
Citation: Gómez-Pinedo, U.;

Matías-Guiu, J.A.; Ojeda-Hernandez,

D.; de la Fuente-Martin, S.; Kamal,

O.M.-F.; Benito-Martin, M.S.;

Selma-Calvo, B.; Montero-Escribano,

P.; Matías-Guiu, J. In Vitro Effects of

Methylprednisolone over

Oligodendroglial Cells: Foresight to

Future Cell Therapies. Cells 2023, 12,

1515. https://doi.org/10.3390/

cells12111515

Academic Editors: Brandon

Lucke-Wold and William Dodd

Received: 9 April 2023

Revised: 28 May 2023

Accepted: 29 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Perspective

In Vitro Effects of Methylprednisolone over Oligodendroglial
Cells: Foresight to Future Cell Therapies
Ulises Gómez-Pinedo 1,* , Jordi A. Matías-Guiu 2 , Denise Ojeda-Hernandez 1 , Sarah de la Fuente-Martin 1,
Ola Mohamed-Fathy Kamal 1, Maria Soledad Benito-Martin 1, Belen Selma-Calvo 1 , Paloma Montero-Escribano 2

and Jorge Matías-Guiu 1,2

1 Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos,
Universidad Complutense de Madrid, 28040 Madrid, Spain; doddydenise@gmail.com (D.O.-H.);
sdelafuentemartin@gmail.com (S.d.l.F.-M.); aolakamal@gmail.com (O.M.-F.K.);
msbm65@gmail.com (M.S.B.-M.); belselma@ucm.es (B.S.-C.); matiasguiu@gmail.com (J.M.-G.)

2 Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos,
Universidad Complutense de Madrid, 28040 Madrid, Spain; jordimatiasguiu@hotmail.com (J.A.M.-G.);
pmontero84@gmail.com (P.M.-E.)

* Correspondence: u.gomez.pinedo@gmail.com

Abstract: The implantation of oligodendrocyte precursor cells may be a useful therapeutic strategy for
targeting remyelination. However, it is yet to be established how these cells behave after implantation
and whether they retain the capacity to proliferate or differentiate into myelin-forming oligodendro-
cytes. One essential issue is the creation of administration protocols and determining which factors
need to be well established. There is controversy around whether these cells may be implanted
simultaneously with corticosteroid treatment, which is widely used in many clinical situations. This
study assesses the influence of corticosteroids on the capacity for proliferation and differentiation
and the survival of human oligodendroglioma cells. Our findings show that corticosteroids reduce
the capacity of these cells to proliferate and to differentiate into oligodendrocytes and decrease cell
survival. Thus, their effect does not favour remyelination; this is consistent with the results of studies
with rodent cells. In conclusion, protocols for the administration of oligodendrocyte lineage cells with
the aim of repopulating oligodendroglial niches or repairing demyelinated axons should not include
corticosteroids, given the evidence that the effects of these drugs may undermine the objectives of
cell transplantation.

Keywords: multiple sclerosis; HOG cells; oligodendrocyte precursor cells; oligodendrocytes; corti-
costeroids; demyelination; remyelination

1. Introduction

Various lines of research have suggested that the implantation of oligodendrocyte
lineage cells able to differentiate into myelin-forming oligodendrocytes may be a useful
strategy [1–6] in promoting myelin repair after a white matter lesion [7], for example, in
multiple sclerosis (MS) or in case of stroke [8]. Following myelin damage, oligodendrocyte
precursor cells (OPCs) migrate to the lesion site and participate in remyelination to repair
the damage [9–11]. To this end, OPCs proliferate and subsequently differentiate into
mature oligodendrocytes with the capacity to restore damaged myelin [12]; deficient
remyelination is considered to be one of the main factors contributing to neurological
disease progression [13]. The transplantation of oligodendrocyte lineage cells may favour
remyelination [14–19], thus representing a promising strategy for the repair of central
nervous system lesions [20]. Remyelination capacity is influenced by numerous factors,
including age [21,22], as well as the involvement of an inflammatory component in lesions
and the use of various drugs, including corticosteroids.
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This study aims to determine the influence of corticosteroids on the capacity of OPCs
to proliferate and differentiate into oligodendrocytes, which is essential to the future
development of protocols for the transplantation of these cells to treat myelin disorders
such as MS. To analyse the effect of corticosteroids, we used the HOG cell line, which
is often used in vitro to analyse oligodendrocyte differentiation [23–27] and in models of
demyelination [28].

2. Materials and Methods

Figure 1 shows a graphical summary of the study design. We used cultures of HOG
cells treated with different doses of methylprednisolone and analysed the proliferation and
differentiation of these cells at different incubation times.
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Figure 1. Graphical summary of the study procedure, with the 4 doses of methylprednisolone used
in the cultures of HOG cells, the different incubation times, and the variables analysed.

2.1. HOG Cell Culture

This cell line is derived from a human oligodendroglioma (HOG cell line, catalogue
No. SCC163; Sigma-Aldrich, St. Louis, MO, USA) and was cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM 1×; glutamine 2 mM, 10% foetal bovine serum, and 1% penicillin-
streptomycin antibiotic) at 37 ◦C, in darkness, at 5% CO2 and 95% relative humidity.
We sewed 1.5 × 105 cells in 4-well chamber slides (Eppendorf, Hamburg, Germany, ref.
30742060) and incubated them for 24 h in DMEM 1× (supplemented with 10% foetal
bovine serum and 1% antibiotic-antimycotic) to adhere and metabolically activate the
cells (eighth passage). DMEM is considered as a maintenance culture medium, not for
differentiation, since it is not added by hormones or factors that induce oligodendroglial
maturation. All experiments were performed in triplicate for each of the variables used.
After 24 h, the medium was changed for another containing methylprednisolone at different
doses (0.5, 5, 30, or 50 µM). The calculations were carried out following the maximum
recommended dosage for patients with acute flare-ups with multiple sclerosis. An amount
of 1 gr of methylprednisolone is considered the limit of therapeutic dose used, which
would be 50 µM of methylprednisolone in culture; 30 µM would be the corresponding dose
of 600 mg; 5 µM would be the corresponding dose of 100 mg; and 0.5 µM would be the
equivalent of 10 mg, approximately.

Technical data on the reagents and materials used are included in Supplementary
Material Table S1.

At 3, 5, and 10 days of incubation, we analysed cell viability using a LUNA-II auto-
mated cell counter (Isogen™) system. Cells were counterstained with methylene blue at
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0.5% in 0.1 M phosphate-buffered saline (PBS) for subsequent analysis of viability. All
cultures were performed in four replicates.

2.2. Analysis of HOG Cell Proliferation and Maturation

Immunocytochemistry testing of the incubated cells was conducted to quantify the
ratios of cell proliferation and maturation. Cultures were fixed with 4% paraformaldehyde
in 0.1 M PBS at a pH of 7.4. They were stored at 4 ◦C in lead azide (Pb 0.1 M, sodium azide
0.1%, and Milli-Q water) until immunocytochemistry testing, at which time they were
treated with primary antibodies labelling Ki67 (Abcam, Cambridge, UK, catalogue No.
ab16667), a protein expressed during cell division; MBP (Abcam, catalogue No. AB65988),
a protein present in oligodendroglial cells with myelination capacity; and ssDNA (Millipore
MAB3299), which provides a cellular marker specific for apoptotic death that is independent
of internucleosomal DNA fragmentation and is useful for the detection of different stages
of apoptosis. Cultures were incubated overnight with the primary antibodies at 4 ◦C.
The following day, they were washed with a solution of PBS, triton, and albumin, and
incubated with secondary antibodies (goat anti-rabbit IgG, Alexa Fluor 488 or 555) for
2 h at room temperature, in darkness, counterstaining nuclei with DAPI (DAPI 1:3000,
422801, BioLegend, San Diego, CA, USA) and mounted in FluorSave™ mounting medium
(catalogue No. 34558920ML, Calbiochem, San Diego, CA, USA) to preserve the fluorescence.
Cultures were subsequently studied under an Olympus AF-1000 confocal microscope
(20× magnification), and at least 8 fields were analysed per sample, quantifying the total
number of Ki67 or ssDNA positive cells divided by the total number of DAPI positive
nuclei (proliferation or apoptosis ratio), in addition to Ki67, ssDNA, and MBP recording the
optical density of each fluorophore (optical density arbitrary units) using the NIH IMAGEJ
software version 1.53t for the analysis of the mean gray value, using the ROI manager in
the images acquired by confocal.

2.3. Western Blot

The following is a brief explanation of the methodology used. Firstly, a culture of
HOG (Human Oligodendroglioma Cell Line) cells was carried out, supplemented with
the corticosteroid Methylprednisolone (Laboratorios Normon, Tres Cantos, Spain, SA)
at different concentrations (0, 0.5, 5, 30, and 50 µM) and times (3, 5, and 10 days). Cell
culture proteins were extracted with RIPA buffer (Thermo, Waltham, MA, USA) under
aseptic conditions. Proteins extracted from HOG cells were quantified using the Bradford
technique with Coomassie Plus, followed by Western blotting. MBP antibodies (Abcam,
catalogue No. AB65988) were applied to the membranes to label an abundant protein
present in the myelin of the central nervous system (CNS) and ß-Actin was applied as a
control protein, followed by secondary antibody Li-COR 633. Finally, the membranes were
revealed using the Odyssey CLx infrared imaging system (LI-COR® 9140), and the images
were analysed using Image Studio Ver 5.2 software.

2.4. Statistical Analysis

Each study and quantification were double-blinded. For parametric variables, we
conducted an analysis of variance (ANOVA) with Tukey’s post hoc test. Statistical analysis
was conducted with the SPSS software, version 20.0 for Mac (SPSS Inc.; Chicago, IL, USA).

3. Results
3.1. Methylprednisolone Reduces the Proliferation of HOG Cells by Reducing Their Cell Viability
in a Dose-Dependent Manner

Figure 2 shows how higher doses of methylprednisolone were associated with greater
reductions in the cell viability of HOG cells, demonstrating that this drug decreases cells’
capacity to proliferate (F [2,8] = 8.571; p = 0.010) (Table 1). This effect was also reflected in
the reduced expression of Ki67, which was also dose-dependent, and was observed from
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the earliest stages of the culture (Figure 3) (F [4,10] = 4.119; p = 0.031), with a decrease in
the proliferative capacity of HOG cells (Table 2).
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Figure 3. Evaluation of cell proliferation. (A) Ki67 expression decreased with respect to baseline; at
10 days, values were similar for all methylprednisolone doses, with significant differences compared
to baseline. (B) Confocal microscopy images of Ki67 expression, showing lower cell proliferation at
higher methylprednisolone concentrations and longer incubation times. N value = four.
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Table 2. Proliferative activity/Ki67 expression.

Control MP 0.5 µM MP 5 µM MP 30 µM MP 50 µM Day
Mean 2.285 2.172 2.021 1.125 0.6031 3
SEM 0.026 0.0142 0.099 0.075 0.0322

Mean 2.378 1.466 0.838 0.408 0.268 5
SEM 0.036 0.061 0.095 0.014 0.065

Mean 2.082 0.423 0.245 0.233 0.173 10
SEM 0.007 0.006 0.011 0.024 0.0211

MP: methylprednisolone; SEM: standard error of the mean.

3.2. Methylprednisolone Induces Oligodendrocyte Cell Death in a Dose-Dependent Manner

In the analysis of cell death via ssDNA labelling, it is shown how higher doses of
methylprednisolone are associated with a greater increase in the death of HOG cells, the
data being inversely proportional to those observed in the expression of KI67, demonstrat-
ing that methylprednisone affects cell viability. The differences were statistically significant
at any concentration in reference to its comparative sham (F = 28.74; R square = 0.92,
p = 0.001) (Figure 4A,B).
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Figure 4. Evaluation of cell apoptosis. (A) Increased expression of ssDNA with respect to baseline; at
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3.3. Methylprednisolone Reduces Oligodendrocyte Differentiation in a Dose-Dependent Manner

Figure 5 shows how methylprednisolone is associated with lower levels of the marker
of mature oligodendrocytes (MBP, closely associated with the phenotype of myelin-forming
oligodendrocytes), suggesting reduced differentiation. In the WB analysis, a marked reduc-



Cells 2023, 12, 1515 6 of 12

tion in the MBP expression was linked to time and the concentration of methylprednisolone.
It is noteworthy that in the samples of the sham group, and at low concentrations of methyl-
prednisolone and in a short time, two bands related to MBP are observed; one is linked to
oligodendroglial maturation (MPB 1–3 Golli 25 kDa), which remains in constant reduction
with time, and the second band is related to MBP (4–14 21.5 kDa), which is closely related to
remyelination (Figure 5A) (Supplementary Figure S1). This effect was dose-dependent and
was observed from the earliest stages of the culture (F [4,10] = 16.24; p = 0.0002) (Table 3).
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Figure 5. Expression of markers related with oligodendrocyte maturation. (A) Methylprednisolone
administration was associated with a sharp reduction in MBP in 5 and 10 days, with a statistically
significant difference compared to baseline. (B) Confocal microscopy images showing how methyl-
prednisolone administration inhibits the expression of MBP, a protein closely linked to remyelination.
N value = four.

Table 3. Oligodendroglial maturation/MBP expression.

Control MP 0.5 µM MP 5 µM MP 30 µM MP 50 µM Day
Mean 0.248 0.2023 0.141 0.0457 0.01243 3
SEM 0.0124 0.0129 0.00406 0.00523 0.00202

Mean 0.287 0.182 0.054 0.0012 0.00458 5
SEM 0.00427 0.00518 0.0865 0.002 0.000721

Mean 0.3432 0.0601 0.0345 0.00259 0.00172 10
SEM 0.00723 0.00246 0.0038 0.00053 0.0024

MP: methylprednisolone; SEM: standard error of the mean.

In addition, we performed other markers to check the identity of the cells after treat-
ment. Among the markers used, PDGFR-a is one of those considered classic for the
oligodendroglial lineage, showing that it was still expressed but with a different pattern
from that observed in the sham group, and was more pronounced at a higher concentration
of methylprednisolone (Supplementary Figure S2).

4. Discussion

While corticosteroids are known to delay myelination in the foetal brain [29–31], their
effect in adults is less understood, although it has been suggested that they may have
negative effects in stroke [32]. Due to their anti-inflammatory effect [33], corticosteroids are
used to treat patients with MS, especially during relapses [34–37]. Independently of their
anti-inflammatory effect, their influence on remyelination capacity in these patients is a
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controversial subject, with the limited number of studies performed reporting contradictory
findings. In a study using a mouse model of lysolecithin-induced demyelination, Pavelko
et al. [38] suggest that corticosteroids may promote remyelination. However, while that
study suggests that the anti-inflammatory effect accelerates remyelination and repair, it
does not address the question of whether this effect may in fact be explained by a reduction
in demyelination, rather than due to the drug promoting remyelination. Triarhou and Hern-
don [39] also used a lysolecithin-induced demyelination model, finding that corticosteroid
administration was associated with reduced remyelination. As the model involves local
toxic demyelination, inflammation is less intense than in the experimental autoimmune en-
cephalitis model; furthermore, while it enables easier analysis of remyelination [40] and has
been used in research on potential remyelinating drugs [41], it presents the limitation that
the pathogenic mechanism is not directly related to MS. A third study by Chari et al. [42]
used a different model of toxic demyelination, injecting ethidium bromide into the spinal
cord of rats. These authors observed reduced remyelination at one month compared to
the controls, with a recovery at two months. They also found that corticosteroids did not
affect the repopulation of OPCs but did influence their differentiation into oligodendro-
cytes; they also did not observe an increase in glial fibrillary acidic protein expression,
suggesting that the drugs did not promote astrocyte differentiation. The authors consider
that remyelination at 2 months is essentially explained by a reduction in the number of
macrophages and in levels of inflammatory factors, rather than an increase in the capacity
of OPCs to differentiate into myelin-forming oligodendrocytes. Alonso et al. [43] report
that the prolonged administration of corticosteroids inhibits OPC proliferation, stressing
that the possible benefits are influenced by inflammation, and that in the absence of in-
flammation, the drug would probably reduce the body’s remyelination capacity. Clarner
et al. [44] used a toxic cuprizone-induced demyelination model, confirming that dexam-
ethasone reduces remyelination in the corpus callosum by modifying the temporal pattern
of OPC differentiation. This study includes data from in vitro experiments with cultures
of oligodendrocytes (whose differentiation schedule is preserved) treated with hydrogen
peroxide in order to analyse the consequences of the differentiation after the administration
of corticosteroids, observing delayed remyelination. Halfpenny et al. [45] showed that
corticosteroids inhibit the proliferation of precursor cells in a rat model of the CG4 cell
line, with a capacity to differentiate into either astrocytes or oligodendrocytes. Finally,
Chesik and De Keyser [46] found that corticosteroids acting on astrocytes downregulated
oligodendrocyte differentiation.

In this study, we used a culture of HOG cells, which are human oligodendrocyte
lineage precursor cells from an oligodendroglioma line. Previous studies by our group
and other researchers have shown that these cells behave similarly to OPCs, expressing
markers of precursor cells and of the oligodendrocyte lineage [47]. Given their ability to
proliferate and differentiate to express PLP, MBP, and MOG and to generate myelin [48,49],
these cells have been used in research on the mechanisms of myelination [48–52] and the
influence of the immune system over OPCs [53–55]. Therefore, we considered them a good
in vitro model to analyse the impact of corticosteroid treatment.

The addition of methylprednisolone to cultures of HOG cells causes a dose-dependent
decrease in their proliferation and differentiation into oligodendrocytes, and also impairs
the survival of these cells. Our results with human cells replicate the findings reported in
studies with rodents, in a model that does not involve an inflammatory mechanism with
potential to influence the results.

Undoubtedly, an interesting result is the analysis of apoptosis in HOG cell cultures with
treatment of different doses of methylprednisolone, which our data found with the reports
in the study by Diem et al., where in an EAE model, it is observed that the administration of
methylprednisolone shows an exacerbation of apoptosis in an animal model that especially
reflects the neurodegenerative aspects of MS. This paper provides evidence that there may
be subgroups of patients with chronic autoimmune inflammatory disease of the CNS who
are at risk of unwanted side effects of high-dose methylprednisolone therapy that could



Cells 2023, 12, 1515 8 of 12

promote ongoing neuronal degeneration. These results suggest that combination therapies
targeting the inflammatory and neurodegenerative aspects of MS should be developed in
the future [56].

Several mechanisms are clearly involved in the drug’s effect on remyelination. The
first possible mechanism is inflammation [57–61], which is associated with the role of
microglia in the differentiation of OPCs [62,63]. The secretion of inflammatory factors,
which, depending on the scenario, has a bimodal effect that either favours or impairs the
differentiation of oligodendrocytes [64–67], may explain why the effect on myelination can
change in acute situations, with the anti-inflammatory effect of corticosteroids potentially
playing a role. Another mechanism is the action of corticosteroids on astrocytes, which may
have a secondary effect on remyelination [68]; genetic mutations affecting astrocytes are
known to affect myelination [69,70]. Oligodendrocyte lineage cells present corticosteroid
receptors, whose expression varies according to the subtype of OPC. However, insufficient
data are available to determine whether these receptors mediate the effect of corticosteroids
on myelination. The OPC population is heterogeneous and specific to particular brain
regions, with remyelination efficiency depending on the origin of the OPCs [71]. An analysis
of OPCs from different brain regions may reveal the differences in the functional status [72],
which may be influenced by their origin, location, or the presence of demyelination [12].
For instance, the grey and the white matter present different rates of OPC proliferation
and differentiation into oligodendrocytes [73,74]. The understanding of these differences
between regions is incomplete, with the further limitation that data from studies of rodents
cannot be fully extrapolated to humans on account of the significant differences between
rodent and human OPCs and oligodendrocytes [75]. Therefore, the differences between
the OPC subtypes in the expression of these receptors [76] act as a confounding variable in
analyses of their role in remyelination.

HOG cells present very similar characteristics to endogenous OPCs, but originate from
a tumour; therefore, while they are useful in experimental studies, they cannot be used
as implantable cells. However, data from studies using these cells may be extrapolated.
Cell therapy with OPCs is a very promising approach, if the cells administered are able
to repair myelin. Their administration, either alone or with biomaterials [77,78], may be
useful, but it is essential to determine which factors may influence cells after implantation.
In a previous study, we demonstrated that oligodendrocyte lineage cells administered by
the intranasal route are able to access the brain and to migrate [47].

Although it is not the objective of the present work, our data could be useful to under-
stand the metabolism, and therefore, the treatment of oligodendrogliomas, which are a rare
subtype of diffuse gliomas, which represent <5% of all primary brain tumours and <20% of
diffuse gliomas. Their treatment is complex and sometimes difficult because they turn out
to be gliomas due to their heterogeneous topographic distribution and metabolism [79,80].
Recently, Batchu et al. provided a comprehensive description of oligodendrocyte hetero-
geneity; their data provide the basis for identifying new specific metabolic pathways for
the treatment of location-defined oligodendrogliomas. This would expand therapeutic
options and our understanding of its underlying pathobiology. Likewise, the development
of histological markers for the detection of metabolic heterogeneity in steroid metabolism
and oxidative phosphorylation would further facilitate therapeutic treatment [81,82].

In conclusion, protocols for the administration of oligodendrocyte lineage cells aimed
at repopulating oligodendroglial niches or repairing demyelinated axons should not include
corticosteroid treatment. Given the evidence that the effects of these drugs at high doses
can undermine the objectives of cell transplantation, it is evident that the administration of
methylprednisolone directly influences the death of oligodendroglial cells, in addition to
inducing dose-dependent apoptosis.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells12111515/s1, Table S1: Reagents and materials used in cell
culture. Figure S1. WB data Figure S2: confocal image of PGFRα 50 µm.
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