
Citation: Okła, K. Myeloid-Derived

Suppressor Cells (MDSCs) in Ovarian

Cancer—Looking Back and Forward.

Cells 2023, 12, 1912. https://doi.org/

10.3390/cells12141912

Academic Editor: Alessandro Poggi

Received: 4 June 2023

Revised: 15 July 2023

Accepted: 20 July 2023

Published: 22 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Perspective

Myeloid-Derived Suppressor Cells (MDSCs) in Ovarian
Cancer—Looking Back and Forward
Karolina Okła 1,2

1 The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin,
20-081 Lublin, Poland; karolinaokla@umlub.pl or kokla@med.umich.edu

2 Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA

Abstract: Myeloid-derived suppressor cells (MDSCs) play a significant role in the immune system
and have been extensively studied in cancer. MDSCs are a heterogeneous population of myeloid cells
that accumulate in the tumor microenvironment. Consequently, the high abundance of these cells
often leads to immunosuppression, tumor growth, treatment failure, and poor prognosis. Ovarian
cancer ranks fifth in cancer deaths among women, accounting for more deaths than any other cancer
of the female genital tract. Currently, there is a lack of effective clinical strategies for the treatment of
ovarian cancer. Although several studies underline the negative role of human MDSCs in ovarian
cancer, this topic is still understudied. The works on MDSCs are summarized here, along with an
explanation of why focusing on these cells would be a promising approach for treating ovarian
cancer patients.
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1. Introduction

More than 15 years ago, scientists coined the term myeloid-derived suppressor cells
(MDSCs) [1]. Accumulation of these cells has been reported in pathological conditions
including infectious diseases, acute and chronic inflammation, traumatic stress, and cancer.
The discovery of three different populations of human MDSCs, including monocytic M-
MDSCs, polymorphonuclear PMN-MDSCs, and early-stage eMDSCs, underlines their
heterogenous nature, which has been broadly study in many cancer types [2–4]. Twelve
years ago, Obermajer and colleagues examined MDSCs in human ovarian cancer (OC) for
the first time. Overall, these studies opened a new chapter in the MDSC field in OC [5].

OC is the most lethal of all malignancies of the female reproductive system [6]. Accord-
ing to the Global Cancer Observatory’s 2020 projections, by 2040, the number of women
around the world diagnosed with OC will rise by almost 42% to 445,721. The number
of women dying from OC each year is projected to increase to 313,617—an increase of
over 50% from 2020 (Global Cancer Observatory, https://gco.iarc.fr/ (accessed on 10 July
2023)). Because of the insidious symptoms, only 20% of patients can be identified at the
early stages [7]. Although patients with OC respond to chemotherapy, the effects are short-
lasting. More than 80% of OC patients relapse, and more than 50% of these patients die
from the disease in less than 5 years post-diagnosis. Furthermore, patients often develop
chemotherapeutic resistance. Importantly, contrary to expectations, clinical trials using
immune checkpoint therapy (ICT), i.e., anti-PD-1/PD-L1, have shown a limited response
rate of about 10–15%, and there is no current FDA/EMA approval for disease [8]. Poor in-
filtration by immune cells and active immunosuppression in the tumor microenvironment
(TME) make OC insensitive to ICT [9]. In this context, a strongly immunosuppressive TME
may considerably contribute to disease progression and metastatic dissemination, calling
for the implementation of new immunotherapeutic strategies beyond ICT.
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MDSCs are known to contribute to tumor immune evasion and serve as a central com-
ponent in the immunosuppressive network of many tumors. It has been shown that MDSCs
block the recruitment and priming of T cells, resulting in the T cell exclusion phenotype
within the TME [10]. Furthermore, MDSC infiltration is associated with treatment failure
and poor prognosis in many cancers [11,12]. Recent advances have shown MDSC-mediated
PD-1/PD-L1 treatment resistance [13]. Thus, inhibiting MDSCs’ activity may sensitize
tumors to ICT and thereby overcome therapeutic resistance. The main characteristics of
MDSCs are outlined in this article, with an emphasis on their function in ovarian cancer
and how these cells can be exploited in cancer therapy to overcome therapeutic resistance.

2. MDSCs in Cancer

MDSC levels, including M-MDSCs, PMN-MDSCs, and eMDSCs, are negligible in
healthy individuals, while their levels increase in cancer [11,14]. Pathological activation
arises from persistent stimulation of the myeloid cells owing to the prolonged presence
of myeloid growth factors and other inflammatory signals in the TME (e.g., M-CSF, GM-
CSF VEGF, HIF1α, and IL-6). The major regulators of suppressive functions of MDSCs
include STATs, NF-κβ, cAMP, COX2, and others. The endoplasmic reticulum (ER) stress
response signaling, RB1 downregulation, and lipid oxidation have also been implicated in
the suppressive activity of MDSCs. The diversity and characteristics of human MDSCs are
shown in Figure 1.
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myeloid progenitor; eMDSCs, early-stage MDSCs, G-CSF, granulocyte colony-stimulating factor;
GM-CSF, granulocyte–macrophage colony-stimulating factor; HIF1α, hypoxia inducible factor 1α;
M-CSF, macrophage colony-stimulating factor; MDSC, myeloid-derived suppressor cell; M-MDSC,
monocytic MDSC; PMN, polymorphonuclear; PTGES, prostaglandin E synthase; VEGF, vascular
endothelial growth factor.
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In the TME, competition for nutrients and oxygen forces immune cells to adapt their
metabolism. MDSCs sense the changes in the environment and respond by selecting the
most efficient metabolic pathways to sustain their suppressive and pro-tumorigenic func-
tions [12,15] (Figure 2). Diets rich in polyunsaturated fatty acids or high-fat diets have
been shown to favor the differentiation of MDSCs from bone marrow precursors and to
potentiate the suppressive activity of these cells in mice [16]. The upregulation of glycolytic
pathways protected MDSCs from apoptosis and contributed to their survival by prevent-
ing ROS-mediated apoptosis via the antioxidant activity of the glycolytic intermediate
phosphoenolpyruvate [17]. Furthermore, deprivation of essential metabolites, including
arginine, cysteine, and tryptophan from the TME, has been used by MDSCs to impair
T cell function [12]. Similarly, methylglyoxal has been identified as a marker of MDSCs
and may play a key role in the suppression of CD8+ T effector function [18]. Due to their
great plasticity, MDSCs in vivo can display unique metabolic profiles depending on tissue
origin and the TME [15]. Indeed, myeloid cells primed by ID8 ovarian cancer cells showed
increased oxidative phosphorylation fueled by glutamine [19]. Collectively, these results
indicate the metabolic plasticity of MDSCs.
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Figure 2. Metabolic characteristics of the MDSCs in the TME. Metabolic changes that occur in the
MDSCs and the TME are shown. The MDSCs in the TME exhibit upregulation of fatty acid oxidation
and glycolysis and a decrease in oxidative phosphorylation (OXPHOS). MDSCs also show increased
lipid accumulation and increased production of metabolites, including arginine, tryptophan, cysteine,
and methylglyoxal. In contrast, it has been shown that MDSCs acquire an energetic metabolic
phenotype promoted primarily by increased OXPHOS fueled by glutamine. Key changes in the TME
are depicted in the right box.

As a key component of the TME, MDSCs utilize multiple mechanisms to inhibit
immune responses and promote tumor progression. On the one hand, MDSCs promote the
formation of an immunosuppressive TME, which in turn exerts an influence on the biology
and function of MDSCs. On the other hand, MDSCs also enhance tumor progression and
induce resistance to antitumoral therapy in different non-immunological manners (Table 1).
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First, MDSCs can play a critical role in facilitating tumor immune escape by inhibiting
cytotoxic T lymphocytes, natural killer (NK) cells, antigen presenting cells (APCs), and B
cells via the expression of checkpoint molecules, depleting nutrients, and the induction
of oxidative stress in the TME [20]. Second, non-immunological functions of MDSCs
including the promotion of angiogenesis, stemness, epithelial–mesenchymal transition
(EMT), and metastases of cancer cells further enhance tumor progression [20,21]. Metastasis
is responsible for about 90% of cancer deaths [22], and MDSCs are well known for the
formation of premetastatic niches in cancer. It has been shown that MDSCs promote
metastasis by building the premetastatic niche to enhance the engraftment of circulating
tumor cells (CTCs) and by escorting tumor cells into the circulation, which promotes their
metastatic potential, inhibits their killing by T cells, and promotes their extravasation into
the tissues [12]. As this area of research remains largely understudied, further focusing on
the role of MDSCs in the ‘priming’ of the premetastatic niche is needed, and inhibiting the
premetastatic niche can be clinically and therapeutically valuable.

Table 1. MDSC-mediated tumor-promoting effects.

MDSC-Mediated Suppression

Immunosuppressive Functions of MDSCs

Expression of immune
checkpoint inhibitors

↑ PD-L1 expression induces T-cell anergy [23,24]
↑ CTLA-4 expression [25]
↑ VISTA expression is associated with PD-1+ T cells [26]
↑ Gal-9 expression suppresses T cell responses [27,28]
↑ CD155 expression is associated with T cell inhibition [29]

Depletion of nutrients

↑ ARG1 release is associated with T cells’ inhibition [30]
↑Methylglyoxal induces T cell suppression [18]
↓ Tryptophan induces T cell autophagy, cell cycle arrest, and death [31]
↓ Cysteine is associated with the impairment of T cell activation [32]

Promotion of oxidative stress
↑ ROS catalyzes the nitration of TCR/CD8 molecules [33]
↑ RNS reduces the affinity of CCL2 to CCR2 which inhibits
TILs’ recruitment [34]

↑ iNOS inhibits T cells [35,36]

Inhibition of T cell trafficking
M-MDSCs-derived NO damages T cells’ extravasation and tissue
infiltration by the downregulation of CD44 and CD162 on T cells [37]

ADAM17 expressed on MDSCs cleaves the CD62L on naive T cells to
inhibit their trafficking to peripheral lymph nodes and the tumor niche [38]

Crosstalk between MDSCs and other
immune cells

M-MDSCs promote NK cells anergy [39]
PMN-MDSCs block the antigen cross-presentation of dendritic cells by
transferring oxidized lipids [40]

MDSCs inhibit B cells by modulating the IL-7 and STAT5 pathways [41]
MDSCs promote PD-L1 expression on B cells [42]
M-MDSCs produce CCR5 ligands to chemoattract Tregs [43]
MDSCs induce Tregs through the secretion of IL-10 and TGF-β or/and the
expression of ARG1, IDO, and CD40 [44,45]

MDSCs elicit a type 2 tumor-promoting immune response, which is
mediated by elevated IL-10 and downregulated IL-12 production [46]

Non-immunosuppressive functions of MDSCs

Promotion of angiogenesis Secretion of soluble interleukins, CCL2, CXCL2, BV8, and MMPs [47]
Secretion of exosomes which release proangiogenic factors [48]

Promotion of stemness of tumor cells,
facilitating epithelial–mesenchymal
transition and pre-metastatic
niche formation

PMN-MDSCs-derived exosomal S100A9 promotes cancer stemness in a
HIF-1α-dependent manner [49]

MDSCs promote miRNA101 expression and repress CtBP2 in cancer cells,
leading to increased cancer cell stemness and metastatic potential [50]

M-MDSCs promote the EMT/CSC phenotype by facilitating tumor
cell dissemination. [51]

↑ IL-6 activates the STAT3-mediated stem-like properties of cancer cells [52]
↑ PGE2 increases the stem-like properties of cancer cells [53]
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3. MDSCs in Human Ovarian Cancer

Although much progress has been made in recent years towards studying MDSCs in
cancer, only a few works have been published on human OC (Table 2).

The first report on MDSCs in ovarian cancer patients was published in 2011, and
the authors showed that in ascites isolated from patients, both CXCL12 and CXCR4 are
controlled by the tumor-associated inflammatory mediator prostaglandin E2 (PGE2), which
attracts MDSC into the ascites microenvironment. MDSCs migrated toward ascites in a
CXCR4-dependent manner that required COX2 activity and autocrine PGE2 production [5].
Two years later, another group showed that tumor-infiltrating CD33+ MDSCs were signif-
icantly associated with shorter overall survival (OS) and a reduced disease-free interval
(DFI). Functionally, Cui et al. demonstrated the interaction between MDSCs and CSCs in
ovarian cancer patients and showed that MDSCs inhibited T cell activation and enhanced
CSC gene expression, sphere formation, and cancer metastasis [50] (Figure 2).

In 2017, three independent research groups further elucidated the role of MDSCs in
ovarian cancer. First, Horikawa et al. showed that high abundance of omental CD33+

MDSCs was associated with worse survival in patients. The group demonstrated that
VEGF expression in ovarian cancer induced the VEGFR2-mediated recruitment and differ-
entiation of MDSCs into tumors. High MDSC infiltration was inversely correlated with
the intratumoral infiltration of CD8+ T-cells. Functionally, MDSCs from patients’ ascites
inhibited T-cell proliferation [54]. Second, Wu et al. demonstrated that ascites-derived IL-6
and IL-10 synergistically expand CD14+HLA-DR−/low M-MDSCs in patients, and high
levels of ascites and blood-derived MDSCs were associated with poor prognosis. Mechanis-
tically, ascitic-driven STAT3 activation upregulated the expression of arginase (ARG1) and
inducible nitric oxide synthase (iNOS) in M-MDSC, through which these MDSCs executed
the immunosuppressive activity [55]. Third, Rodriguez-Ubreva et al. demonstrated that the
in vitro differentiation of DCs from human primary monocytes results in the generation of
immunosuppressive MDSCs under tumor-associated conditions including PGE2 or tumor-
cell-conditioned media. MDSCs isolated from patients display a similar hypermethylation
signature in connection with PGE2-dependent DNMT3A overexpression. In this study
the authors link PGE2/DNMT3A-dependent hypermethylation to immunosuppressive
MDSC functions [56]. These findings indicate that TME-derived factors, VEGF, IL-6, IL-10,
and PGE2 can promote development and differentiation and act as chemoattractants in the
recruitment of MDSCs into the TME. Further examination of soluble markers that drive
MDSCs into the TME is needed (Figure 2).

In the next study, Santegoets et al. discuss the clinical aspects of different myeloid
populations, showing the M-MDSC to DC ratio as an independent, predictive factor for
survival. Additionally, they revealed that high levels of circulating myeloid cells are
associated with poor survival after therapy. Functionally, patients’ M-MDSCs were shown
to suppress T cell reactivity in vitro [57].

In 2019, our group demonstrated the presence of three MDSC subsets, including M-
MDSCs, PMN-MDSCs, and eMDSCs in three paired environments, i.e., peripheral blood,
ascites, and tumor tissue, identifying an abundance of M-MDSCs in all three examined
environments in the patients compared to the control group. We revealed selectively that
M-MDSCs—not PMN-MDSCs and eMDSCs—were associated with worse survival [58].
In the same year Lee at el. showed that patients with BRCA mutations may have fewer
circulating MDSCs but higher CD8+ T cells in PBMCs during their early disease course
compared to BRCA wild-type ovarian cancer. Next, Coosemans’ group presented evidence
that MDSCs at diagnosis may discriminate between benign and malignant ovarian tumors.
Collectively, these results indicate the clinical relevance of MDSCs in ovarian cancer.

In 2020, Li et al. showed that MDSCs promote ovarian cancer cell stemness by inducing
the CSF2/p-STAT3 signaling pathway [59]. While Komura’s group indicated that MDSCs
increase cancer stem-like cells and promote PD-L1 expression in ovarian cancer. In vitro
co-culture of MDSCs and CSCs revealed that MDSCs increased the number of CSCs via the
production of PGE2 (Figure 3) [53].
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Figure 3. MDSCs in the pathogenesis of ovarian cancer. The accumulation of IL-6, IL-10, VEGF,
PGE2, and complement C5 that occur in the TME promotes the development, accumulation and
persistence of MDSCs. In the TME, MDSCs inhibit T cell accumulation and impair their functional
activity. MDSCs also show potency to promote cancer stem cells (CSCs) activity.

In mouse models of ovarian cancer, the metabolic characteristics of immature mouse
CD11b+Gr1+ myeloid cells were presented by Udumula et al., indicating increased oxida-
tive phosphorylation fueled by glutamine after priming by ovarian ID8 tumors [19]. The
TME-enriched complement C5 promotes MDSCs’ infiltration and development in the TME
to facilitate metastasis [60] (Figure 3). Yet, these findings need to be further confirmed in
human MDSCs.

Because a characteristic feature of advanced-stage ovarian cancer is the accumulation
of fluid (ascites) in the abdomen, which comprises cellular and acellular components,
MDSCs can be highly influential cells in promoting CTCs’ spread in the peritoneal cavity
and to other tissues. Indeed, it has been shown that multicellular aggregates (spheroids)
accumulate with metastatic potential in the fresh ascites of ovarian cancer patients [61].
Moreover, M-MDSC rapidly differentiate into tumor-associated macrophages (TAMs) in the
TME [62]. Consistent with this, it has been shown that TAMs promote spheroid formation
and tumor growth at early stages of metastasis in an established mouse model for ovarian
cancer. TAMs were localized in the center of spheroids and secreted EGF, which upregulated
the αMβ2 integrin on TAMs and ICAM-1 on tumor cells to promote association between
tumor cells and TAMs. Pharmacological blockade of EGFR or antibody neutralization of
ICAM-1 in TAMs inhibited spheroid formation and ovarian cancer progression in mouse
models [63]. Further studies in cancer patients are needed to determine whether the
targeting of MDSCs could result in the inhibition of early stages of metastasis, serving as
an effective antitumor therapeutic response.
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Table 2. MDSCs in ovarian cancer patients.

Populations Clinical Relevance Ref.

CD11b+CD14+CD33+CXCR4+ ND [5]
Lin−CD45+CD33+ High level is associated with poor OS [50]

CD33+ High level is associated with poor OS [54]
CD14+HLA-DR−/low High level is associated with shorter RFS [55]

CD11b+CD14+CD15− M-MDSCs ND [56]
CD33+ ND [64]

CD3−CD19−CD56−HLA-DR−/lowCD14+CD15− M-MDSCs
CD3−CD19−CD56−HLA-DR−/lowCD14−CD15− and CD33+CD11b+

early stage
eMDSCs

Circulating MDSCs are associated with
poor survival after therapy

Low DC/M-MDSC ratio is associated
with poor OS

[57]

CD3−CD19−CD56−HLA-DR−/low and CD14–CD15– double-negative (dn)
CD33−CD11b+ MDSC (CD33− dnMDSCs).

HLA-DR−/lowCD11b+CD14+CD15−M-MDSCs
HLA-DR−/lowCD11b+CD14−CD15+ PMN-MDSCs

High level of M-MDSCs is associated
with poor OS [58]

HLA-DR−/lowCD11b+Lin−CD33+ eMDSCs

M-MDSCs, PMN-MDSCs, Lin− MDSCs BRCA mutations was associated with
decreased MDSCs [65]

M-MDSCs and PMN-MDSCs Increased MDSCs was found to be an
independent predictor of malignancy [66]

M-MDSCs and PMN-MDSCs ND [59]
CD33+ ND [53]

ND—not determined.

4. Therapeutic Application of MDSCs

The continuous recruitment of MDSCs enables them to have long-lasting effects in
the TME and promote tumor persistence. A few strategies to target MDSCs have been
proposed in preclinical mouse OC models [67], including anti-GR-1 antibodies [53,54],
anti-GM-CSF antibodies [68], CXCR2/4 antagonists [64,69], PGE2/COX-2 inhibition [5],
metformin [70], thrombin inhibitors [71], and bis-benzylidine piperidone RA190 [72]. These
agents showed significant antitumor efficacy when used as monotherapies or in combina-
tion with chemotherapy. Furthermore, it has been shown that MDSC-inhibition therapies
targeting CXCR4 and IL-10 enhance the therapeutic efficacy of anti-PD-1 treatment, thereby
leading to prolonged survival [73,74]. However, until now, there have been no clinical
trials targeting MDSCs in ovarian cancer patients. Due to their short-life span in tissues,
the state of pathological activation of these cells in the TME is difficult to reverse as they
quickly differentiate into TAMs in the TME. Nevertheless, effective therapies could be
implemented to target MDSCs by blocking their migration to the TME and immunosup-
pressive functions through the inhibition of VEGF, PGE2, IL-6, IL-10, component C5, ARG,
and iNOS. Secondary options include the depletion of CD33+ myeloid populations, known
to promote ovarian CSCs and inhibit CD8+ T cell function. As in ovarian cancer metastasis,
with the major role played by the local TME, including MDSCs-abundant ascitic fluid,
the treatment efficacy could be optimized by using the local delivery of MDSC-targeting
agents, which should be evaluated in future clinical trials. Third, studies have shown the
metabolic (glutamine) dependence of the immunosuppressive function of myeloid cells
mediated by the ovarian TME [19], thus inhibiting the glutamine pathway which can be of
clinical importance. Finally, as MDSCs differentiate into TAMs in the TME, a better option
would be targeting TAMs, which constitute up to 50% of the cell mass within the TME of
most solid tumors [75]. When combined with cyclophosphamide (CPA), a new therapeutic
approach based on human engineered macrophages modified to release human cytochrome
P450 was effectively explored for the in vivo treatment of the ovarian PDX model. In order
to express cytochrome P450, genetically modified macrophages generated from human
monocytes were infected with adenoviral particles. Engineered macrophages located in the
TME then released P450 to transform CPA into hazardous metabolites, which caused cancer
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cell death in ovarian PDX mice. This led to a two-fold increase in overall survival [76].
A novel approach also includes the engineered reprogramming of TAMs [77] by using
chimeric antigen receptor (CAR)-engineered macrophages [78]. The anti-HER2 CAR-M
from Klichinsky and collaborators successfully demonstrated a reduction in ovarian cancer
tumor burden in mouse models and was evaluated in a first-in-human phase 1 clinical trial
that focused on patients with recurrent or metastatic HER-2-overexpressing solid tumors,
including ovarian cancer (NCT04660929) [79].

5. Perspectives

OC is a highly deadly form of cancer with poor responsiveness to the existing im-
munotherapies. MDSCs exhibit several mechanisms to evade the immune response and
promote the aggressiveness of OC. High-throughput technologies, e.g., single-cell RNA
sequencing (scRNAseq) analysis, possess great potential for exploring MDSC signatures
involved in tumor development and progression in ovarian cancer. A few studies have
already shown different transcriptomic profiles of myeloid populations in human ovarian
cancer [80,81]. In accordance with the results described above, the scRNAseq analysis of
tumor tissues suggests dynamic plasticity and transformation among M1-like, MDSC, and
M2-like macrophages in the TME of HGSOC tumors [7]. Further studies will be needed to
elucidate the dynamic nature of MDSCs/TAMs in the TME of ovarian cancer, which will
help in the development of strategies aimed at therapeutically targeting these cells.

Engineered reprogramming of myeloid cells using CAR-M [79] may become a promis-
ing anti-cancer strategy, yet a few challenges remain. First, myeloid cells are extremely
plastic and can adapt to their phenotype and function in response to TME stimuli. Second,
the limited expansion and persistence of CAR-M in vivo with current technology may
obstruct therapeutic efficacy. Third, limiting toxicity and immunogenicity should also be
considered when developing CAR-M technology. Strategies for new-generation CAR-M
should include specific tumor antigen selection, improved expansion and persistence,
feasible genetic modification, and the control of safety. A recent study showed the in vivo
generation of mRNA-based CAR T cells to eliminate activated fibroblasts [82]. Therefore,
the generation of mRNA-based CAR T cells to eliminate MDSCs/TAMs can be beneficial
as a means of promoting rapid protection against these cells. Next, strategies can use
engineered primary myeloid cells to produce pro-inflammatory substances to attract and
activate anti-cancer immune cells within the TME, inhibit the expression of the genes
responsible for immunosuppression, enhance phagocytosis, release anti-cancer drugs, or
deliver chemotherapies [83].

The infiltration of myeloid populations can be a major barrier to an effective (im-
muno)therapeutic response in OC, as this population of cells promotes the exclusion of T
cells in the TME. It has been shown that MDSCs are associated with resistance to anti-PD-1
therapy [84]. Moreover, the immunosuppressive TME in ascites, which contains myeloid
cells, has a role in both recurrence and chemoresistance in ovarian cancer [7]. All-trans
retinoic acid (ATRA) may induce the maturation of MDSCs and alter their immunosuppres-
sive activity. Adding ATRA to pembrolizumab may target this resistance mechanism to
enhance the overall impact of anti-PD-1-based immunotherapy [84]. Similarly, vitamin D
signaling has also been reported to decrease the immunosuppressive capabilities of MDSCs
through the vitamin D receptor (VDR) [81]. Whether inhibition of MDSCs by using ATRA
or vitamin D can sensitize ovarian tumors to chemotherapy and/or immunotherapy is
unknown. However, anti-TREM2 mAbs were demonstrated in preclinical ovarian can-
cer models to deplete TAMs, enhance intratumoral CD8+ T cell activation, and reverse
anti-PD-1 treatment resistance. Humanized anti-TREM2 mAb (PY314) is presently being
examined in a phase I clinical trial in patients with advanced solid tumors, including OC
(NCT04691375) [85].

Collectively, given all of these results and emerging new technologies, we may better
understand the nature of MDSCs and further use our knowledge to design more effective,
next-generation immunotherapeutic strategies for ovarian cancer.
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