Role of Chondroitin Sulfate Proteoglycan 5 in Steroid-Induced Cataract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Anterior Lens Capsules
2.2. Definition of Cataract
2.3. Human LEC Culture
2.4. Cell Culture and Treatment
2.5. Measurement of Cell Viability
2.6. shRNA Transfection
2.7. Wound Healing Assay
2.8. RT2 profiler PCR array
2.9. Cytoplasmic and Nuclear Protein Extraction
2.10. Immunofluorescence
2.11. Quantitative Real-Time PCR
2.12. Western Blot Analysis
2.13. Chondroitinase ABC
2.14. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Cataract Patients
3.2. Dexa-Induced Upregulation of CSPG5 Expression
3.3. Effect of CSPG5 Downregulation on Dexa-Induced Cell Migration
3.4. Dexa-Induced Expression and Translocation of Transcription Factors in HLE-B3 Cells
3.5. Effect of CSPG5-Related Transcription Factor Downregulation on Dexa-Induced Cell Migration
3.6. Dexa-Induced CSPG5 Expression in Primary Human LEC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.C.; Brown, M.M.; Busbee, B.G. Cost-utility analysis of cataract surgery in the United States for the year 2018. J. Cataract Refract. Surg. 2019, 45, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Miyake, K.; Hirano, K.; Kondo, M. Management of postoperative inflammation and dry eye after cataract surgery. Cornea 2019, 38 (Suppl. S1), S25–S33. [Google Scholar] [CrossRef] [PubMed]
- Delcourt, C.; Cristol, J.P.; Tessier, F.; Léger, C.L.; Michel, F.; Papoz, L. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: The POLA study. Pathologies Oculaires Liées à l’Age. Am. J. Epidemiol. 2000, 151, 497–504. [Google Scholar] [CrossRef] [PubMed]
- James, E.R. The etiology of steroid cataract. J. Ocul. Pharmacol. Ther. 2007, 23, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Jobling, A.I.; Augusteyn, R.C. What causes steroid cataracts? A review of steroid-induced posterior subcapsular cataracts. Clin. Exp. Optom. 2002, 85, 61–75. [Google Scholar] [CrossRef]
- James, E.R.; Robertson, L.; Ehlert, E.; Fitzgerald, P.; Droin, N.; Green, D.R. Presence of a transcriptionally active glucocorticoid receptor alpha in lens epithelial cells. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5269–5276. [Google Scholar] [CrossRef] [Green Version]
- Hah, Y.S.; Yoo, W.S.; Seo, S.W.; Chung, I.; Kim, H.A.; Cho, H.Y.; Kim, S.J. Reduced NGF level promotes epithelial-mesenchymal transition in human lens epithelial cells exposed to high dexamethasone concentrations. Curr. Eye Res. 2020, 45, 686–695. [Google Scholar] [CrossRef]
- Cottet, S.; Jüttner, R.; Voirol, N.; Chambon, P.; Rathjen, F.G.; Schorderet, D.F.; Escher, P. Retinal pigment epithelium protein of 65 kDA gene-linked retinal degeneration is not modulated by chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C/chondroitin sulfate proteoglycan 5. Mol. Vis. 2013, 19, 2312–2320. [Google Scholar]
- Morgenstern, D.A.; Asher, R.A.; Fawcett, J.W. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 2002, 137, 313–332. [Google Scholar] [CrossRef]
- Gato, A.; Martin, C.; Alonso, M.I.; Martinez-Alvarez, C.; Moro, J.A. Chondroitin sulphate proteoglycan is involved in lens vesicle morphogenesis in chick embryos. Exp. Eye Res. 2001, 73, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escher, P.; Cottet, S.; Aono, S.; Oohira, A.; Schorderet, D.F. Differential neuroglycan expression during retinal degeneration in Rpe65−/− mice. Mol. Vis. 2008, 14, 2126–2135. [Google Scholar] [PubMed]
- Cernera, G.; Di Donato, M.; Higgins, P.J.; Schlaepfer, I.R. Editorial: The role of steroid hormones and growth factors in cancer. Front. Cell Dev. Biol. 2022, 10, 887529. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Nave, K.A. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014, 83, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Pintér, A.; Hevesi, Z.; Zahola, P.; Alpár, A.; Hanics, J. Chondroitin sulfate proteoglycan-5 forms perisynaptic matrix assemblies in the adult rat cortex. Cell Signal 2020, 74, 109710. [Google Scholar] [CrossRef]
- Inatani, M.; Tanihara, H.; Oohira, A.; Otori, Y.; Nishida, A.; Honjo, M.; Kido, N.; Honda, Y. Neuroglycan C, a neural tissue-specific transmembrane chondroitin sulfate proteoglycan, in retinal neural network formation. Investig. Ophthalmol. Vis. Sci 2000, 41, 4338–4346. [Google Scholar]
- Yan, Q.; Zheng, W.; Wang, B.; Ye, B.; Luo, H.; Yang, X.; Zhang, P.; Wang, X. A prognostic model based on seven immune-related genes predicts the overall survival of patients with hepatocellular carcinoma. BioData Min. 2021, 14, 29. [Google Scholar] [CrossRef]
- Kalashnikova, E.V.; Revenko, A.S.; Gemo, A.T.; Andrews, N.P.; Tepper, C.G.; Zou, J.X.; Cardiff, R.D.; Borowsky, A.D.; Chen, H.W. ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2. Cancer Res 2010, 70, 9402–9412. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Liao, K.; Tan, F.; Liang, Y.; Sun, X.; Cui, Z.; Ye, B.; Chen, Z.; Tang, S.; Chen, J. Suppression of EZH2 inhibits TGF-β1-induced EMT in human retinal pigment epithelial cells. Exp. Eye Res. 2022, 222, 109158. [Google Scholar] [CrossRef]
- Dong, N.; Xu, B.; Xu, J. EGF-mediated overexpression of Myc attenuates miR-26b by recruiting HDAC3 to induce epithelial-mesenchymal transition of lens epithelial cells. BioMed Res. Int. 2018, 2018, 7148023. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Yang, R.; Ye, M.; Zhan, Y.; Liu, B.; Meng, L.; Xie, L.; Du, M.; Wang, J.; Gao, R.; et al. MYBL2 accelerates epithelial-mesenchymal transition and hepatoblastoma metastasis via the Smad/SNAI1 pathway. Am. J. Cancer Res. 2022, 12, 1960–1981. [Google Scholar] [PubMed]
- Shu, D.Y.; Lovicu, F.J. Enhanced EGF receptor-signaling potentiates TGFβ-induced lens epithelial-mesenchymal transition. Exp. Eye Res. 2019, 185, 107693. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.Y.; Wojciechowski, M.; Lovicu, F.J. ERK1/2-mediated EGFR-signaling is required for TGFβ-induced lens epithelial-mesenchymal transition. Exp. Eye Res. 2019, 178, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Thorne, J.E.; Woreta, F.A.; Dunn, J.P.; Jabs, D.A. Risk of Cataract Development among Children with Juvenile Idiopathic Arthritis-Related Uveitis Treated with Topical Corticosteroids. Ophthalmology 2020, 127, S21–S26. [Google Scholar] [CrossRef]
Variables | Age Related Cataract (n = 50) | Steroid Induced Cataract (n = 12) | p-Value | |
---|---|---|---|---|
Sex (Male, %) | 25 (50%) | 8 (67%) | 0.303 | |
Age (yrs, mean ± SD) | 68.1 ± 0.96 | 59.9 ± 0.37 | 0.008 | |
BCVA (LogMAR, mean ± SD) | 0.70 ± 0.446 | 0.69 ± 0.520 | 0.977 | |
IOP (mmHg, mean ± SD) | 14.1 ± 0.74 | 14.4 ± 0.84 | 0.732 | |
LOCS III Grade (mean ± SD) | NO | 3.7 ± 0.80 | 3.2 ± 0.58 | 0.023 |
NC | 3.7 ± 0.81 | 3.2 ± 0.58 | 0.029 | |
C | 2.6 ± 0.07 | 1.6 ± 0.79 | 0.003 | |
P | 0.5 ± 0.54 | 2.3 ± 0.65 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, W.-S.; Seong, H.; Song, C.; Choi, M.-Y.; Lee, B.; Eom, Y.; Kim, H.-J.; Yun, S.P.; Kim, S.-J. Role of Chondroitin Sulfate Proteoglycan 5 in Steroid-Induced Cataract. Cells 2023, 12, 1705. https://doi.org/10.3390/cells12131705
Yoo W-S, Seong H, Song C, Choi M-Y, Lee B, Eom Y, Kim H-J, Yun SP, Kim S-J. Role of Chondroitin Sulfate Proteoglycan 5 in Steroid-Induced Cataract. Cells. 2023; 12(13):1705. https://doi.org/10.3390/cells12131705
Chicago/Turabian StyleYoo, Woong-Sun, Hyemin Seong, Chieun Song, Mee-Young Choi, Bina Lee, Youngsub Eom, Hae-Jin Kim, Seung Pil Yun, and Seong-Jae Kim. 2023. "Role of Chondroitin Sulfate Proteoglycan 5 in Steroid-Induced Cataract" Cells 12, no. 13: 1705. https://doi.org/10.3390/cells12131705
APA StyleYoo, W. -S., Seong, H., Song, C., Choi, M. -Y., Lee, B., Eom, Y., Kim, H. -J., Yun, S. P., & Kim, S. -J. (2023). Role of Chondroitin Sulfate Proteoglycan 5 in Steroid-Induced Cataract. Cells, 12(13), 1705. https://doi.org/10.3390/cells12131705