Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Procedure
2.2. Study Measures
- CGG sizing: Genomic DNA was isolated from whole blood using standard procedures (Qiagen, Valencia, CA, USA). CGG allele sizing was achieved by PCR and Southern Blot analysis, as previously reported [49,50]. Densitometric analysis was used to determine the percent of methylation, including the percentage of methylated alleles, and in females, the activation ratio (AR), which expresses the percentage of cells carrying the normal allele on the active X chromosome and measured as described in Tassone et al., 1999 [51];
- FMR1 and CYFIP1 mRNA expression levels: An amount of 2.5 mL of peripheral blood was collected in PAXgene RNA tubes, and total RNA was isolated using the PAXgene Blood RNA Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. RNA concentration was calculated using the Agilent 2100 Bioanalyzer system. cDNA synthesis and mRNA expression levels were carried out using 3 different concentrations (500, 250, 125 ng) in duplicate, as previously described [52]. Gene-specific FMR1 or CYFIP1 primers and probes and the reference genes, β-Glucuronidase (GUS) and Hypoxanthine-guanine phosphoribosyltransferase (HPRT1) were used and are as reported in [52];
- Plasma MMP-9 levels: MMP-9 levels (normalized with MMP-2 levels) were measured using the ELISA assay, MILLIPLEX MAP Human MMP Magnetic Bead Panel 2 (Merck Millipore, Billerica, MA, USA). The preparation of plasma samples and reagents was performed according to the manufacturer’s protocol. A total of 25 μL (1:20 dilution) of plasma samples were run in duplicates on Luminex® plates, which included quality controls and negative and positive controls. The plates were run on Luminex® with xPONENT 3.1 software, and the Median Fluorescent Intensity (MFI) data were analyzed using the spline curve-fitting method for calculating the concentrations of MMP-9 in each sample.
2.3. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hersh, J.H.; Saul, R.A. Health supervision for children with fragile X syndrome. Pediatrics 2011, 127, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Hagerman, R.J.; Rivera, S.M.; Hagerman, P.J. The fragile X family of disorders: A model for autism and targeted treatments. Curr. Pediatr. Rev. 2008, 4, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Tassone, F.; Iong, K.P.; Tong, T.H.; Lo, J.; Gane, L.W.; Berry-Kravis, E.; Nguyen, D.; Mu, L.Y.; Laffin, J.; Bailey, D.B.; et al. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med. 2012, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.; Rivero-Arias, O.; Angelov, A.; Kim, E.; Fotheringham, I.; Leal, J. Epidemiology of fragile X syndrome: A systematic review and meta-analysis. Am. J. Med. Genet. A 2014, 164, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Protic, D.D.; Aishworiya, R.; Salcedo-Arellano, M.J.; Tang, S.J.; Milisavljevic, J.; Mitrovic, F.; Hagerman, R.J.; Budimirovic, D.B. Fragile X Syndrome: From Molecular Aspect to Clinical Treatment. Int. J. Mol. Sci. 2022, 23, 1935. [Google Scholar] [CrossRef] [PubMed]
- Cregenzán-Royo, O.; Brun-Gasca, C.; Fornieles-Deu, A. Behavior Problems and Social Competence in Fragile X Syndrome: A Systematic Review. Genes 2022, 13, 280. [Google Scholar] [CrossRef]
- Tranfaglia, M.R. The psychiatric presentation of fragile x: Evolution of the diagnosis and treatment of the psychiatric comorbidities of fragile X syndrome. Dev. Neurosci. 2011, 33, 337–348. [Google Scholar] [CrossRef]
- Hooper, S.R.; Hatton, D.; Sideris, J.; Sullivan, K.; Hammer, J.; Schaaf, J.; Mirrett, P.; Ornstein, P.A.; Bailey, D.P., Jr. Executive functions in young males with fragile X syndrome in comparison to mental age-matched controls: Baseline findings from a longitudinal study. Neuropsychology 2008, 22, 36–47. [Google Scholar] [CrossRef]
- Abbeduto, L.; McDuffie, A.; Thurman, A.J. The fragile X syndrome-autism comorbidity: What do we really know? Front. Genet. 2014, 5, 355. [Google Scholar] [CrossRef] [Green Version]
- Joga-Elvira, L.; Jacas, C.; Joga, M.L.; Roche-Martínez, A.; Brun-Gasca, C. Fragile X syndrome in young females: Influence of executive function on the neurocognitive profile and adaptive behavior. Res. Dev. Disabil. 2021, 112, 103912. [Google Scholar] [CrossRef]
- Joga-Elvira, L.; Roche-Martínez, A.; Joga, M.L.; Jacas-Escarcelle, C.; Brun-Gasca, C. Language in young females with fragile X syndrome: Influence on the neurocognitive profile and adaptive behavior. Am. J. Med. Genet. A 2021, 185, 1448–1460. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B., Jr.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Primers 2017, 3, 17065. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.D.; Zhao, X. The molecular biology of FMRP: New insights into fragile X syndrome. Nat. Rev. Neurosci. 2021, 22, 209–222. [Google Scholar] [CrossRef]
- Protic, D.; Salcedo-Arellano, M.J.; Dy, J.B.; Potter, L.A.; Hagerman, R.J. New Targeted Treatments for Fragile X Syndrome. Curr. Pediatr. Rev. 2019, 15, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Zafarullah, M.; Tassone, F. Molecular Biomarkers in Fragile X Syndrome. Brain Sci. 2019, 9, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, C.; Hoffmann, A.; Bassell, G.J.; Berry-Kravis, E.M. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics 2015, 12, 584–608. [Google Scholar] [CrossRef] [Green Version]
- Budimirovic, D.B.; Protic, D.; Toma, A.E. Fragile X syndrome: Leading the way as the most common monogenic form of autism spectrum disorder and the most translated among neurodevelopmental disorders in clinical trials. J. Clin. Gen. Genom. 2017, 1, 1–2. [Google Scholar]
- Santoro, M.R.; Bray, S.M.; Warren, S.T. Molecular mechanisms of fragile X syndrome: A twenty-year perspective. Annu. Rev. Pathol. 2012, 7, 219–245. [Google Scholar] [CrossRef] [Green Version]
- de Esch, C.E.; Zeidler, S.; Willemsen, R. Translational endpoints in fragile X syndrome. Neurosci. Biobehav. Rev. 2014, 46 Pt 2, 256–269. [Google Scholar] [CrossRef]
- Darnell, J.C.; Klann, E. The translation of translational control by FMRP: Therapeutic targets for FXS. Nat. Neurosci. 2013, 16, 1530–1536. [Google Scholar] [CrossRef] [Green Version]
- Salcedo-Arellano, M.J.; Dufour, B.; McLennan, Y.; Martinez-Cerdeno, V.; Hagerman, R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol. Dis. 2020, 136, 104740. [Google Scholar] [CrossRef]
- Gross, C.; Berry-Kravis, E.M.; Bassell, G.J. Therapeutic strategies in fragile X syndrome: Dysregulated mGluR signaling and beyond. Neuropsychopharmacology 2012, 37, 178–195. [Google Scholar] [CrossRef]
- Gao, F.; Qi, L.; Yang, Z.; Yang, T.; Zhang, Y.; Xu, H.; Zhao, H. Impaired GABA Neural Circuits Are Critical for Fragile X Syndrome. Neural Plast. 2018, 2018, 8423420. [Google Scholar] [CrossRef] [Green Version]
- Weng, N.; Weiler, I.J.; Sumis, A.; Berry-Kravis, E.; Greenough, W.T. Early-phase ERK activation as a biomarker for metabolic status in fragile X syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 1253–1257. [Google Scholar] [CrossRef]
- Gross, C.; Banerjee, A.; Tiwari, D.; Longo, F.; White, A.R.; Allen, A.G.; Schroeder-Carter, L.M.; Krzeski, J.C. Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-associated deficits in a mouse model. Neuropsychopharmacology 2019, 44, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauterborn, J.C.; Rex, C.S.; Kramár, E.; Chen, L.Y.; Pandyarajan, V.; Lynch, G.; Gall, C.M. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J. Neurosci. 2007, 27, 10685–10694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziembowska, M.; Pretto, D.I.; Janusz, A.; Kaczmarek, L.; Leigh, M.J.; Gabriel, N.; Durbin-Johnson, B.; Hagerman, R.J.; Tassone, F. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am. J. Med. Genet. A 2013, 161, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Hoeffer, C.A.; Sanchez, E.; Hagerman, R.J.; Mu, Y.; Nguyen, D.V.; Wong, H.; Whelan, A.M.; Zukin, R.S.; Klann, E.; Tassone, F. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 2012, 11, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Janusz, A.; Milek, J.; Perycz, M.; Pacini, L.; Bagni, C.; Kaczmarek, L.; Dziembowska, M. The Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J. Neurosci. 2013, 33, 18234–18241. [Google Scholar] [CrossRef] [Green Version]
- Wilczynski, G.M.; Konopacki, F.A.; Wilczek, E.; Lasiecka, Z.; Gorlewicz, A.; Michaluk, P.; Wawrzyniak, M.; Malinowska, M.; Okulski, P. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol. 2008, 180, 1021–1035. [Google Scholar] [CrossRef]
- Bilousova, T.V.; Dansie, L.; Ngo, M.; Aye, J.; Charles, J.R.; Ethell, D.W.; Ethell, I.M. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 2009, 46, 94–102. [Google Scholar] [CrossRef]
- Napoli, I.; Mercaldo, V.; Boyl, P.P.; Eleuteri, B.; Zalfa, F.; De Rubeis, S.; Di Marino, D. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 2008, 134, 1042–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abekhoukh, S.; Bardoni, B. CYFIP family proteins between autism and intellectual disability: Links with Fragile X syndrome. Front. Cell. Neurosci. 2014, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, S.T.; Tassone, F.; Ono, M.Y.; Ferranti, J.; Croquette, M.F.; Goodlin-Jones, B.; Hagerman, R.J. The Prader-Willi phenotype of fragile X syndrome. J. Dev. Behav. Pediatr. JDBP 2007, 28, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Abbeduto, L.; Berry-Kravis, E.; Sterling, A.; Sherman, S.; Edgin, J.O.; McDuffie, A.; Hoffmann, A. Expressive language sampling as a source of outcome measures for treatment studies in fragile X syndrome: Feasibility, practice effects, test-retest reliability, and construct validity. J. Neurodev. Disord. 2020, 12, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.H.; Kaat, A.J.; McKenzie, F.J.; Drayton, A.; Sansone, S.M.; Coleman, J.; Michalak, C.; Riley, K.; Berry-Kravis, E.; Gershon, R.C.; et al. Validation of the NIH Toolbox Cognitive Battery in intellectual disability. Neurology 2020, 94, e1229–e1240. [Google Scholar] [CrossRef]
- Sparrow, S.; Cicchetti, D.; Balla, D. Vineland Adaptive Behavior Scales: (Vineland II), Survey Interview Form/Caregiver Rating form; Pearson Assessments: Livonia, MN, USA, 2005. [Google Scholar]
- Roid, G.H.; Koch, C. Leiter-3: Nonverbal Cognitive and Neuropsychological Assessment. Handb. Nonverbal Assess. 2017, 127–150. [Google Scholar]
- Berry-Kravis, E.; Doll, E.; Sterling, A.; Kover, S.T.; Schroeder, S.M.; Mathur, S.; Abbeduto, L. Development of an expressive language sampling procedure in fragile X syndrome: A pilot study. J. Dev. Behav. Pediatr. JDBP 2013, 34, 245–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, C.; Rutter, M.; DiLavore, P.; Risi, S.; Gotham, K.; Bishop, S. Autism Diagnostic Observation Schedule Second Edition (ADOS-2) Manual (Part 1): Modules 1–4; Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Salsman, J.M.; Butt, Z.; Pilkonis, P.A.; Cyranowski, J.M.; Zill, N.; Hendrie, H.C.; Kupst, M.J.; Kelly, M.A.R.; Bode, R.K.; Choi, S.W.; et al. Emotion assessment using the NIH Toolbox. Neurology 2013, 80 (Suppl. 3), S76–S86. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.; Kaat, A.; Sansone, S.; Michalak, C.; Coleman, J.; Thompson, T.; McKenzie, F.J.; Dakopolos, A.; Riley, K.; Berry-Kravis, E.; et al. Sensitivity of the NIH Toolbox to Detect Cognitive Change in Individuals with Intellectual and Developmental Disability. Neurology 2022, 100, e778–e789. [Google Scholar] [CrossRef]
- Hessl, D.; Sansone, S.M.; Berry-Kravis, E.; Riley, K.; Widaman, K.F.; Abbeduto, L.; Schneider, A.; Coleman, J.; Oaklander, D.; Rhodes, K.C.; et al. The NIH Toolbox Cognitive Battery for intellectual disabilities: Three preliminary studies and future directions. J. Neurodev. Disord. 2016, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Sansone, S.M.; Widaman, K.F.; Hall, S.S.; Reiss, A.L.; Lightbody, A.; Kaufmann, W.E.; Berry-Kravis, E.; Lachiewicz, A.; Brown, E.C.; Hessl, D. Psychometric study of the Aberrant Behavior Checklist in Fragile X Syndrome and implications for targeted treatment. J. Autism Dev. Disord. 2012, 42, 1377–1392. [Google Scholar] [CrossRef] [Green Version]
- Esbensen, A.J.; Rojahn, J.; Aman, M.G.; Ruedrich, S. Reliability and validity of an assessment instrument for anxiety, depression, and mood among individuals with mental retardation. J. Autism Dev. Disord. 2003, 33, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.L.; Guo, B.; Valentine, A.Z.; Groom, M.J.; Daley, D.; Sayal, K.; Hollis, C. The Validity of the SNAP-IV in Children Displaying ADHD Symptoms. Assessment 2020, 27, 1258–1271. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Seid, M.; Rode, C.A. The PedsQL™: Measurement model for the pediatric quality of life inventory. Med. Care 1999, 37, 126–139. [Google Scholar] [CrossRef]
- Owens, J.A.; Spirito, A.; McGuinn, M. The Children’s Sleep Habits Questionnaire (CSHQ): Psychometric properties of a survey instrument for school-aged children. Sleep 2000, 23, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Pan, R.; Amiri, K.; Taylor, A.K.; Hagerman, P.J. A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J. Mol. Diagn. 2008, 10, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Filipovic-Sadic, S.; Sah, S.; Chen, L.; Krosting, J.; Sekinger, E.; Zhang, W.; Hagerman, P.J.; Stenzel, T.T.; Hadd, A.G.; Latham, G.J.; et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin. Chem. 2010, 56, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Tassone, F.; Hagerman, R.J.; Iklé, D.N.; Dyer, P.N.; Lampe, M.; Willemsen, R.; Oostra, B.A.; Taylor, A.K. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am. J. Med. Genet. 1999, 84, 250–261. [Google Scholar] [CrossRef]
- Tassone, F.; Hagerman, R.J.; Taylor, A.K.; Gane, L.W.; Godfrey, T.E.; Hagerman, P.J. Elevated levels of FMR1 mRNA in carrier males: A new mechanism of involvement in the fragile-X syndrome. Am. J. Hum. Genet. 2000, 66, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Hessl, D.; Randol, J.L.; Espinal, G.M.; Schneider, A.; Protic, D.; Aydin, E.Y.; Hagerman, R.J.; Hagerman, P.J. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS ONE 2019, 14, e0226811. [Google Scholar] [CrossRef] [Green Version]
- Levenga, J.; de Vrij, F.M.; Oostra, B.A.; Willemsen, R. Potential therapeutic interventions for fragile X syndrome. Trends Mol. Med. 2010, 16, 516–527. [Google Scholar] [CrossRef] [Green Version]
- McLennan, Y.; Polussa, J.; Tassone, F.; Hagerman, R. Fragile x syndrome. Curr. Genom. 2011, 12, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Kaufmann, W.E.; Frye, R.E.; Ong, K.; Kaminski, J.W.; Velinov, M.; Berry-Kravis, E. The association between mosaicism type and cognitive and behavioral functioning among males with fragile X syndrome. Am. J. Med. Genet. A 2022, 188, 858–866. [Google Scholar] [CrossRef]
- Baker, E.K.; Arpone, M.; Vera, S.A.; Bretherton, L.; Ure, A.; Kraan, C.M.; Bui, M.; Ling, L.; Francis, D.; Hunter, M.F.; et al. Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. J. Neurodev. Disord. 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esbensen, A.J.; Schworer, E.K.; Fidler, D.J.; Thurman, A.J. Considerations for measuring individual outcomes across contexts in Down syndrome: Implications for research and clinical trials. Int. Rev. Res. Dev. Disabil. 2022, 62, 191–225. [Google Scholar] [PubMed]
Variable | N | Mean (SD) or N (%) | Median (Q1, Q3) |
---|---|---|---|
Age (years) | 59 | 14.24 (5.92) | 13.44 (9.25, 17.94) |
Gender, Male | 59 | 55 (93.2%) | |
Weight (kg) | 59 | 55.38 (26.30) | 50.45 (32.62, 80.67) |
BMI | 59 | 22.87 (6.56) | 21.72 (17.12, 28.28) |
ABC | |||
Irritability | 58 | 16.07 (13.88) | 12 (6, 21) |
Lethargy | 58 | 7.38 (6.06) | 5 (4, 10.75) |
Stereotypy | 58 | 6.55 (5.03) | 6 (3, 9) |
Hyperactivity | 58 | 11.88 (7.47) | 11 (5.25, 17) |
Inappropriate Speech | 58 | 5.78 (3.22) | 6 (3, 9) |
Social Avoidance | 58 | 3.07 (3.05) | 3 (0, 4) |
ADAMS | |||
Manic/Hyperactive Behavior | 55 | 7.56 (3.75) | 8 (4.5, 10) |
Depressed Mood | 55 | 2.07 (2.46) | 1 (0, 3) |
Social Avoidance | 55 | 7.89 (4.08) | 8 (5, 11) |
General Anxiety | 55 | 6.85 (3.99) | 7 (4, 10) |
Obsessive Compulsive Behavior | 55 | 2.73 (2.51) | 2 (0.5, 4) |
VABS | |||
Adaptive Behavior | 57 | 50.81 (17.35) | 54 (35, 63) |
Communication | 57 | 43.53 (19.33) | 44 (24, 60) |
Daily Living Skills | 57 | 54.70 (23.61) | 59 (34, 72) |
Socialization | 57 | 52.77 (18.61) | 50 (38, 70) |
Leiter: Nonverbal IQ | 59 | 46.83 (13.95) | 45 (34.5, 58) |
SNAP-IV | |||
ADHD Combined Total | 58 | 28.05 (12.25) | 30 (18.25, 36) |
ODD Total | 58 | 5.59 (5.80) | 4 (1.25, 8) |
ELS | |||
Narration | 36 | 57.83 (29.62) | 52.5 (37.75, 73) |
Conversation | 36 | 75.47 (36.77) | 74 (45, 97) |
Composite | 36 | 66.65 (30.71) | 66 (42.75, 83.88) |
ADOS-2: Comparison Score | 53 | 7.32 (2.07) | 8 (6, 9) |
Toolbox | |||
Cognition Crystallized Composite | 51 | 60.96 (13.12) | 61 (54, 66.5) |
DCCS | 22 | 66.05 (19.17) | 68 (55.5, 78.5) |
Flanker | 30 | 54.37 (26.97) | 37 (31.25, 81.5) |
LSWM | 22 | 69.73 (13.63) | 65 (59, 78) |
ORRT | 51 | 66.82 (13.32) | 68 (57.5, 76) |
PCPS | 32 | 68.41 (21.45) | 59.5 (54, 81.5) |
PSM | 32 | 82.53 (16.29) | 79 (71, 91.25) |
PVT | 52 | 60.67 (15.05) | 59.5 (51.75, 67) |
SM | 42 | 0.49 (0.23) | 0.48 (0.33, 0.65) |
Peds QL Total Score | 58 | 65.87 (13.34) | 67.11 (57.42, 74.61) |
CSHQ: Total Sleep Disturbance score | 58 | 46.40 (6.10) | 47 (44, 50) |
Molecular Category | 53 | ||
Full mutation | 36 (67.9%) | ||
Meth mosaic | 8 (15.1%) | ||
Size mosaic | 9 (17.0%) | ||
MMP-9 | 52 (1) | 0.53 (0.35) | 0.41 (0.29, 0.64) |
CYFIP1 mRNA | 48 (5) | 0.36 (0.19) | 0.33 (0.23, 0.42) |
FMR1 mRNA | 48 (5) | 0.30 (0.48) | 0.07 (0, 0.55) |
FMRP * | 32 | 0.199 (0.255) | 0.104 (0.062, 0.244) |
MMP-9 | CYFIP1 mRNA | FMR1 mRNA | FMRP | |||||
---|---|---|---|---|---|---|---|---|
Clinical Measure | r | p-Value | r | p-Value | r | p-Value | r | p-Value |
Weight (kg) | 0.53 | <0.0001 * | 0.28 | NS | 0.14 | NS | 0.04 | NS |
BMI | 0.51 | 0.0002 * | 0.22 | NS | 0.22 | NS | 0.05 | NS |
ABC | ||||||||
Irritability | 0.08 | NS | −0.13 | NS | −0.23 | NS | 0.03 | NS |
Lethargy | −0.14 | NS | −0.05 | NS | −0.23 | NS | −0.19 | NS |
Stereotypy | 0.08 | NS | 0 | NS | −0.2 | NS | 0.21 | NS |
Hyperactivity | −0.01 | NS | −0.04 | NS | −0.26 | NS | 0.15 | NS |
Inappropriate Speech | 0.04 | NS | −0.06 | NS | −0.27 | NS | 0.16 | NS |
Social Avoidance | 0 | NS | 0.09 | NS | −0.06 | NS | −0.07 | NS |
ADAMS | ||||||||
Manic/Hyperactive Behavior | −0.31 | 0.0347 | 0.16 | NS | −0.23 | NS | −0.15 | NS |
Depressed Mood | −0.11 | NS | 0.1 | NS | −0.1 | NS | 0.08 | NS |
Social Avoidance | −0.28 | NS | 0.2 | NS | −0.11 | NS | −0.08 | NS |
General Anxiety | −0.03 | NS | 0.36 | 0.018 | −0.11 | NS | −0.09 | NS |
Obsessive Compulsive Behavior | −0.04 | NS | 0.13 | NS | −0.02 | NS | 0.23 | NS |
VABS | ||||||||
Adaptive Behavior Composite Standard Score | −0.06 | NS | 0.15 | NS | 0.43 | 0.0034 * | 0.11 | NS |
Communication | −0.09 | NS | 0.22 | NS | 0.31 | 0.0355 | 0.06 | NS |
Daily Living Skills | −0.16 | NS | 0.02 | NS | 0.43 | 0.0028 * | 0.09 | NS |
Socialization | 0.17 | NS | 0.12 | NS | 0.41 | 0.0047 * | 0.17 | NS |
Leiter: Nonverbal IQ | −0.18 | NS | −0.17 | NS | 0.34 | 0.0226 | 0.16 | NS |
SNAP—IV: ADHD Combined Total | −0.26 | NS | 0.04 | NS | −0.34 | 0.0207 | −0.1 | NS |
SNAP—IV: ODD Total | −0.11 | NS | −0.14 | NS | −0.2 | NS | −0.27 | NS |
ELS | ||||||||
Narration | 0.08 | NS | 0.09 | NS | 0.33 | NS | 0.33 | NS |
Conversation | −0.01 | NS | 0.31 | NS | 0.38 | 0.0472 | 0.09 | NS |
Composite | 0.03 | NS | 0.21 | NS | 0.37 | NS | 0.13 | NS |
ADOS: Comparison Score | 0.1 | NS | 0.32 | 0.0441 | −0.08 | NS | 0.04 | NS |
Toolbox | ||||||||
Cognition Crystallized Composite | −0.17 | NS | 0.1 | NS | 0.26 | NS | −0.03 | NS |
DCCS | 0.08 | NS | 0.39 | NS | 0.53 | 0.0229 | 0.1 | NS |
Flanker | 0.25 | NS | 0.08 | NS | 0.56 | 0.0045 * | 0.16 | NS |
LSWM | −0.05 | NS | 0.31 | NS | 0.27 | NS | −0.07 | NS |
ORRT | −0.17 | NS | 0.22 | NS | 0.27 | NS | 0.01 | NS |
PCPS | −0.35 | NS | 0.1 | NS | 0.4 | NS | 0.38 | NS |
PSM | −0.07 | NS | 0.13 | NS | 0.17 | NS | 0.05 | NS |
PVT | −0.17 | NS | −0.06 | NS | 0.21 | NS | −0.07 | NS |
SM | −0.18 | NS | −0.13 | NS | 0.24 | NS | 0.21 | NS |
PEDSQL: Total Score | 0.17 | NS | −0.08 | NS | −0.13 | NS | −0.16 | NS |
CSHQ: Total Sleep Disturbance score | −0.02 | NS | −0.1 | NS | −0.2 | NS | −0.16 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aishworiya, R.; Chi, M.-H.; Zafarullah, M.; Mendoza, G.; Ponzini, M.D.; Kim, K.; Biag, H.M.B.; Thurman, A.J.; Abbeduto, L.; Hessl, D.; et al. Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome. Cells 2023, 12, 1920. https://doi.org/10.3390/cells12141920
Aishworiya R, Chi M-H, Zafarullah M, Mendoza G, Ponzini MD, Kim K, Biag HMB, Thurman AJ, Abbeduto L, Hessl D, et al. Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome. Cells. 2023; 12(14):1920. https://doi.org/10.3390/cells12141920
Chicago/Turabian StyleAishworiya, Ramkumar, Mei-Hung Chi, Marwa Zafarullah, Guadalupe Mendoza, Matthew Dominic Ponzini, Kyoungmi Kim, Hazel Maridith Barlahan Biag, Angela John Thurman, Leonard Abbeduto, David Hessl, and et al. 2023. "Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome" Cells 12, no. 14: 1920. https://doi.org/10.3390/cells12141920
APA StyleAishworiya, R., Chi, M. -H., Zafarullah, M., Mendoza, G., Ponzini, M. D., Kim, K., Biag, H. M. B., Thurman, A. J., Abbeduto, L., Hessl, D., Randol, J. L., Bolduc, F. V., Jacquemont, S., Lippé, S., Hagerman, P., Hagerman, R., Schneider, A., & Tassone, F. (2023). Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome. Cells, 12(14), 1920. https://doi.org/10.3390/cells12141920