox, N.J.; Luo, P.M.; Smith, T.J.; Bisnett, B.J.; Soderblom, E.J.; Boyce, M. A Novel Glycoproteomics Workflow Reveals Dynamic O-GlcNAcylation of COPγ1 as a Candidate Regulator of Protein Trafficking. Front. Endocrinol. 2018, 9, 606. [Google Scholar] [CrossRef]
- Schweitzer, J.K.; Sedgwick, A.E.; D’Souza-Schorey, C. ARF6-Mediated Endocytic Recycling Impacts Cell Movement, Cell Division and Lipid Homeostasis. Semin. Cell Dev. Biol. 2011, 22, 39–47. [Google Scholar] [CrossRef]
- Liu, W.; Duden, R.; Phair, R.D.; Lippincott-Schwartz, J. ArfGAP1 Dynamics and Its Role in COPI Coat Assembly on Golgi Membranes of Living Cells. J. Cell Biol. 2005, 168, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Weimer, C.; Beck, R.; Eckert, P.; Reckmann, I.; Moelleken, J.; Brügger, B.; Wieland, F. Differential Roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI Trafficking. J. Cell Biol. 2008, 183, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.R.; Brown, F.D.; Nie, Z.; Miura, K.; Foroni, L.; Sun, J.; Hsu, V.W.; Donaldson, J.G.; Randazzo, P.A. Acaps Are Arf6 Gtpase-Activating Proteins That Function in the Cell Periphery. J. Cell Biol. 2000, 151, 627–638. [Google Scholar] [CrossRef]
- Radhakrishna, H.; Donaldson, J.G. ADP-Ribosylation Factor 6 Regulates a Novel Plasma Membrane Recycling Pathway. J. Cell Biol. 1997, 139, 49–61. [Google Scholar] [CrossRef]
- Gonzalez, A.; Rodriguez-Boulan, E. Clathrin and AP1B: Key Roles in Basolateral Trafficking through Trans-Endosomal Routes. FEBS Lett. 2009, 583, 3784–3795. [Google Scholar] [CrossRef]
- Duncan, M.C. New Directions for the Clathrin Adaptor AP-1 in Cell Biology and Human Disease. Curr. Opin. Cell Biol. 2022, 76, 102079. [Google Scholar] [CrossRef]
- Palin, V.; Russell, M.; Graham, R.; Aplin, J.D.; Westwood, M. Altered Protein O-GlcNAcylation in Placentas from Mothers with Diabetes Causes Aberrant Endocytosis in Placental Trophoblast Cells. Sci. Rep. 2021, 11, 20705. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, O.; Dickson, V.K.; Kelly, B.T.; Owen, D.J.; Briggs, J.A.G. Architecture of the AP2/Clathrin Coat on the Membranes of Clathrin-Coated Vesicles. Sci. Adv. 2020, 6, eaba8381. [Google Scholar] [CrossRef]
- Murphy, J.E.; Hanover, J.A.; Froehlich, M.; DuBois, G.; Keen, J.H. Clathrin Assembly Protein AP-3 Is Phosphorylated and Glycosylated on the 50-KDa Structural Domain. J. Biol. Chem. 1994, 269, 21346–21352. [Google Scholar] [CrossRef]
- Ford, C.; Parchure, A.; von Blume, J.; Burd, C.G. Cargo Sorting at the Trans-Golgi Network at a Glance. J. Cell Sci. 2021, 134, jcs259110. [Google Scholar] [CrossRef]
- Yao, P.J.; Coleman, P.D. Reduced O-Glycosylated Clathrin Assembly Protein AP180: Implication for Synaptic Vesicle Recycling Dysfunction in Alzheimer’s Disease. Neurosci. Lett. 1998, 252, 33–36. [Google Scholar] [CrossRef]
- Qin, K.; Zhu, Y.; Qin, W.; Gao, J.; Shao, X.; Wang, Y.-L.; Zhou, W.; Wang, C.; Chen, X. Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. ACS Chem. Biol. 2018, 13, 1983–1989. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Ahmed, H.; Ibazebo, O.; Fussner-Dupas, E.; Wakarchuk, W.W.; Antonescu, C.N. O-GlcNAc Transferase Modulates the Cellular Endocytosis Machinery by Controlling the Formation of Clathrin-Coated Pits. J. Biol. Chem. 2023, 299, 102963. [Google Scholar] [CrossRef]
- Miller, S.E.; Mathiasen, S.; Bright, N.A.; Pierre, F.; Kelly, B.T.; Kladt, N.; Schauss, A.; Merrifield, C.J.; Stamou, D.; Höning, S.; et al. CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Driving Membrane Curvature. Dev. Cell 2015, 33, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, A.G.; Kadlecova, Z.; Kamenicky, J.; Yang, J.-C.; Herrmann, T.; Kelly, B.T.; McCoy, A.J.; Evans, P.R.; Martin, S.; Müller, S.; et al. Temporal Ordering in Endocytic Clathrin-Coated Vesicle Formation via AP2 Phosphorylation. Dev. Cell. 2019, 50, 494–508.e11. [Google Scholar] [CrossRef]
- Smith, S.M.; Baker, M.; Halebian, M.; Smith, C.J. Weak Molecular Interactions in Clathrin-Mediated Endocytosis. Front. Mol. Biosci. 2017, 4, 72. [Google Scholar] [CrossRef]
- Mathew, M.; Abramowitz, L.; Donaldson, J.; Hanover, J. Nutrient-Responsive O-GlcNAcylation Dynamically Modulates the Secretion of Glycan-Binding Protein Galectin 3. J. Biol. Chem. 2022, 298, 101743. [Google Scholar] [CrossRef]
- Kowalczyk, A.P.; Nanes, B.A. Adherens Junction Turnover: Regulating Adhesion through Cadherin Endocytosis, Degradation, and Recycling. Subcell. Biochem. 2012, 60, 197–222. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, H.S.; Kim, N.H.; Ji, S.; Cha, S.Y.; Kang, J.G.; Ota, I.; Shimada, K.; Konishi, N.; Nam, H.W.; et al. Snail1 Is Stabilized by O-GlcNAc Modification in Hyperglycaemic Condition. EMBO J. 2010, 29, 3787–3796. [Google Scholar] [CrossRef]
- Zhu, W.; Leber, B.; Andrews, D.W. Cytoplasmic O-Glycosylation Prevents Cell Surface Transport of E-Cadherin during Apoptosis. EMBO J. 2001, 20, 5999–6007. [Google Scholar] [CrossRef]
- Geng, F.; Zhu, W.; Anderson, R.A.; Leber, B.; Andrews, D.W. Multiple Post-Translational Modifications Regulate E-Cadherin Transport during Apoptosis. J. Cell Sci. 2012, 125, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Biwi, J.; Clarisse, C.; Biot, C.; Kozak, R.P.; Madunic, K.; Mortuaire, M.; Wuhrer, M.; Spencer, D.I.R.; Schulz, C.; Guerardel, Y.; et al. OGT Controls the Expression and the Glycosylation of E-Cadherin, and Affects Glycosphingolipid Structures in Human Colon Cell Lines. Proteomics 2019, 19, e1800452. [Google Scholar] [CrossRef] [PubMed]
- Olivier-Van Stichelen, S.; Dehennaut, V.; Buzy, A.; Zachayus, J.-L.; Guinez, C.; Mir, A.-M.; El Yazidi-Belkoura, I.; Copin, M.-C.; Boureme, D.; Loyaux, D.; et al. O-GlcNAcylation Stabilizes β-Catenin through Direct Competition with Phosphorylation at Threonine 41. FASEB J. 2014, 28, 3325–3338. [Google Scholar] [CrossRef]
- Harosh-Davidovich, S.B.; Khalaila, I. O-GlcNAcylation Affects β-Catenin and E-Cadherin Expression, Cell Motility and Tumorigenicity of Colorectal Cancer. Exp. Cell Res. 2018, 364, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gu, Y.; Qi, J.; Han, C.; Zhang, X.; Bi, C.; Yu, W. Inhibition of E-Cadherin/Catenin Complex Formation by O-Linked N-Acetylglucosamine Transferase Is Partially Independent of Its Catalytic Activity. Mol. Med. Rep. 2016, 13, 1851–1860. [Google Scholar] [CrossRef]
- Lohia, M.; Qin, Y.; Macara, I.G. The Scribble Polarity Protein Stabilizes E-Cadherin/P120-Catenin Binding and Blocks Retrieval of E-Cadherin to the Golgi. PLoS ONE 2012, 7, e51130. [Google Scholar] [CrossRef]
- Klip, A.; McGraw, T.E.; James, D.E. Thirty Sweet Years of GLUT4. J. Biol. Chem. 2019, 294, 11369–11381. [Google Scholar] [CrossRef]
- Ramalingam, L.; Yoder, S.M.; Oh, E.; Thurmond, D.C. Munc18c: A Controversial Regulator of Peripheral Insulin Action. Trends Endocrinol. Metabol. 2014, 25, 601–608. [Google Scholar] [CrossRef]
- Buse, M.G.; Robinson, K.A.; Marshall, B.A.; Hresko, R.C.; Mueckler, M.M. Enhanced O-GlcNAc Protein Modification Is Associated with Insulin Resistance in GLUT1-Overexpressing Muscles. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E241–E250. [Google Scholar] [CrossRef]
- Chen, H.; Ing, B.L.; Robinson, K.A.; Feagin, A.C.; Buse, M.G.; Quon, M.J. Effects of Overexpression of Glutamine:Fructose-6-Phosphate Amidotransferase (GFAT) and Glucosamine Treatment on Translocation of GLUT4 in Rat Adipose Cells. Mol. Cell. Endocrinol. 1997, 135, 67–77. [Google Scholar] [CrossRef]
- Chen, G.; Liu, P.; Thurmond, D.C.; Elmendorf, J.S. Glucosamine-Induced Insulin Resistance Is Coupled to O-Linked Glycosylation of Munc18c. FEBS Lett. 2003, 534, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Yang, X.; Li, S.; Zhao, H.; Gao, Y.; Zhao, S.; Lv, X.; Zhang, X.; Li, L.; Zhai, L.; et al. Reduced O-GlcNAcylation of SNAP23 Promotes Cisplatin Resistance by Inducing Exosome Secretion in Ovarian Cancer. Cell Death Discov. 2021, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zheng, J.; Xiao, H.; Wu, R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Anal. Chem. 2022, 94, 3343–3351. [Google Scholar] [CrossRef] [PubMed]
- Joiner, C.M.; Levine, Z.G.; Aonbangkhen, C.; Woo, C.M.; Walker, S. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection. J. Am. Chem. Soc. 2019, 141, 12974–12978. [Google Scholar] [CrossRef] [PubMed]
- Seidenman, K.J.; Steinberg, J.P.; Huganir, R.; Malinow, R. Glutamate Receptor Subunit 2 Serine 880 Phosphorylation Modulates Synaptic Transmission and Mediates Plasticity in CA1 Pyramidal Cells. J. Neurosci. 2003, 23, 9220–9228. [Google Scholar] [CrossRef]
- Corti, E.; Duarte, C.B. The Role of Post-Translational Modifications in Synaptic AMPA Receptor Activity. Biochem. Soc. Trans. 2023, 51, 315–330. [Google Scholar] [CrossRef]
- Kanno, T.; Yaguchi, T.; Nagata, T.; Mukasa, T.; Nishizaki, T. Regulation of AMPA Receptor Trafficking by O-Glycosylation. Neurochem. Res. 2010, 35, 782–788. [Google Scholar] [CrossRef]
- Taylor, E.W.; Wang, K.; Nelson, A.R.; Bredemann, T.M.; Fraser, K.B.; Clinton, S.M.; Puckett, R.; Marchase, R.B.; Chatham, J.C.; McMahon, L.L. O-GlcNAcylation of AMPA Receptor GluA2 Is Associated with a Novel Form of Long-Term Depression at Hippocampal Synapses. J. Neurosci. 2014, 34, 10–21. [Google Scholar] [CrossRef]
- Hwang, H.; Rhim, H. Acutely Elevated O-GlcNAcylation Suppresses Hippocampal Activity by Modulating Both Intrinsic and Synaptic Excitability Factors. Sci. Rep. 2019, 9, 7287. [Google Scholar] [CrossRef]
- Tan, J.Z.A.; Gleeson, P.A. The Role of Membrane Trafficking in the Processing of Amyloid Precursor Protein and Production of Amyloid Peptides in Alzheimer’s Disease. Biochim. Biophys. Acta Biomembr. 2019, 1861, 697–712. [Google Scholar] [CrossRef]
- Haass, C.; Kaether, C.; Thinakaran, G.; Sisodia, S. Trafficking and Proteolytic Processing of APP. Cold Spring Harb. Perspect. Med. 2012, 2, a006270. [Google Scholar] [CrossRef] [PubMed]
- Yuzwa, S.A.; Shan, X.; Jones, B.A.; Zhao, G.; Woodward, M.L.; Li, X.; Zhu, Y.; McEachern, E.J.; Silverman, M.A.; Watson, N.V.; et al. Pharmacological Inhibition of O-GlcNAcase (OGA) Prevents Cognitive Decline and Amyloid Plaque Formation in Bigenic Tau/APP Mutant Mice. Mol. Neurodegener. 2014, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Nam, D.W.; Park, S.Y.; Song, H.; Hong, H.S.; Boo, J.H.; Jung, E.S.; Kim, Y.; Baek, J.Y.; Kim, K.S.; et al. O-Linked β-N-Acetylglucosaminidase Inhibitor Attenuates β-Amyloid Plaque and Rescues Memory Impairment. Neurobiol. Aging 2013, 34, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Kwon, O.-H.; Chung, S. O-GlcNAcylation of Amyloid-β Precursor Protein at Threonine 576 Residue Regulates Trafficking and Processing. Biochem. Biophys. Res. Commun. 2017, 490, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Park, Y.; Oh, H.G.; Kim, T.-W.; Yang, H.O.; Park, M.K.; Chung, S. O-GlcNAcylation Promotes Non-Amyloidogenic Processing of Amyloid-β Protein Precursor via Inhibition of Endocytosis from the Plasma Membrane. J. Alzheimers Dis. 2015, 44, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Perdivara, I.; Petrovich, R.; Alliquant, B.; Deterding, L.J.; Tomer, K.B.; Przybylski, M. Elucidation of O-Glycosylation Structures of the ß-Amyloid Precursor Protein by Liquid Chromatography—Mass Spectrometry Using Electron Transfer Dissociation and Collision Induced Dissociation. J. Proteome Res. 2009, 8, 631–642. [Google Scholar] [CrossRef]
- Halim, A.; Brinkmalm, G.; Rüetschi, U.; Westman-Brinkmalm, A.; Portelius, E.; Zetterberg, H.; Blennow, K.; Larson, G.; Nilsson, J. Site-Specific Characterization of Threonine, Serine, and Tyrosine Glycosylations of Amyloid Precursor Protein/Amyloid Beta-Peptides in Human Cerebrospinal Fluid. Proc. Natl. Acad. Sci. USA 2011, 108, 11848–11853. [Google Scholar] [CrossRef]
- Shi, J.; Ku, X.; Zou, X.; Hou, J.; Yan, W.; Zhang, Y. Comprehensive Analysis of O-Glycosylation of Amyloid Precursor Protein (APP) Using Targeted and Multi-Fragmentation MS Strategy. Biochim. Biophy. Acta Gen. Subj. 2021, 1865, 129954. [Google Scholar] [CrossRef]
- Vigetti, D.; Viola, M.; Karousou, E.; De Luca, G.; Passi, A. Metabolic Control of Hyaluronan Synthases. Matrix Biol. 2014, 35, 8–13. [Google Scholar] [CrossRef]
- Kobayashi, T.; Chanmee, T.; Itano, N. Hyaluronan: Metabolism and Function. Biomolecules 2020, 10, 1525. [Google Scholar] [CrossRef]
- Vigetti, D.; Deleonibus, S.; Moretto, P.; Karousou, E.; Viola, M.; Bartolini, B.; Hascall, V.C.; Tammi, M.; De Luca, G.; Passi, A. Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis. J. Biol. Chem. 2012, 287, 35544–35555. [Google Scholar] [CrossRef] [PubMed]
- Deen, A.J.; Arasu, U.T.; Pasonen-Seppänen, S.; Hassinen, A.; Takabe, P.; Wojciechowski, S.; Kärnä, R.; Rilla, K.; Kellokumpu, S.; Tammi, R.; et al. UDP-Sugar Substrates of HAS3 Regulate Its O-GlcNAcylation, Intracellular Traffic, Extracellular Shedding and Correlate with Melanoma Progression. Cell. Mol. Life Sci. 2016, 73, 3183–3204. [Google Scholar] [CrossRef] [PubMed]
- Melero-Fernandez de Mera, R.M.; Arasu, U.T.; Kärnä, R.; Oikari, S.; Rilla, K.; Vigetti, D.; Passi, A.; Heldin, P.; Tammi, M.I.; Deen, A.J. Effects of Mutations in the Post-Translational Modification Sites on the Trafficking of Hyaluronan Synthase 2 (HAS2). Matrix Biol. 2019, 80, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Jokela, T.A.; Makkonen, K.M.; Oikari, S.; Kärnä, R.; Koli, E.; Hart, G.W.; Tammi, R.H.; Carlberg, C.; Tammi, M.I. Cellular Content of UDP-N-Acetylhexosamines Controls Hyaluronan Synthase 2 Expression and Correlates with O-Linked N-Acetylglucosamine Modification of Transcription Factors YY1 and SP1. J. Biol. Chem. 2011, 286, 33632–33640. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Sato, H.; Iino, N.; Takeda, T. Molecular Mechanisms of Receptor-Mediated Endocytosis in the Renal Proximal Tubular Epithelium. J. Biomed. Biotechnol. 2010, 2010, 403272. [Google Scholar] [CrossRef] [PubMed]
- Silva-Aguiar, R.; Peruchetti, D.; Florentino, L.; Takiya, C.; Marzolo, M.-P.; Dias, W.; Pinheiro, A.; Caruso-Neves, C. Albumin Expands Albumin Reabsorption Capacity in Proximal Tubule Epithelial Cells through a Positive Feedback Loop between AKT and Megalin. Int. J. Mol. Sci. 2022, 23, 848. [Google Scholar] [CrossRef]
- Gravotta, D.; Perez Bay, A.; Jonker, C.T.H.; Zager, P.J.; Benedicto, I.; Schreiner, R.; Caceres, P.S.; Rodriguez-Boulan, E. Clathrin and Clathrin Adaptor AP-1 Control Apical Trafficking of Megalin in the Biosynthetic and Recycling Routes. Mol. Biol. Cell. 2019, 30, 1716–1728. [Google Scholar] [CrossRef]
- de Peruchetti, D.B.; Silva-Aguiar, R.P.; Siqueira, G.M.; Dias, W.B.; Caruso-Neves, C. High Glucose Reduces Megalin-Mediated Albumin Endocytosis in Renal Proximal Tubule Cells through Protein Kinase B O-GlcNAcylation. J. Biol. Chem. 2018, 293, 11388–11400. [Google Scholar] [CrossRef]
- Dobrinskikh, E.; Okamura, K.; Kopp, J.B.; Doctor, R.B.; Blaine, J. Human Podocytes Perform Polarized, Caveolae-Dependent Albumin Endocytosis. Am. J. Physiol. Renal Physiol. 2014, 306, F941–F951. [Google Scholar] [CrossRef]
- Liu, J.; Yao, J.; Zhao, Y.; Su, J.; Ye, J.; Wang, Y. Angiopoietin2-Mediated Caveolin1 Phosphorylation Regulating Transcytosis of Renal Tubular Epithelial Cell Contributes to the Occurrence of Albuminuria under High Glucose Exposure. J. Transl. Med. 2022, 20, 185. [Google Scholar] [CrossRef]
- Bache, K.G.; Brech, A.; Mehlum, A.; Stenmark, H. Hrs Regulates Multivesicular Body Formation via ESCRT Recruitment to Endosomes. J. Cell. Biol. 2003, 162, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Raiborg, C.; Stenmark, H. The ESCRT Machinery in Endosomal Sorting of Ubiquitylated Membrane Proteins. Nature 2009, 458, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Cheng, Y.; Geng, D.; Fan, Z.; Lin, B.; Zhu, Q.; Li, J.; Qin, W.; Yi, W. O-GlcNAcylation Regulates Epidermal Growth Factor Receptor Intracellular Trafficking and Signaling. Proc. Natl. Acad. Sci. USA 2022, 119, e2107453119. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wang, H.; Chai, S.; Xu, L.; Lin, B.; Yi, W.; Wu, L. O-GlcNAcylation Promotes Tumor Immune Evasion by Inhibiting PD-L1 Lysosomal Degradation. Proc. Natl. Acad. Sci. USA 2023, 120, e2216796120. [Google Scholar] [CrossRef] [PubMed]
- Eden, E.R.; Huang, F.; Sorkin, A.; Futter, C.E. The Role of EGF Receptor Ubiquitination in Regulating Its Intracellular Traffic. Traffic 2012, 13, 329–337. [Google Scholar] [CrossRef]
- Kornepati, A.V.R.; Vadlamudi, R.K.; Curiel, T.J. Programmed Death Ligand 1 Signals in Cancer Cells. Nat. Rev. Cancer 2022, 22, 174–189. [Google Scholar] [CrossRef]
- Shafaq-Zadah, M.; Dransart, E.; Johannes, L. Clathrin-Independent Endocytosis, Retrograde Trafficking, and Cell Polarity. Curr. Opin. Cell Biol. 2020, 65, 112–121. [Google Scholar] [CrossRef]
- Mathew, M.P.; Donaldson, J.G. Glycosylation and Glycan Interactions Can Serve as Extracellular Machinery Facilitating Clathrin Independent Endocytosis. Traffic 2019, 20, 295–300. [Google Scholar] [CrossRef]
- Furtak, V.; Hatcher, F.; Ochieng, J. Galectin-3 Mediates the Endocytosis of Beta-1 Integrins by Breast Carcinoma Cells. Biochem. Biophys. Res. Commun. 2001, 289, 845–850. [Google Scholar] [CrossRef]
- Mathew, M.P.; Donaldson, J.G. Distinct Cargo-Specific Response Landscapes Underpin the Complex and Nuanced Role of Galectin–Glycan Interactions in Clathrin-Independent Endocytosis. J. Biol. Chem. 2018, 293, 7222–7237. [Google Scholar] [CrossRef]
- Delacour, D.; Koch, A.; Jacob, R. The Role of Galectins in Protein Trafficking. Traffic 2009, 10, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Boucrot, E.; Ferreira, A.P.A.; Almeida-Souza, L.; Debard, S.; Vallis, Y.; Howard, G.; Bertot, L.; Sauvonnet, N.; McMahon, H.T. Endophilin Marks and Controls a Clathrin-Independent Endocytic Pathway. Nature 2015, 517, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Renard, H.F.; Simunovic, M.; Lemière, J.; Boucrot, E.; Garcia-Castillo, M.D.; Arumugam, S.; Chambon, V.; Lamaze, C.; Wunder, C.; Kenworthy, A.K.; et al. Endophilin-A2 Functions in Membrane Scission in Clathrin-Independent Endocytosis. Nature 2015, 517, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Genet, G.; Boyé, K.; Mathivet, T.; Ola, R.; Zhang, F.; Dubrac, A.; Li, J.; Genet, N.; Henrique Geraldo, L.; Benedetti, L.; et al. Endophilin-A2 Dependent VEGFR2 Endocytosis Promotes Sprouting Angiogenesis. Nat. Commun. 2019, 10, 2350. [Google Scholar] [CrossRef] [PubMed]
- Kjaerulff, O.; Brodin, L.; Jung, A. The Structure and Function of Endophilin Proteins. Cell Biochem. Biophys. 2011, 60, 137–154. [Google Scholar] [CrossRef]
- Hubert, M.; Larsson, E.; Lundmark, R. Keeping in Touch with the Membrane; Protein- and Lipid-Mediated Confinement of Caveolae to the Cell Surface. Biochem. Soc. Trans. 2020, 48, 155–163. [Google Scholar] [CrossRef]
- Fernandez-Rojo, M.A.; Ramm, G.A. Caveolin-1 Function in Liver Physiology and Disease. Trends Mol. Med. 2016, 22, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Luanpitpong, S.; Rodboon, N.; Samart, P.; Vinayanuwattikun, C.; Klamkhlai, S.; Chanvorachote, P.; Rojanasakul, Y.; Issaragrisil, S. A Novel TRPM7/O-GlcNAc Axis Mediates Tumour Cell Motility and Metastasis by Stabilising c-Myc and Caveolin-1 in Lung Carcinoma. Br. J. Cancer 2020, 123, 1289–1301. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Y.; Zhang, C.; Chen, X.; Huang, H.; Li, W.; Zhang, J.; Liu, Y. Upregulation of OGT by Caveolin-1 Promotes Hepatocellular Carcinoma Cell Migration and Invasion. Cell Biol. Int. 2021, 45, 2251–2263. [Google Scholar] [CrossRef]
- Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.M.; Molaei, F.; Alahari, S.K. Exosomes: Composition, Biogenesis, and Mechanisms in Cancer Metastasis and Drug Resistance. Mol. Cancer 2019, 18, 75. [Google Scholar] [CrossRef]
- van Niel, G.; Carter, D.R.F.; Clayton, A.; Lambert, D.W.; Raposo, G.; Vader, P. Challenges and Directions in Studying Cell-Cell Communication by Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2022, 23, 369–382. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Fan, B.; Xu, W.; Zhang, X. Extracellular Vesicles in Normal Pregnancy and Pregnancy-Related Diseases. J. Cell. Mol. Med. 2020, 24, 4377–4388. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Ormazabal, V.; Lappas, M.; McIntyre, H.D.; Salomon, C. Extracellular Vesicles and Their Potential Role Inducing Changes in Maternal Insulin Sensitivity during Gestational Diabetes Mellitus. Am. J. Reprod. Immunol. 2021, 85, e13361. [Google Scholar] [CrossRef] [PubMed]
- Zierden, H.C.; Marx-Rattner, R.; Rock, K.D.; Montgomery, K.R.; Anastasiadis, P.; Folts, L.; Bale, T.L. Extracellular Vesicles Are Dynamic Regulators of Maternal Glucose Homeostasis during Pregnancy. Sci. Rep. 2023, 13, 4568. [Google Scholar] [CrossRef]
- Kucharzewska, P.; Belting, M. Emerging Roles of Extracellular Vesicles in the Adaptive Response of Tumour Cells to Microenvironmental Stress. J. Extracell. Vesicles 2013, 2, 20304. [Google Scholar] [CrossRef]
- Chaiyawat, P.; Weeraphan, C.; Netsirisawan, P.; Chokchaichamnankit, D.; Srisomsap, C.; Svasti, J.; Champattanachai, V. Elevated O-GlcNAcylation of Extracellular Vesicle Proteins Derived from Metastatic Colorectal Cancer Cells. Cancer Genom. Proteom. 2016, 13, 387–398. [Google Scholar]
- Rilla, K.; Pasonen-Seppänen, S.; Deen, A.J.; Koistinen, V.V.T.; Wojciechowski, S.; Oikari, S.; Kärnä, R.; Bart, G.; Törrönen, K.; Tammi, R.H.; et al. Hyaluronan Production Enhances Shedding of Plasma Membrane-Derived Microvesicles. Exp. Cell Res. 2013, 319, 2006–2018. [Google Scholar] [CrossRef]
- Kore, R.A.; Abraham, E.C. Phosphorylation Negatively Regulates Exosome Mediated Secretion of CryAB in Glioma Cells. Biochim. Biophys. Acta 2016, 1863, 368–377. [Google Scholar] [CrossRef]
- Lee, H.; Li, C.; Zhang, Y.; Zhang, D.; Otterbein, L.E.; Jin, Y. Caveolin-1 Selectively Regulates MicroRNA Sorting into Microvesicles after Noxious Stimuli. J. Exp. Med. 2019, 216, 2202–2220. [Google Scholar] [CrossRef]
- Kádková, A.; Radecke, J.; Sørensen, J.B. The SNAP-25 Protein Family. Neuroscience 2019, 420, 50–71. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, D.; Jin, F.; Bian, Z.; Li, L.; Liang, H.; Li, M.; Shi, L.; Pan, C.; Zhu, D.; et al. Pyruvate Kinase Type M2 Promotes Tumour Cell Exosome Release via Phosphorylating Synaptosome-Associated Protein 23. Nat. Commun. 2017, 8, 14041. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Liang, Q.; Li, L.; Hu, Z.; Wu, F.; Zhang, P.; Ma, Y.; Zhao, B.; Kovács, A.L.; Zhang, Z.; et al. O-GlcNAc-Modification of SNAP-29 Regulates Autophagosome Maturation. Nat. Cell Biol. 2014, 16, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yuan, P.; Yu, P.; Kong, Q.; Xu, Z.; Yan, X.; Shen, Y.; Yang, J.; Wan, R.; Hong, K.; et al. O-GlcNAc-Modified SNAP29 Inhibits Autophagy-Mediated Degradation via the Disturbed SNAP29-STX17-VAMP8 Complex and Exacerbates Myocardial Injury in Type I Diabetic Rats. Int. J. Mol. Med. 2018, 42, 3278–3290. [Google Scholar] [CrossRef] [PubMed]
- Dodson, M.; Liu, P.; Jiang, T.; Ambrose, A.J.; Luo, G.; Rojo de la Vega, M.; Cholanians, A.B.; Wong, P.K.; Chapman, E.; Zhang, D.D. Increased O-GlcNAcylation of SNAP29 Drives Arsenic-Induced Autophagic Dysfunction. Mol. Cell. Biol. 2018, 38, e00595-17. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y. Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond. Trends Biochem. Sci. 2020, 45, 1065–1079. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, X.; Nix, D.B.; Katoh, T.; Aoki, K.; Tiemeyer, M.; Wang, Y. Regulation of Protein Glycosylation and Sorting by the Golgi Matrix Proteins GRASP55/65. Nat. Commun. 2013, 4, 1659. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Noh, S.H.; Piao, H.; Kim, D.H.; Kim, K.; Cha, J.S.; Chung, W.Y.; Cho, H.-S.; Kim, J.Y.; Lee, M.G. Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR. Traffic 2016, 17, 733–753. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Lak, B.; Li, J.; Jokitalo, E.; Wang, Y. GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion. Dev. Cell 2018, 45, 245–261.e6. [Google Scholar] [CrossRef]
- Ferrer, C.M.; Lynch, T.P.; Sodi, V.L.; Falcone, J.N.; Schwab, L.P.; Peacock, D.L.; Vocadlo, D.J.; Seagroves, T.N.; Reginato, M.J. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell 2014, 54, 820–831. [Google Scholar] [CrossRef]
- Liu, Y.; Nelson, Z.M.; Reda, A.; Fehl, C. Spatiotemporal Proximity Labeling Tools to Track GlcNAc Sugar-Modified Functional Protein Hubs during Cellular Signaling. ACS Chem. Biol. 2022, 17, 2153–2164. [Google Scholar] [CrossRef]
- Yang, X.; Ongusaha, P.P.; Miles, P.D.; Havstad, J.C.; Zhang, F.; So, W.V.; Kudlow, J.E.; Michell, R.H.; Olefsky, J.M.; Field, S.J.; et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008, 451, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cervera, Y.; Dehennaut, V.; Aquino Gil, M.; Guedri, K.; Solórzano Mata, C.J.; Olivier-Van Stichelen, S.; Michalski, J.C.; Foulquier, F.; Lefebvre, T. Insulin signaling controls the expression of O-GlcNAc transferase and its interaction with lipid microdomains. FASEB J. 2013, 27, 3478–3486. [Google Scholar] [CrossRef] [PubMed]
- Groves, J.A.; Maduka, A.O.; O’Meally, R.N.; Cole, R.N.; Zachara, N.E. Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress. J. Biol. Chem. 2017, 292, 6493–6511. [Google Scholar] [CrossRef] [PubMed]
- Stephen, H.M.; Praissman, J.L.; Wells, L. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. J. Proteome Res. 2021, 20, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Fan, Z.; Tian, Y.; Yang, W.; Zhou, Y.; Zhu, Q.; Zhang, W.; Qin, W.; Yi, W. Spatiotemporal Activation of Protein O-GlcNAcylation in Living Cells. J. Am. Chem. Soc. 2022, 144, 4289–4293. [Google Scholar] [CrossRef]
- Ma, J.; Hou, C.; Li, Y.; Chen, S.; Wu, C. OGT Protein Interaction Network (OGT-PIN): A Curated Database of Experimentally Identified Interaction Proteins of OGT. Int. J. Mol. Sci. 2021, 22, 9620. [Google Scholar] [CrossRef]
UniProt Accession | UniProt Name | Short Name | Name | O-GlcNAcylated Residues |
---|---|---|---|---|
COPI | ||||
P53621 | COPA_HUMAN | COPA | Coatomer subunit alpha | S489, T821 |
P35606 | COPB2_HUMAN | COPB2 | Coatomer subunit beta’ | S423, S432 |
P48444 | COPD_HUMAN | COPD | Coatomer subunit delta | S192, T203, T207, S223, S383, S385 |
Q9Y678 | COPG1_HUMAN | COPG1 | Coatomer subunit gamma-1 | S134, T135, S186, S187, S356, S366, S369, S372, S552, S554, S697, T705, T708, T718, T723, S725 |
COPII assembly | ||||
O15027 | SC16A_HUMAN | Sec16A | Protein transport protein Sec16A | S589, T823, S836, S838, S844, T1001, S1022, S1244, S1245, T1980, S2159 |
Q9Y6Y8 | S23IP_HUMAN | Sec23IP | SEC23-interacting protein | S32, T41, S44, S49, S87, S88, S90, T103, T106, S107, S111, T118, T123, T124, S126, S130, S134, S136, S138, T186, S190, S486 |
Q92734 | TFG_HUMAN | TFG | TRK-fused gene protein | S183, S193, T330, T333, S334, T337, S369, S376, T393 |
COPII, inner coat | ||||
Q15436 | SC23A_HUMAN | Sec23A | Protein transport protein Sec23A | S97, S102, S115, S116, T137, T168, S184, S226, T241, T355, T367, S376, T379, S380, T508, S516, S571, T573, S575, S587, S588, S596, S600, S601, S627, S629, S639, S640, S641, S748 |
O95486 | SC24A_HUMAN | Sec24A | Protein transport protein Sec24A | S156, S157, T160, S162, T165, T168, T169, S175, S176, S314, S961 |
O95487 | SC24B_HUMAN | Sec24B | Protein transport protein Sec24B | S139, S142, S147, S149, S197, T212, S226, S228, T232, S235, S238, S245, S253, S255, S258, T259, T261, S269, T270, T279, S281, T292, S296, S298, S310, S311, S315, T316, S319, T327, T329, T332, T341, S342, T344, S347, S660 |
P53992 | SC24C_HUMAN | Sec24C | Protein transport protein Sec24C | S60, S65, S66, S72, T73, S96, S97, S168, S170, S181, S191, T201, S205, T612, T615, T617, S773, T775, T776 |
O94855 | SC24D_HUMAN | Sec24D | Protein transport protein Sec24D | T9, S13, T35, S418, S421, T427 |
COPII, outer coat | ||||
P55735 | SEC13_HUMAN | Sec13 | Protein SEC13 homolog | S309, T315 |
O94979 | SC31A_HUMAN | Sec31A | Protein transport protein Sec31A | S269, S278, S451, S527, S532, T658, S666, T674, S762, T774, T903, S904, T910, S914, S915, S917, S938, S948, S963, S964, S965, S1041, S1047, S1048, S1050, S1051, T1073, T1187, T1190, T1195, S1196, S1199, T1201, S1202 |
Q5JRA6 | TGO1_HUMAN | TANGO1 | Transport and Golgi organization protein 1 homolog | S579, S591, T864, S865, T1093, S1099 |
ER-Golgi SNARE | ||||
O75396 | SC22B_HUMAN | SEC22B | Vesicle-trafficking protein SEC22b | S164 |
Arf-GAP | ||||
Q8N6T3 | ARFG1_HUMAN | ARFGAP1 | ADP-ribosylation factor GTPase-activating protein 1 | T141, S144 |
Q9EPJ9 | ARFG1_MOUSE | ARFGAP1 | ADP-ribosylation factor GTPase-activating protein 1 | T404 |
Q99K28 | ARFG2_MOUSE | ARFGAP2 | ADP-ribosylation factor GTPase-activating protein 2 | T391, S393, S394 |
Q9NP61 | ARFG3_HUMAN | ARFGAP3 | ADP-ribosylation factor GTPase-activating protein 3 | S266, S509 |
Q15027 | ACAP1_HUMAN | ACAP1 | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 1 | S258, T306, S345 |
Q9ULH1 | ASAP1_HUMAN | ASAP1 | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 | T808 |
Q9QWY8 | ASAP1_MOUSE | ASAP1 | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 | T823 |
Arf-GEF | ||||
Q92538 | GBF1_HUMAN | GBF1 | Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 | S283, S1784, S1856 |
UniProt Accession | UniProt Name | Short Name | Name | O-GlcNAcylated Residues |
---|---|---|---|---|
Clathrin chains | ||||
Q00610 | CLH1_HUMAN | CHC1 | Clathrin heavy chain 1 | S97, T1180 |
P53675 | CLH2_HUMAN | CHC2 | Clathrin heavy chain 2 | not assigned |
P09496 | CLCA_HUMAN | LCA | Clathrin light chain A | not assigned |
P09497 | CLCB_HUMAN | LCB | Clathrin light chain B | S217 or S221 |
AP complex | ||||
Q9BXS5 | AP1M1_HUMAN | AP1M1 | AP-1 complex subunit mu-1 | S28 |
O95782 | AP2A1_HUMAN | AP2A1 | AP-2 complex subunit alpha-1 | T189, S611 |
P17427 | AP2A2_MOUSE | AP2A2 | AP-2 complex subunit alpha-2 | T126 |
P63010 | AP2B1_HUMAN | AP2B1 | AP-2 complex subunit beta | S671, S672 |
Q9DBG3 | AP2B1_MOUSE | AP2B1 | AP-2 complex subunit beta | S79, S90 |
O00203 | AP3B1_HUMAN | AP3B1 | AP-3 complex subunit beta-1 | S671 |
Endocytic accessory proteins | ||||
Q9Y6I3 | EPN1_HUMAN | EPN1_HUMAN | Epsin-1 | T517, S536 |
Q14677 | EPN4_HUMAN | EPN4, CLINT1 | Epsin-4, Clathrin interactor 1 | S311, S312, T315, S407, S409, S420, S624 |
Q99KN9 | EPN4_MOUSE | EPN4, CLINT1 | Epsin-4, Clathrin interactor 1 | S90, T273, S320, S327, S328, S630 |
Q13492 | PICAL_HUMAN | CALM, PICALM | Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia) | S248, T352, S353, T355, T356, S359, S362, T363, S364, T370, S409, S443, S452, S453, S497, T498, T517, S565, T573, S576, T585, T586 |
Q7M6Y3 | PICAL_MOUSE | CALM, PICALM | Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia) | T301, T355, T356, S359, S362, T363, S364, T370, S453, T460, S481 |
Q2M2I8 | AAK1L_HUMAN | AAK1 | AP2-associated protein kinase 1 | T354, T359, T360, S363, T441, T445, S447, T448, T507, S519 |
Q3UHJ0 | AAK1_MOUSE | AAK1 | AP2-associated protein kinase 1 | T359, T360, S406, S414, S416, T445, T448, S572, T578, S648, T740, T746, T747, S749, S751, T846 |
O60641 | AP180_HUMAN | AP180 | Clathrin coat assembly protein AP180 (SNAP91) | T309, T310, T312, S341, T626, T627, S629 |
Q61548 | AP180_MOUSE | AP180 | Clathrin coat assembly protein AP180 (SNAP91) | S303, S305, S306, T309, T310, T312, T333, S621, S624, T625 |
Dynamin GTPase | ||||
Q05193 | DYN1_HUMAN | Dnm1 | Dynamin-1 | T684 |
P39053 | DYN1_MOUSE | Dnm1 | Dynamin-1 | T748, T749 |
P50570 | DYN2_HUMAN | Dnm2 | Dynamin-2 | not assigned |
Q8BZ98 | DYN3_MOUSE | Dnm3 | Dynamin-3 | T769 |
Clathrin-independent endocytosis | ||||
Q99961 | SH3G1_HUMAN | Endophilin 2 | Endophilin A2 | T278/T279, S286 |
Q62419 | SH3G1_MOUSE | Endophilin 2 | Endophilin A2 | T27, T284 |
Q99963 | SH3G3_HUMAN | Endophilin 3 | Endophilin A3 | T55 |
Q9Y371 | SHLB1_HUMAN | Endophilin B1 | Endophilin B1 (Bax-interacting factor 1, Bif-1) | not assigned |
Q9NR46 | SHLB2_HUMAN | Endophilin B2 | Endophilin B2 | not assigned |
UniProt Accession | UniProt Name | Short Name | Name | O-GlcNAcylated Residues |
---|---|---|---|---|
MVBs formation and sorting of endosomal cargo proteins into MVBs | ||||
ESCRT-0 | ||||
O14964 | HGS_HUMAN | HGS | Hepatocyte growth factor-regulated tyrosine kinase substrate | S297, S299, S300, S310, S315 |
ESCRT-I | ||||
Q8NEZ2 | VP37A_HUMAN | VPS37A | Vacuolar protein sorting-associated protein 37A | S172, S174, T178 |
ESCRT-III | ||||
Q9HD42 | CHM1A_HUMAN | CHMP1A | Charged multivesicular body protein 1a | not assigned |
O43633 | CHM2A_HUMAN | CHMP2A | Charged multivesicular body protein 2a | not assigned |
Q9UQN3 | CHM2B_HUMAN | CHMP2B | Charged multivesicular body protein 2b | S80 |
Q96CF2 | CHM4C_HUMAN | CHMP4C | Charged multivesicular body protein 4c | not assigned |
Q9NZZ3 | CHMP5_HUMAN | CHMP5 | Charged multivesicular body protein 5 | T18, T23 |
Autophagosome Maturation | ||||
Q9H8Y8 | GORS2_HUMAN | GRASP55 | Golgi reassembly-stacking protein 2 | S260, S262, S263, S269, T274, T301, S391, S409, T423, T424 |
Q99JX3 | GORS2_MOUSE | GRASP55 | Golgi reassembly-stacking protein 2 | T425, T426 |
SNARE Complex | ||||
O00161 | SNP23_HUMAN | SNAP23 | Synaptosomal-associated protein 23 | S116 |
O95721 | SNP29_HUMAN | SNAP29 | Synaptosomal-associated protein 29 | S2, S61, T130, S153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Ahmed, A.; Lemaire, Q.; Scache, J.; Mariller, C.; Lefebvre, T.; Vercoutter-Edouart, A.-S. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023, 12, 1396. https://doi.org/10.3390/cells12101396
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart A-S. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells. 2023; 12(10):1396. https://doi.org/10.3390/cells12101396
Chicago/Turabian StyleBen Ahmed, Awatef, Quentin Lemaire, Jodie Scache, Christophe Mariller, Tony Lefebvre, and Anne-Sophie Vercoutter-Edouart. 2023. "O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells" Cells 12, no. 10: 1396. https://doi.org/10.3390/cells12101396
APA StyleBen Ahmed, A., Lemaire, Q., Scache, J., Mariller, C., Lefebvre, T., & Vercoutter-Edouart, A. -S. (2023). O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells, 12(10), 1396. https://doi.org/10.3390/cells12101396