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Abstract: Reactive astrogliosis is an early event in the continuum of Alzheimer’s disease (AD).
Current advances in positron emission tomography (PET) imaging provide ways of assessing reactive
astrogliosis in the living brain. In this review, we revisit clinical PET imaging and in vitro findings
using the multi-tracer approach, and point out that reactive astrogliosis precedes the deposition of
Aβ plaques, tau pathology, and neurodegeneration in AD. Furthermore, considering the current
view of reactive astrogliosis heterogeneity—more than one subtype of astrocyte involved—in AD,
we discuss how astrocytic body fluid biomarkers might fit into trajectories different from that of
astrocytic PET imaging. Future research focusing on the development of innovative astrocytic PET
radiotracers and fluid biomarkers may provide further insights into the heterogeneity of reactive
astrogliosis and improve the detection of AD in its early stages.

Keywords: reactive astrogliosis; positron emission tomography; Alzheimer’s disease; L-deprenyl;
BU99008; SMBT-1; GFAP

1. Introduction

Based on the latest consensus, the definition of Alzheimer’s disease (AD) comprises
clinical phenotypes and a biological construct composed of amyloid-β (Aβ) deposition,
pathological tau, and neurodegeneration—the AT(N) research framework [1,2]. In an
attempt to improve AD detection, the spotlight has now turned to the early stages of the
disease (i.e., prior to the deposition of Aβ plaques) [3]. In this regard, the supplementation
of a new category of the AT(N) framework has been suggested—the ATX(N)—in which “X”
represents potential innovative candidate biomarkers (body fluids or imaging) that could
reveal early pathophysiological changes in the AD continuum [3]. A promising target for
the early detection of AD, which for many years has been neglected due to neurocentric
approaches, is the astrocyte [4]. Astrocytes are the most abundant glial cells in the human
brain, playing crucial roles in brain energetic metabolism, neurotransmitter recycling and
release, and redox balance, among other functions (reviewed in Semyanov and Verkhratsky,
2021 [5]). In response to pathological insults, astrocytes become reactive, a phenomenon
termed reactive astrogliosis [6]. According to a recent consensus, reactive astrogliosis is
defined as “the process whereby, in response to pathology, astrocytes engage in molecularly defined
programs involving changes in transcriptional regulation, as well as biochemical, morphological,
metabolic, and physiological remodeling, which ultimately result in gain of new function(s) or loss
or upregulation of homeostatic ones.” [6].
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Biological changes in AD, including reactive astrogliosis, can be detected in vivo
by measuring fluid biomarkers from the cerebrospinal fluid (CSF) and plasma, or using
brain imaging tools. Among the imaging modalities, only positron emission tomography
(PET) allows for a spatiotemporal investigation of pathophysiological processes in vivo [7].
11C-Deuterium-L-deprenyl (11C-DED) (often synthesized without deuterium as
11C-L-deprenyl) is a well-established PET radiotracer used in AD research that targets
monoamine oxidase B (MAO-B) for the imaging of astrocytes [4,8–21]. Recently, 18F-SMBT-1
and 11C-BU99008, which bind to MAO-B and I2-imidazoline binding site (I2BS), respectively,
have been developed as alternative tools to assess reactive astrogliosis in AD brains [9,22,23]
(Table 1). The characteristics of each of these three PET radiotracers are discussed below.

Table 1. PET radiotracers for imaging reactive astrocytes in Alzheimer’s disease.

PET Radiotracer Target * Ligand Characteristics

11C-Deuterium-L-deprenyl
(11C-DED)

MAO-B
The deuterium-substituted form of L-deprenyl, radiolabeled with carbon-11,
provides high selectivity and sensitivity for imaging MAO-B with a lower
trapping rate, mitigating its irreversible binding nature [24].

18F-SMBT-1 MAO-B A highly selective MAO-B tracer, with low nonspecific binding, high entry into
the brain, and reversible kinetics [25,26].

11C-BU99008 I2BS Reversible binding properties, with good entry into the brain and highly
specific and selective binding to I2BS [27].

* MAO-B and I2BS are overexpressed in the outer mitochondrial membrane of reactive astrocytes.

To define how reactive astrogliosis fits in the ATX(N) framework, it is crucial to inves-
tigate the relationship between this phenomenon and Aβ deposition, tau pathology, and
neurodegeneration in the AD continuum. In this context, the concept of multi-tracer studies
has been designed to explore the associations between different AD pathophysiological
hallmarks. In vitro autoradiography studies in postmortem human brain are a valuable
complement since they provide a platform to validate the multi-tracer approach, and to
investigate in detail the binding properties and associations among different PET radio-
tracers. In this review, we discuss how the translational multi-tracer approach, in vivo and
in vitro, with the different astrocytic PET radiotracers DED, SMBT-1, and BU99008, provide
important new information to understand the complex signature of reactive astrogliosis,
including heterogeneity and possible associations with AT(N)-biomarkers in AD. Our
main goal is to highlight the significance of reactive astrogliosis as a target for the early,
presymptomatic detection of AD and its progression. Furthermore, we provide initial hints
on how molecular/functional changes assessed by astrocytic PET tracers could have a
trajectory different from fluid glial fibrillary acidic protein (GFAP) levels in the early stages
of AD.

2. Reactive Astrogliosis, We Can See You!

For decades, an increased level of GFAP, evaluated by immunohistochemistry, has
been pointed out as a universal marker of reactive astrogliosis [28]. However, recent tran-
scriptomic analyses indicate that sole reliance on GFAP is unlikely to define the broad
range of reactive astrogliosis in AD [29]. Therefore, different tools to detect reactive as-
trogliosis are required to depict both the heterogeneity of astrocytes and their role in AD
brains [29,30]. A wide range of proteins is differentially expressed in reactive astrogliosis,
including receptors, transporters, and enzymes, with great potential to become surrogate
biomarkers for developing PET radiotracers to detect heterogenous populations of astro-
cytes in the brain in vivo [20,31]. Among these, MAO-B, an enzyme present in the outer
membrane of mitochondria, was initially shown to localize in GFAP-positive astrocytes [32].
Remarkably, additional studies indicated that the overexpression of MAO-B in response to
Aβ pathology had no or limited correlation with increased GFAP levels, and instead GFAP
levels increase at later stages [33]. These observations lead to the possibility that increases in
MAO-B and GFAP potentially reflect two mechanisms of reactive astrogliosis and perhaps
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different populations of astrocytes. Thus, targeting MAO-B and GFAP overexpression may
offer the possibility of exploring the heterogeneity of reactive astrogliosis in AD. These
findings fostered the development of 11C-DED, which is the gold-standard PET radiotracer
for imaging reactive astrogliosis in the living brain. Clinical PET imaging with 11C-DED
showed reactive astrogliosis in different brain diseases such as epilepsy, Creutzfeldt–Jakob
disease, amyotrophic lateral sclerosis, and AD [9,34–36]. In the context of AD, 11C-DED
PET has provided insightful information on early pathological changes in the continuum
of the disease, which we describe in detail in the next section.

Recently, 18F-SMBT-1, a fluorine-18 radiolabeled PET radiotracer selective for MAO-B,
was developed [37]. The human evaluation of 18F-SMBT-1 highlighted its reversible bind-
ing properties with high blood–brain barrier (BBB) permeability and low non-specific
binding. In addition, 18F-SMBT-1 binding was most pronounced in basal ganglia and
cortical regions, with lower detection in the cerebellum and white matter, in accordance
with the regional expression of MAO-B in the human brain. Therefore, 18F-SMBT-1 stands
out as an additional tool for detecting reactive astrogliosis in AD brains [25]. The PET
radiotracer 11C-BU99008 was developed to be a non-MAO-B selective tool for imaging
reactive astrogliosis [23,27]. This PET radiotracer binds with high affinity to I2BS in the
outer mitochondrial membrane [38]. I2BS is expressed in both neurons and astrocytes [39],
but similar to MAO-B, the overexpression of I2BS is mostly observed in astrocytes (as-
sessed by co-localization with GFAP immunoreactivity) and associated with pathology [40].
11C-BU99008 is characterized by its good BBB penetration, reversible kinetics, great speci-
ficity and selectivity, and regional distribution, according to the expression of I2BS in the
human brain [27,38].

Recently, we have provided a very detailed comparison between DED, BU99008,
and SMBT-1 binding in vitro using postmortem AD and cognitively normal (CN) brains.
Initially, we demonstrated that 3H-DED and 3H-BU99008 have similar regional distribution
with higher binding in the hippocampus and frontal cortex of AD brains compared to
CN ones [41]. However, 3H-DED and 3H-BU99008 differ in their number of binding
sites in CN and AD brains [41]. In contrast to 3H-DED, which detects a single binding
site, 3H-BU99008 has multiple binding sites with a wide range of affinities [41]. In the
same context, SMBT-1 appears to have a binding pattern similar to 3H-DED; however, it
also displaces 3H-BU99008 at multiple binding sites [21]. This could be explained by the
presence of I2BS in the substrate entrance channel of MAO-B [42], whereby the binding
of SMBT-1 to MAO-B potentially causes steric hinderance affecting the binding of 3H-
BU99008 to the I2BS binding site. Therefore, even though PET radiotracers such as BU99008
are developed to selectively target I2BS, it might not be possible to discriminate between
changes in MAO-B and I2BS in AD brains.

3. Amyloid-β Pathology—A Consequence or Trigger of Reactive Astrogliosis?

The Aβ peptide (ranging from 36 to 43 amino acids) is a product of the consecutive
cleavage of a transmembrane protein termed amyloid precursor protein. Once released
in the form of monomers, Aβ tends to aggregate into soluble oligomers, protofibrils, and
fibrils and then forms deposits of insoluble Aβ plaques [43]. The deposition of insoluble
Aβ can be detected with 11C-Pittsburgh compound B (PiB) [44], 18F-NAV4694 [45], and
the FDA-approved 18F-Florbetaben [46], 18F-Florbetapir [47], and 18F-Flutemetamol [48].
Clinical multi-tracer PET studies using amyloid- and astrocyte-PET radiotracers have es-
tablished higher 11C-DED binding in the frontal and parietal cortices—regions enriched
in astrocytes—of mildly cognitive-impaired (MCI, also referred to as prodromal AD [2])
and sporadic AD patients (sAD) compared to cognitive normal (CN) individuals [8,9,12].
Interestingly, increased 11C-DED binding was more evident in MCI patients who were
11C-PiB-positive (i.e., have a considerable amount of Aβ plaque deposits or are amyloid
positive, A+), indicating that reactive astrogliosis is associated with Aβ pathology in MCI
A+ individuals (prodromal AD) [9]. These findings were crucial to confirm previous im-
munohistochemical reports indicating a link between reactive astrogliosis and amyloidosis
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in AD [28]. However, these initial studies could not clarify whether reactive astrogliosis is a
response to, or an instigator of, Aβ pathology in the early stages of AD. In this context, clin-
ical multi-PET tracer studies in autosomal dominant AD (ADAD) cases offer the possibility
of investigating whether reactive astrogliosis precedes Aβ deposition. The carriers of these
genetic mutations develop AD symptoms onset at a mutation-specific age, allowing the
preclinical trajectories of different biomarkers to be tracked at an individual level [12,14].
Remarkably, increased 11C-DED binding was observed in the presymptomatic stages of
ADAD approximately 10 years before the expected onset of clinical symptoms, followed
by a decline across the disease continuum (Figure 1) [12]. Conversely, Aβ deposition
progressively increased from early to advanced stages of the disease, until it reached a
plateau [12].
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Figure 1. 11C-L-Deprenyl binding in a presymptomatic autosomal dominant Alzheimer’s disease
(ADAD) carrier. In ADAD mutation carriers, increased 11C-L-Deprenyl binding compared to mutation
non-carriers is evident approximately 10 years before the presymptomatic stages. Figure credit:
Nordberg Translational Imaging Lab, Karolinska Institutet.

The relationship between Aβ pathology and reactive astrogliosis has also been assessed
with 18F-SMBT-1 and 11C-BU99008. Cross-sectional studies using 18F-SMBT-1 demonstrated
higher binding in multiple regions in AD brains compared to CN brains, including in the
posterior cingulate gyrus, supramarginal gyrus, and lateral occipital lobe, and, to a lesser
extent, in the hippocampus and globus pallidus [22]. In a multi-tracer study comparing CN,
MCI, and sAD cases, reactive astrogliosis, assessed by 11C-BU99008 binding, was evident in
frontal, parietal, and occipital areas of Aβ-positive patients, where it positively correlated
with Aβ plaque load measured by 18F-Florbetaben PET [49]. Interestingly, 11C-BU99008
binding was more pronounced in the cingulate, frontal, and temporal cortices of MCI
compared to AD individuals [49].

As noted above, 11CL-deprenyl binding is most prominent in the early stages of
AD, prior to the deposition of Aβ plaques. Despite some limitations (including total
number of AD subjects and mixing Aβ-positive and Aβ-negative individuals), findings
on 11C-BU99008 and 18F-SMBT-1 provided initial hints that these PET-radiotracers follow
similar patterns and could serve as surrogate markers of reactive astrogliosis. We suggest
that pre-plaque soluble Aβ forms could be the main culprits that trigger reactive astrogliosis,
which, in turn, may lead to the formation and spreading of Aβ in AD [50]. In a recent
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review article, we put forward a hypothesis in which we reported that the overexpression
of α7 nicotinic acetylcholine receptors in reactive astrocytes may promote the formation of
astrocytic Aβ plaques [51].

In vitro autoradiography studies using sAD and CN postmortem brain tissue support
clinical research findings, pointing towards region-specific associations between reactive
astrogliosis and Aβ pathology [10,18]. Comparative binding studies in sAD and CN
tissues found that 3H-DED had higher binding throughout the whole sAD hippocampus,
whereas 3H-PiB had low and uniform binding in this sAD brain region [10,18]. Conversely,
in the frontal cortex, 3H-PiB binding was high in all layers, while 3H-DED showed a
different pattern, with more pronounced binding in the superficial laminar sections [10,18].
Remarkably, GFAP levels determined by immunohistochemistry did not follow the same
pattern as those of 3H-DED binding in cortical regions. Instead, GFAP-positive cells
were found uniformly distributed across the superficial cortical layers as well as in the
cortical layer bordering the white matter and were concentrated around Aβ plaques in
deeper layers [10]. The differences in the overexpression of GFAP and MAO-B (the latter
demonstrated by 3H-DED) observed in these results, together with studies in mouse models
of disease [33], led to the hypothesis that increases in GFAP or MAO-B in AD reflect distinct
subtypes of astrocytes displaying different responses to AD pathology, in a region-specific
manner [10,13].

4. Pathological Tau and Reactive Astrogliosis

Tau is the main microtubule-associated protein in neuronal cells. The accumula-
tion of hyperphosphorylated tau leads to the formation of neurofibrillary tangles, a key
pathological hallmark of AD [52]. PET radiotracers that image tau pathology can be di-
vided into first (18F-AV-1451 (Flortaucipir), 18F-THK5317, 18F-THK5117, and 11C-PBB3) [53]
and second generation (18F-MK6240, 18F-PI2620, 18F-RO948, 18F-PM-PBB3, 18F-APN-1607,
18F-GTP1, and 18F-JNJ31) [54]. To date, only 18F-Flortaucipir has been FDA approved to
target pathological tau for clinical diagnosis [55], but other tau tracers have been used
in clinical research settings (following the required ethical approval). To our knowledge,
only one clinical in vivo PET study has been conducted assessing astrocytic and tau PET
radiotracers in the same set of individuals [22]. The authors demonstrated that 18F-SMBT-
1 binding positively correlates with 18F-MK6240 in the temporoparietal cortex, and the
supramarginal and posterior cingulate of patients across the AD continuum. This points
towards a brain-region-specific association between reactive astrogliosis and tau pathology,
although the degree of correlation is less than that of 18F-SMBT-1 and amyloid-PET assessed
by 18F-NAV4694 in the same brain regions.

When our group assessed 3H-THK5117 and 3H-L-deprenyl binding in postmortem AD
brains at advanced disease stages, we observed similar laminar distribution patterns [15].
Both 3H-THK5117 and 3H-L-deprenyl showed high binding in the superficial and deep
layers of temporal cortices and diffuse binding throughout the middle frontal gyrus [15].
These observations are comparable with the immunostaining pattern of the GFAP antibody
and AT8 antibody, which is specific for the phosphorylated form of tau [15].

In ADAD carriers of the ∆E9 mutation in the presenilin 1 gene (PSEN1∆E9) or the
Arctic mutation in the amyloid-beta precursor protein (APParc), 3H-THK5117 and 3H-DED
displayed a similar laminar distribution (bilayer pattern) throughout the cortex, which
was corroborated by GFAP and AT8 immunostaining [19]. Interestingly, a significant
positive correlation between 3H-DED and 3H-THK5117 binding could only be observed
in APParc brains, indicating there might be a closer relationship between tau and reactive
astrocytosis in APParc brains than in PSEN1∆E9 brains [19]. The APParc mutation is mostly
characterized by fewer dense-core Aβ plaque deposits and more soluble Aβ forms than the
PSEN1DE9 mutation. In this context, the stronger relationship between reactive astrogliosis
and tau deposits in the APParc brains, compared to sAD and PSEN1∆E9 brains [19], could
be accounted for by higher exposure to soluble Aβ oligomers—the suggested top culprits
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of toxicity in AD pathophysiology—and by the fact that Aβ plaque pathology is not a
requirement to trigger tau pathology and reactive astrogliosis.

5. Neurodegeneration and Reactive Astrogliosis: Two Separate Phenomena?

The fluorine-18 radiolabeled analogue of glucose—18F-2-fluoro-2-deoxy-d-glucose
(18F-FDG)—PET radiotracer is a gold-standard biomarker to assess neurodegeneration
in vivo. 18F-FDG PET measures the rate of transport and trapping of the tracer, which
has traditionally been attributed to neuronal glucose uptake, thus reflecting neuronal
activity [56]. The first multi-tracer study that explored a possible link between neurode-
generation (evaluated with 18F-FDG) and reactive astrogliosis (assessed with 11C-DED)
demonstrated no relationship between these two phenomena in either MCI or sAD in-
dividuals [9]. In a cross-sectional assessment of ADAD (presymptomatic and symp-
tomatic), MCI, and sAD subjects, 18F-FDG hypometabolism was mostly evident in the
symptomatic/later stages, opposite to the trend of 11C-DED and 11C-PiB binding (higher
since earlier stages) [12]. A subsequent study using a longitudinal approach demon-
strated that 11C-DED binding had significant positive associations with 18F-FDG uptake
in presymptomatic ADAD individuals across all brain regions of interest except in the
hippocampus and frontal cortex—regions commonly affected by Aβ pathology—where
no significant correlations were found [16]. These findings corroborate the view of astro-
cytes being contributors to the 18F-FDG signal. In regions less affected by AD pathology,
astrocytes may act in a compensatory way to maintain brain energetic homeostasis [57,58].

An exploratory analysis of 11C-BU99008 in CN, MCI, and AD individuals demon-
strated, on a voxel-wise basis, a correlation between reduced 18F-FDG uptake and reduced
11C-BU99008 binding in the parietal, frontal, and temporal lobes of 18F-Florbetaben-positive
subjects [49]. These findings were not statistically confirmed with a regional-based cor-
relation analysis, thus blurring any conclusions regarding associations between reactive
astrogliosis, assessed by 11C-BU99008, and neurodegeneration [49]. Notably, no studies
correlating SMBT-1 with neurodegeneration have been conducted so far.

Since neuronal and astrocytic 18F-FDG uptake cannot be separately measured [59],
alternative tools are required to investigate neurodegeneration in vivo. Moreover, FDG-
PET is unlikely to reflect changes at the synaptic level (density, function, and structure).
The recently developed novel PET radiotracer UCB-J, which targets the synaptic vesicle
2A (SV2A) as an index of synaptic density [60], might help define the potential link be-
tween reactive astrogliosis and neurodegeneration in AD [61]. Ongoing studies from our
group have also shown that 3H-UCB-J can target SV2A with high specificity in AD and
CN brains [62]. Alternatively, the relationship between reactive astrogliosis and neurode-
generation can be explored using other imaging modalities such as magnetic resonance
imaging (MRI). We have demonstrated a positive correlation between cortical microstruc-
ture and 11C-DED PET binding in ADAD carriers [17], indicating that microstructural MRI
changes may reflect reactive astrogliosis in the brain of these individuals. Furthermore,
we have also reported that in the parahippocampus of MCI Aβ+ individuals, increased
11C-DED binding correlated with grey matter (GM) density loss—a surrogate marker of
brain atrophy assessed by MRI [11]. In this context, reactive astrogliosis might play a role in
the structural brain changes in sAD. Overall, even though associations between 11C-DED
and 18F-FDG uptake could only be observed in presymptomatic ADAD individuals, one
cannot rule out that reactive astrogliosis may impair brain metabolism in the early stages
of the disease, triggering downstream signaling pathways that might be associated with
neurodegeneration in the AD dementia phase.

6. Relationship between Imaging and Fluid Astrocytic Biomarkers in AD

Apart from PET imaging, several CSF and blood biomarkers have been developed to
track reactive astrogliosis heterogeneity. A few examples are GFAP, S100 calcium-binding
protein B, aquaporin-4, and chitinase-3-like protein 1 (YKL-40) [20]. In fact, CSF levels of
YKL-40 are associated with tau-PET [63], while GFAP (mainly plasma) correlated better
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with Aβ-PET [63–65]. This could indicate that (1) increases in CSF YKL-40 and plasma
GFAP reflect distinct populations of astrocytes with unique responses to different AD-
related pathologies, and (2) plasma GFAP could be a marker of Aβ pathology. In a cohort
of Karolinska memory clinic patients, plasma GFAP levels correlated significantly with
PET-detected amyloid deposits, but not with measure of pTau in CSF, whereas plasma
pTau isoforms were associated with both measures of amyloid and tau pathology [66].
Nevertheless, the biological interpretation of these findings is still blurred and leaves a
few questions. For instance, do higher GFAP levels in plasma reflect astrocytic responses
originating in the central nervous system only? Or does peripheral GFAP also contribute
to these changes (do chondrocytes, in a subpopulation of quiescent liver stellate cells,
myoepithelial cells, and fibroblasts also express GFAP? [67])? Finally, most importantly,
does plasma/CSF GFAP provide the same information as 11C-DED PET?

When tracking reactive astrogliosis in ADAD and sAD individuals compared to
healthy controls, we have observed a negative correlation between plasma GFAP levels and
11C-L-deprenyl PET binding in vivo [68]. Furthermore, in a recent cross-sectional study
on ADAD mutation carriers, plasma GFAP elevations emerge a decade before symptoms
onset, prior to neurodegeneration, but after Aβ deposition commences [69,70]. In keeping
with this, plasma GFAP seems to follow a different trajectory to 11C-DED PET, which
increases before the appearance of Aβ plaques. Hence, it might be possible that astrocytic
PET imaging and plasma GFAP concentrations reflect independent aspects of reactive
astrogliosis in AD, depicting different stages or subtypes of astrocytes. We hypothesize
that 11C-DED PET may illustrate a scenario in which ‘Pre-plaque stage’ soluble Aβ species
trigger early molecular/functional changes in reactive astrocytes (characterized by MAO-
B overexpression) and, with disease progression, Aβ aggregates into insoluble plaques
(Aβ-plaque stage) and reactive astrocytes remodel their cytoskeleton (i.e., increase GFAP
expression) and become hypertrophic. Why GFAP “leaks” into the blood is a question
which needs further investigations.

7. Concluding Remarks

PET imaging plays a fundamental role not only in defining the biological construct of
AD, but also in exploring the interplay between pathological hallmarks in AD progression.
In this review, we revisited clinical biomarker findings and in vitro autoradiography studies
providing spatiotemporal associations between reactive astrogliosis and Aβ, tau pathology,
and neurodegeneration in order to evaluate the possibility that astrocytes contribute to the
X in the ATX(N) research framework.

The spatiotemporal associations between reactive astrogliosis and other AD biomark-
ers seem to be complex. To shed light on this intricate relationship, we recently proposed a
‘Two wave model of reactive astrogliosis’ in the AD continuum, based on our multi-tracer
clinical/translational studies ranging from in vitro to in vivo PET brain imaging [4]. In
the early stages of AD, reactive astrogliosis is characterized by the increased expression of
MAO-B (first wave of astrogliosis), which has a positive correlation with early Aβ deposi-
tion. The interplay between astrocytes and Aβ pathology at this stage is multifaceted. Since
reactive astrogliosis was shown to precede significant build-up of Aβ plaque [12,23], we
suggest that astrocytes could promote plaque formation, and/or that pre-plaque soluble
Aβ (not detected with the current PET radiotracers) may trigger astrocyte dysfunction, for
example, the abnormal production of reactive oxygen species, abnormal glutamate release,
and hyperactivation of extrasynaptic NMDA receptors [50]. Across the continuum of the
disease, as the prodromal stage progresses, in brain regions of advanced Aβ pathology (i.e.,
high amyloid-PET), astrocytes may become dystrophic, marking the end of the first wave
of astrogliosis (i.e., 11C-DED PET labeling declines) and the beginning of tau pathology
detection (Figure 2).
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illustrates increased astrocyte PET signal in preclinical AD assessed by 11C-DED (or the version
synthesized without deuterium, L-Deprenyl), a selective, irreversible monoamine oxidase type B,
MAO-B, inhibitor. This is the first sign of reactive astrogliosis (i.e., the first wave). Following
Aβ plaque deposition (orange curve), the astrocyte PET curve declines. As a consequence of Aβ

deposition, GFAP levels increase in plasma (teal curve); however, further studies are required to
define whether this phenomenon reflects reactive astrogliosis (a different state than that characterized
by MAO-B overexpression as per 11C-L-Deprenyl PET signal) or changes in peripheral cells that also
express GFAP. Subsequently, tau pathology (green curve) and a second wave of reactive astrogliosis
assessed by 11C-L-Deprenyl can be detected, characterizing the later stages of AD (i.e., AD dementia).
MCI A+, mild cognitive impairment with positive amyloid.

Although the mechanisms linking these three pathological hallmarks remain to be
elucidated, it is possible that tau pathology could be exacerbated in the crosstalk between
reactive astrocytes and activated microglial in response to soluble Aβ oligomers [71,72].
Positive associations between reactive astrogliosis and tau pathology, as well as with
amyloid load at advanced stages of AD, can also be explained by the presence of resilient
astrocytes (second wave of astrogliosis), which are resistant to pathological insults and
cell death but functionally dormant. The involvement of astrocytes in neurodegeneration
in later stages of AD remains unclear. Nevertheless, the positive correlation between 18F-
FDG levels and 11C-DED binding in the presymptomatic phase of ADAD suggests that
hyperactivity in brain energetic metabolism associated with reactive astrogliosis could be
an initial trigger for neurodegeneration [57,58].

As the field of biomarker research moves at a fast pace, the combination of innovative
astrocytic PET radiotracers and fluid biomarkers will provide further insights into the
complexity of mechanisms associated with reactive astrogliosis across the continuum of
AD, potentially shedding light on new tools for detecting the disease in the early stages.
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