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Abstract: Chronic liver diseases (CLDs) cover a spectrum of liver diseases, ranging from nonalcoholic
fatty liver disease to liver cancer, representing a growing epidemic worldwide with high unmet
medical needs. Glycolysis is a conservative and rigorous process that converts glucose into pyru-
vate and sustains cells with the energy and intermediate products required for diverse biological
activities. However, abnormalities in glycolytic flux during CLD development accelerate the disease
progression. Aerobic glycolysis is a hallmark of liver cancer and is responsible for a broad range of
oncogenic functions including proliferation, invasion, metastasis, angiogenesis, immune escape, and
drug resistance. Recently, the non-neoplastic role of aerobic glycolysis in immune activation and
inflammatory disorders, especially CLD, has attracted increasing attention. Several key mediators
of aerobic glycolysis, including HIF-1α and pyruvate kinase M2 (PKM2), are upregulated during
steatohepatitis and liver fibrosis. The pharmacological inhibition or ablation of PKM2 effectively
attenuates hepatic inflammation and CLD progression. In this review, we particularly focused on the
glycolytic and non-glycolytic roles of PKM2 in the progression of CLD, highlighting the translational
potential of a glycolysis-centric therapeutic approach in combating CLD.

Keywords: chronic liver disease; glycolysis; HIF-1α; metabolic reprogramming; immune activation;
PKM2; therapeutic target

1. Introduction

Chronic liver disease (CLD) encompasses a broad spectrum of liver diseases, ranging
from viral hepatitis, alcoholic liver disease (ALD), and nonalcoholic fatty liver disease
(NAFLD) to end-stage hepatic conditions including nonalcoholic steatohepatitis (NASH),
liver fibrosis, hepatocellular carcinoma (HCC), and cholangiocarcinoma (CCA) [1]. Due to
the growing prevalence of metabolic syndromes, including obesity and hyperlipidemia,
NAFLD has become the most prevalent CLD, affecting more than 25% of the adult popula-
tion worldwide [2]. Currently, there are no approved therapeutics for certain CLDs, such
as NASH and liver fibrosis, which is partly limited by the lack of understanding of their
complicated pathogenesis and druggable targets [3,4].

Liver is the most vital organ for glucose homeostasis, where it generates glucose
during fasting and reserves glucose postprandially [5,6]. During the progression of CLD,
hepatocyte injury and chronic low-grade inflammation lead to metabolic dysfunction,
which causes an excessive accumulation of lipids and aberrant activation of metabolic
pathways in the liver, including enhanced aerobic glycolysis [7,8]. On one hand, aerobic
glycolysis promotes the pro-inflammatory activation of immune cells, which perpetuates
hepatic inflammation and liver injury [9]. On the other hand, HCC encompasses enhanced
aerobic glycolysis to support the proliferation, metastasis, and drug resistance of HCC
cells [10]. Growing evidence has highlighted the significance of aerobic glycolysis in the
progression of CLDs, suggesting that targeting abnormal glycolytic flux may serve as an
effective strategy to combat CLDs [11–14].
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Several glycolytic mediators have been reported to regulate the progression of CLDs.
Pyruvate kinase (PK) is a rate-limiting enzyme that catalyzes the final step of glycolysis. It
converts phosphoenolpyruvate (PEP) into pyruvate and supports ATP production during
glycolysis. Unlike mitochondrial respiration, PK produces ATP independent of oxygen
supply, which allows organs to survive under hypoxic conditions [15]. Due to the unique
metabolic requirements of tissues, the expression levels of each pyruvate kinase isozyme
vary substantially in both kinetics and regulatory mechanisms. There are four subtypes of
PKs, ranging from PKL and PKR encoded by PKLR gene to PKM1 and pyruvate kinase M2
(PKM2) encoded by the PKM gene [16]. Unlike other isoforms that exclusively function
as hyperactive tetramers and promote metabolic flux toward oxidative phosphorylation
(OXPHOS), PKM2 contains a less active monomeric and dimeric form, which shifts the
metabolite from OXPHOS to aerobic glycolysis [17]. In addition, the PKM2 dimer can
translocate to the nucleus and act as a transcriptional coactivator to regulate gene expres-
sion [18]. Interestingly, PKM2 directly binds to HIF-1α and promotes the transcription of a
series of glycolytic genes, including PKM2, thereby forming a positive feedback loop for
aerobic glycolysis (Figure 1) [19].
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Figure 1. Pyruvate kinase isoforms in metabolic reprogramming.

Owing to its unique properties, PKM2 is preferentially upregulated in immune and
cancerous cells, which display high levels of nucleic acid synthesis [20]. Previous works on
PKM2 have mainly investigated its effect on the metabolism, proliferation, and migration
of tumor cells [21]. Recent studies have shown that PKM2 is involved in immune activation
via reprogramming glycolysis [22,23]. In this review, we summarize the neoplastic and
non-neoplastic role of aerobic glycolysis in the progression of CLD by particularly focusing
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on PKM2, highlighting the translational potential of applying PKM2 as a druggable target
to combat CLDs.

2. The Expression of PKM2 in CLDs

In line with the dynamic metabolic conditions and characteristics of different tissues,
levels of PK isoforms are highly regulatory and tissue-specific. PKL and PKR are primarily
expressed in the healthy liver, intestine, and red blood cells. PKM1 is expressed in adult
tissues, including the bone and brain, whereas PKM2 is expressed in embryonic cells,
undifferentiated tissues, and tumors [21]. Consistent with this notion, PKM2 expression is
hardly detectable in healthy livers but is dramatically upregulated in liver cancer [24,25].
Interestingly, although a switch from PKM1 to PKM2 regulated by the alternative splicing
of PKM was observed in many types of tumor, PKM2 was the prominent isoform of PKM
both in normal liver and HCC [26]. During DEN/CCl4- or STZ/HFD-induced murine
hepatocarcinogenesis, the level of PKM2 in the plasma ectosome gradually increased
before tumor formation. Moreover, PKM2 was significantly enriched in ectosomes from
patients with HCC compared to healthy donors, indicating that PKM2 may serve as an
early diagnostic marker for HCC [27]. In patients with HCC, PKM2 is highly upregulated
in tumor tissues and is positively correlated with poor prognosis [28–30]. Furthermore, the
overexpression of PKM2 in HCC is correlated with a high TNM stage and level of vascular
invasion, and patients who are positive for PKM2 expression have an increased incidence
of postsurgical HCC recurrence [31,32].

Liver cirrhosis, the progressive stage of liver fibrosis, is recognized as a key mediator
in the pathogenesis of liver cancer as it progresses to HCC in up to 90% of patients [33].
Interestingly, PKM2 expression is significantly increased in precancerous cirrhotic livers
and strongly associated with an elevated risk of developing HCC [34]. Moreover, the level
of hepatic PKM2 is higher in cirrhotic HCC than in non-cirrhotic HCC, suggesting that
PKM2 plays an important role in the regulation of the precancerous and tumor microen-
vironments of HCC [35]. The expansion of PD-L1+ tumor-associated macrophages is a
critical driver of the immune escape of HCC and correlates with poor prognosis in HCC
patients [36]. Notably, PKM2 is overexpressed in PD-L1+ glycolytic macrophages, and
PD-L1 blockade liberates the intrinsic antitumorigenic properties of PKM2+ macrophages,
indicating that PKM2 may serve as an indicator for precise anticancer therapy [37]. PKM2
is also upregulated in CCA tissues compared to healthy liver tissues and is positively
correlated with the poor prognosis of CCA patients [38]. Serum PKM2 levels are elevated in
patients with precancerous cholangitis, and CCA and can be used to discriminate between
benign and malignant stages of disease with high specificity and sensitivity [39]. These
studies suggest that PKM2 is a key player in the progression of liver cancer and may serve
as an effective prognostic and predictive biomarker.

In addition to cancerous conditions, PKM2-mediated aerobic glycolysis plays a critical
role in inflammatory disorders and nonneoplastic liver diseases [19,23]. The expression
of PKM2 is upregulated in HSC in the context of liver fibrosis and is overexpressed in
hepatic macrophages and Th17 cells during NAFLD/NASH development [40–42]. Of
note, serum and hepatic levels of PKM2 are increased in both metabolic syndrome and
NAFLD, but they decreased after Roux-en-Y gastric bypass surgery, one of the most com-
monly performed weight-loss procedures, implying that systematic PKM2 expression may
represent the disease stage of NAFLD [43]. Currently, there are no effective noninvasive
diagnostic methods for NAFLD, NASH, or liver fibrosis. The pattern of PKM2 expression in
inflammatory liver diseases may lead to the development of novel biomarkers for accurate
diagnosis, either independently or along with liver biopsy, which is the gold standard for
NASH diagnosis [44,45]. Collectively, it would be of great clinical significance to char-
acterize the expression of PKM2 in CLDs for the development of novel diagnostic and
prognostic biomarker.
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3. Current Status and Challenge of Liver Cancer

The liver is the sixth most prevalent site of primary cancers, including HCC and
CCA. Liver cancer is the fourth leading cause of cancer-related deaths worldwide owing
to its high incidence of postsurgical recurrence and metastasis [46]. In particular, HCC
accounts for 85–90% of liver cancers [47]. Owing to the increased global incidence of
metabolic syndrome, NAFLD has become the most prominent cause and risk factor for
HCC in numerous developed countries [48]. Traditionally, systemic therapies, including
sorafenib or lenvatinib, have been practiced as the first-line therapy. Recently, ICIs have
revolutionized HCC treatment, with a significant increase in patient survival [49]. A combi-
nation of Atezolizumab with Bevacizumab was approved as first-line HCC therapy in 2020.
Tremelimumab and durvalumab were also approved as first-line HCC therapies in 2022.
Despite these major advances, NAFLD has been reported to limit the therapeutic efficacy
of ICI in treating HCC, and a better stratification system based on different individuals is
still needed to guide clinical decision making [50].

3.1. PKM2 in HCC

Aerobic glycolysis is one of the most prominent features of liver cancer which supports
a broad range of oncogenic regulation, including proliferation, metastasis, immunosuppres-
sion, and drug resistance [7]. In this section, we introduce recent advances in PKM2-directed
glycolysis for HCC formation and progression. Several mechanisms have been reported to
modulate PKM2-mediated aerobic glycolysis and the progression of HCC. HSP90 promotes
the Warburg effect and proliferation of HCC cells via direct binding to PKM2 and phos-
phorylates it at Thr-328, which is a site that is critical for sustaining PKM2 stability [51].
Circular RNA MAT2B sponges miR-338-3p and promotes the expression of PKM2, thereby
enhancing aerobic glycolysis and HCC progression under hypoxia [52]. Yu et al. found
that MTR4, an RNA helicase, drives cancer metabolism and HCC progression by ensuring
the alternative splicing of specific glycolytic genes, including PKM2 [53]. HIF-1α plays a
critical role in regulating the transcription of glycolytic genes, especially in tumor microen-
vironments, including HCC [54,55]. Under hypoxia, YAP binds to HIF-1α in the nucleus,
which thereby maintains HIF-1α stability and the aerobic glycolysis of HCC. Moreover,
HIF-1α binds to PKM mRNA and directly activates the transcription of PKM2, accelerating
the glycolysis of HCC cells [56]. Meanwhile, PKM2 is known to regulate HIF-1α transacti-
vation, which results in an upregulation of several glycolytic genes, including LDHA and
PKM2 [57,58]. This positive feedback loop may further fuel aerobic glycolysis and cause
drug resistance to PKM2-targeting therapy [59].

The nuclear translocation of PKM2 is considered an indispensable course in the
stimulation of aerobic glycolysis, progression, and drug resistance in HCC. Enhanced
aerobic glycolysis is associated with HCC resistance to sorafenib, whereas the disruption of
PKM2-associated glycolysis increases apoptosis and re-sensitizes resistant tumor cells to
sorafenib [60]. A study showed that PRMT6 promotes PKM2 nuclear translocation, leading
to increased aerobic glycolysis in HCC, while the addition of 2-DG (a well-known inhibitor
of glycolysis) sufficiently reverses PRMT6 deficiency-mediated tumor progression and
sorafenib resistance [61]. Zhou et al. reported that GTPBP4 induces PKM2 sumoylation and
dimer formation. Dimeric PKM2 further translocates into the nucleus, thereby facilitating
EMT and aerobic glycolysis in HCC via the STAT3 signaling pathway [62]. Myofibroblasts
MyD88-mediated CCL20 secretion promoted PKM2 nuclear translocation and aerobic
glycolysis in HCC cells via an ERK-dependent signaling pathway [63]. Additionally, PKM2
has been reported to fuel HCC metastasis and inhibit autophagy through the JAK/STAT3
pathway [64].

PKM2 also contributes to the development of an immunosuppressive microenviron-
ment during HCC progression [65]. PKM2 levels were positively correlated with the levels
of immune inhibitory cytokine and immune cell infiltration in HCC [28]. Lu et al. reported
that PD-L1+ macrophages display high levels of glycolysis via the PKM2/HIF-1α axis
triggered by fibronectin 1 derived from HCC cells [37]. Extracellular vesicles derived from
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tumor cells are critical mediators of cell-to-cell communication in the setting of tumorigene-
sis [66]. Ectosome PKM2 released by HCC cells facilitates monocyte-to-M2 macrophage
differentiation via the STAT3 signaling pathway and remodels an immunosuppressive
microenvironment, allowing immune escape and tumor progression [27]. Although PKM2
exhibits a dramatic promoting effect on HCC progression, the global ablation of PKM2
results in spontaneous tumor formation, highlighting the complexity of PKM2 in regulating
HCC [67].

3.2. PKM2 in CCA

CCA is a highly lethal adenocarcinoma of the hepatobiliary system that is character-
ized by late diagnosis, short-term survival, and chemoresistance [68]. PKM2-associated
aerobic glycolysis is also enhanced in CCA cells, resulting in low levels of pyruvate, a
decreased inhibitory effect on HDAC3, and the suppression of apoptosis [69]. Furthermore,
PKM2 is recognized as a key player in regulating EMT in CCA [70]. The knockdown of
PKM2 effectively inhibits the migration, invasion, and proangiogenic capability of CCA
cells via the downregulation of EMT-related markers [71]. Yu et al. provided in vivo
evidence that PKM2 inhibition suppresses CCA cell proliferation, tumor growth, and
neural invasion [38]. Moreover, the overexpression of CNRIP1 (a tumor suppressor) fa-
cilitated PKM2 degradation by activating parkin, which inhibited CCA progression in a
mouse xenograft model [72]. These findings accentuate the potential of targeting PKM2 to
combat CCA.

4. Inflammatory Liver Diseases

The liver is generally considered a vital organ that participates in metabolism, nutrient
storage, and detoxification. During these complex processes, the hepatic immune system is
challenged by numerous bacterial stimuli and harmful molecules. Maintaining homeostasis
requires the liver to be immunotolerant while remaining alert to potential infectious agents
or tissue damage [73]. Owing to these unique characteristics, the mechanisms that resolve
hepatic inflammation are extremely important [74]. Failure to sustain tissue homeostasis
leads to inflammation and liver injury, potentiating the development of fibrosis, cirrhosis,
and even HCC.

4.1. PKM2 in Fatty Liver Diseases

Liver steatosis, which is attributed to obesity, alcohol use, or chemical-induced injury,
may lead to fatty liver disease and further progress to steatohepatitis in the presence of
inflammation [75]. During this process, M1 macrophages exacerbate hepatic inflamma-
tion and disease progression, whereas M2 macrophages protect against steatosis and liver
fibrosis [76]. Particularly, the PKM2-driven progression of fatty liver disease is mainly
dependent on metabolic reprogramming and the M1 polarization of hepatic macrophages
(Figure 2). PKM2-mediated glycolysis is enhanced during macrophage M1 polarization in
NASH, which correlates with miR-122-5p downregulation [40]. Kong found that HSPA12A
binds to PKM2 and stimulates its nuclear translocation, which further provokes macrophage
M1 polarization and the secretion of pro-inflammatory cytokines, including IL-1β and
IL-6, ultimately leading to hepatocyte steatosis via paracrine effects [77]. PKM2 is also
upregulated in hepatocytes during steatosis, and the disruption of PKM2 activity alleviates
mitochondrial ROS and hepatocyte lipid accumulation [24]. Moreover, PKM2 has been
shown to regulate the metabolic skewing of Th17 cells, and cell-specific PKM2 knockout ef-
fectively ameliorates hepatic inflammation and NAFLD [41]. In ALD, hepatocyte DRAM1 is
upregulated in response to excessive ethanol, which increases PKM2-enriched extracellular
vesicles, thereby promoting macrophage M1 activation and hepatic inflammation [78].
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Figure 2. Role of macrophage PKM2 in the progression of NAFLD and liver fibrosis. During the
pathogenesis of NASH and liver fibrosis, several stimuli released by injured hepatocytes activate hep-
atic macrophages via TLR4/NF-κB signaling. Meanwhile, levels of FSTL1 and HSPA12A are elevated
when the expression of miR-122-5p is downregulated in response to liver inflammation, both of which
are reported to regulate PKM2 Y105 phosphorylation and nuclear translocation. Specifically, FSTL1
directly binds to PKM2 and maintains its stability, thereby promoting PKM2-mediated glycolysis and
dimer activity in M1 macrophages. On one hand, the nuclear translocation of PKM2 activates the
NF-κB-directed and HIF-1α-directed transcription of pro-inflammatory genes including IL-1β. On
the other hand, PKM2-HIF-1α transactivation upregulates the expression of several glycolytic genes,
which further fuel aerobic glycolysis and macrophage M1 polarization. Ultimately, PKM2-mediated
pro-inflammatory responses perpetuate hepatic inflammation and exacerbate the development of
NASH and liver fibrosis.

4.2. PKM2 in Liver Fibrosis and Cirrhosis

PKM2 is involved in the progression of liver fibrosis, which is a major cause of mor-
tality in patients with end-stage liver disease, and it is characterized by hepatocyte injury
and HSC (hepatic stellate cell) activation. Macrophages play an important role in per-
petuating hepatic inflammation and HSC activation via the release of pro-inflammatory
cytokines [79]. Rao et al. found that FSTL1 promotes PKM2 stability and nuclear transloca-
tion in macrophages, which further enhances macrophage M1 polarization, the production
of pro-inflammatory cytokines, HSC activation, and liver fibrosis [80]. PKM2 in HSC also
promotes its activation and fibrogenesis by facilitating aerobic glycolysis by regulating
histone H3K9 acetylation in activated HSCs [42]. Interestingly, activated HSC can release
PKM2-enriched exosomes that induce the glycolysis and activation of quiescent HSCs,
hepatic macrophages, and LSECs, forming a positive feedback loop that promotes the
progression of liver fibrosis [81].

5. Therapeutic Opportunities of PKM2-Targeted Therapy

PKM2-targeting molecules have been mainly characterized as inhibitors and agonists
(Table 1). When inhibitors limit PKM2 tetramer formation, agonists induce the transfor-
mation of PKM2 dimers into tetramers, thereby limiting its nuclear translocation [82,83].
Although both inhibitors and agonists can inhibit PKM2-mediated glycolysis and immune
activation, whether an inhibitor could affect PKM2 nuclear translocation remains incom-
pletely understood [58,59,84–86]. Nevertheless, treatments including traditional Chinese
medicine or nucleotides-related therapeutics have been shown to modulate PKM2 activity
in CLDs. In this section, we highlight the translational potential of PKM2-targeting therapy
in combating CLDs.
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Table 1. Main characteristics of PKM2-targeting compounds as CLD therapy.

Name Structure MW Disease
Types

Pharmacological
Properties Refs.

C3k
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konin unexpectedly induced PKM2 nuclear translocation and the transcription of BAG3, 
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in vivo, laying the groundwork for a potential ASO-based splicing therapy in treating liver 
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In neoplastic liver diseases, the inhibition of PKM2 by either shikonin or compound
3k suppresses glycolysis and proliferation, induces apoptosis in HCC cells in vitro and
enhances the antitumor effect of sorafenib in vivo [87,88,98]. Similarly, shikonin has been
reported to inhibit the growth and migration of CCA cells in vitro, whereas the in vivo
evidence remains lacking [90,91]. Meanwhile, shikonin aggravates the oxidative stress and
nutrient deficiency of HCC cells by causing mitochondria dysfunction, which further vali-
dates the efficacy of PKM2 inhibition in treating HCC [99]. Transarterial chemoembolization
(TACE) is a palliative and neoadjuvant treatment for HCC patients [100]. The upregulation
of PKM2 is strongly associated with a decreased response rate and shortened survival in
patients receiving TACE, whereas the inhibition of PKM2 by shikonin effectively improves
the efficacy of TACE in resistant cells [101]. Notably, Lu et al. reported that shikonin
unexpectedly induced PKM2 nuclear translocation and the transcription of BAG3, a gene
related to sustained cell survival, suggesting that a combination of a BAG3 inhibitor and
shikonin may exhibit better anti-HCC efficacy [85]. The PKM2 activator can also be used
to treat HCC. Unlike inhibitors, PKM2 activators display antitumor effects by enhancing
pyruvate kinase activity, resulting in complete glycolysis and decreased anabolism, thereby
inhibiting the growth of solid tumors including HCC [102,103]. In addition to the PKM2
inhibitor and activator, protein hydrolysate extracted from Oviductus Ranae reduces PKM2
expression by upregulating miR-491-5p and thereby efficiently prohibited HCC growth
and metastasis [104]. Moreover, PKM2 shifts metabolites to aerobic glycolysis, whereas
PKM1 drives metabolism toward oxidative phosphorylation. An antisense oligonucleotide
(ASO) that switches PKM splicing from tumor-promoting PKM2 to the PKM1 isoform limits
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aerobic glycolysis, thereby inhibiting HCC growth both in vitro and in vivo, laying the
groundwork for a potential ASO-based splicing therapy in treating liver cancer [105,106].

PKM2 is also a promising target for the treatment of inflammatory CLDs. Gwon
et al. discovered that shikonin attenuates HFD-induced NAFLD by stimulating fatty acid
oxidation and energy expenditure via AMPK activation [92]. Tong et al. found that shikonin
can alleviate liver fibrosis by downregulating the TGF-β1/Smad pathway [93]. Although
the role of PKM2 was not emphasized in the above studies, PKM2 is closely related to
mitochondrial fitness and autophagy [107]. Therefore, the therapeutic efficacy of shikonin
in NAFLD and liver fibrosis may be partially attributed to alterations in PKM2 activity.
Furthermore, pharmacological PKM2 agonists, which limit PKM2 nuclear translocation,
effectively ameliorate MCD-induced NASH in mice by re-educating macrophages from
M1 to M2 polarization [95]. Annexin A5 attenuates HFD-induced NASH by regulating
hepatic macrophage polarization by directly blocking PKM2 Y105 phosphorylation and
nuclear translocation [108]. Digoxin, a cardiac glycoside, ameliorates steatohepatitis by
disrupting PKM2–HIF-1α transactivation, thereby inhibiting metabolic reprogramming and
the pro-inflammatory activation of macrophages [96]. A plant-derived triterpene celastrol
that limits glycolysis and reprograms macrophage polarization from the pro-inflammatory
M1 phenotype to the anti-inflammatory M2 phenotype was found to simultaneously
restrain PKM2 nuclear translocation and enzymatic activity at the same time and protect
against NAFLD [109]. A recent study also demonstrated that lapachol ameliorates NAFLD
progression by directly inhibiting PKM2 phosphorylation and nuclear translocation, which
then suppresses Kupffer cell M1 polarization [110]. Furthermore, PKM2 is involved in
HSC activation, and limiting PKM2 nuclear translocation by TEPP-46 effectively attenuates
the progression of liver fibrosis by inhibiting HSC activation [42,94]. These studies feature
PKM2 as an attractive pharmacological target in treating CLDs.

6. Conclusions and Future Perspectives

Chronic liver diseases (CLDs) encompass a broad spectrum of liver diseases ranging
from ALD and NAFLD to life-threatening NASH, cirrhosis, and even HCC. The incidence
of most CLDs is continuously rising when effective or approved treatments are lacking.
The Warburg effect (aerobic glycolysis) plays an important role in the progression of
CLDs [111,112]. In neoplastic CLDs, including HCC and CCA, the Warburg effect fuels and
sustains tumor growth, metastasis, recurrence, and drug resistance [113]. In non-neoplastic
CLDs, the Warburg effect is tightly linked to immune activation and hepatic inflammation,
which is a condition that is profoundly involved in NASH and liver fibrosis [114–116].
Herein, understanding the mechanisms governing the Warburg effect in CLDs may help
identify novel therapeutic targets.

PKM2 is a rate-limiting enzyme in glycolysis. Owing to its unique dimeric form
with low pyruvate kinase activity, the upregulation of PKM2 is a hallmark of cells with
increased aerobic glycolysis. Although numerous studies have attempted to elucidate
the importance of PKM2 in the development of neoplastic diseases, its role of PKM2 in
inflammatory disorders, especially CLDs, has not been fully elucidated. The translation
of this knowledge into clinical practice is at a nascent stage, partly owing to the lack of
studies assessing the cell-specific role of PKM2 in CLDs, as the function of PKM2 in certain
hepatic cells, including LSECs and bile duct cells, remains elusive. Moreover, most studies
that have investigated the role of PKM2 were based on cellular and animal models, which
leaves the question of whether targeting PKM2 in human diseases will bring up beneficial
effects similar to what has been observed in in vivo models. In silico models, including
quantitative systems pharmacology (QSP) models, have been extensively applied to drug
discovery by illustrating the molecular interactions between biological systems and drug
candidates [117,118]. In particular, several well-established QSP models can be used to
study glucose metabolism [119,120], the Warburg effect [121] and liver function [122], all of
which may help further the translation study of PKM2 in combating CLDs.
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Undoubtedly, as a therapeutic target, PKM2 has unique advantages, since its ex-
pression is almost undetectable in the healthy liver and starts to increase as the disease
progresses. Furthermore, when cells undergo abnormal activation, PKM2 is mainly lo-
calized to the nucleus, potentiating the application of PKM2 activators in treating CLDs
without affecting normal or quiescent cells. In conclusion, although future studies are
required to illustrate the clinical significance of PKM2 targeting molecules along with their
immediate and long-term health effects, PKM2 may serve as a novel therapeutic target for
both neoplastic and inflammatory CLDs.

Author Contributions: Conceptualization, J.H. and H.Q.; writing—original draft preparation, H.Q.
and J.L.; writing—review and editing, H.Q., J.L., D.Z., R.X. and L.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Guangdong Basic and Applied Basic Research Foundation
[2023A1515012905].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

2-DG 2-deoxy-D-glucose
ALD alcoholic liver disease
AMPK AMP-activated protein kinase
BAG3 BAG cochaperone 3
CLD chronic liver disease
CCA cholangiocarcinoma
CCL20 C-C motif chemokine ligand 20
CNRIP1 cannabinoid receptor interacting protein 1
DRAM1 DNA damage regulated autophagy modulator 1
EMT Epithelial–mesenchymal transition
FSTL1 follistatin-like 1
GLUT1 glucose transporter protein type 1
GTPBP4 GTP binding protein 4
HCC hepatocellular carcinoma
HSC hepatic stellate cell
HSP90 heat shock protein 90
HIF-1α hypoxia-inducible factor 1 alpha
HSPA12A heat shock protein family A member 12A
HFD high-fat diet
ICI immune-checkpoint inhibitor
LSEC liver sinusoidal endothelial cell
LF liver fibrosis
MAT2B methionine adenosyltransferase II beta
MyD88 myeloid differentiation primary response 88
MCD methionine-choline deficient diet
NAFLD nonalcoholic fatty liver disease
NASH nonalcoholic steatohepatitis
OXPHOS oxidative phosphorylation
PD-L1 programmed death-ligand 1
PRMT6 protein arginine N-methyltransferase 6
STAT3 signal transducer and activator of transcription 3
SMADS suppressor of mothers against decapentaplegic
Th17 T helper 17
TACE trans-arterial chemoembolization
TGF-β1 transforming growth factor beta 1
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