Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy
Abstract
:1. Introduction
2. Genes and Molecular Mechanisms Contributing to ALS
Primary Causative Genes and Function
3. Additional Rare ALS-Related Genes
3.1. Genes Involved in Protein Trafficking
3.2. Genes Influencing Proteosome/Chaperone Functions
3.3. Variants with the Potential to Impact Autophagic Pathways
3.4. Genes Impacting Cytoskeletal Dynamics or Microtubule Functions
3.5. Genes Involved in the Regulation of DNA/RNA Processing
3.6. The Potential Impact of Genetic Variants on Mitochondrial Functions
3.7. Genes, Which Could Impact Other Pathways
3.8. Copy Number Variants (CNVs) in ALS
4. Potential ALS Biomarkers
4.1. Biomarkers of Disease Diagnosis and Differential Diagnosis
4.2. Biomarkers of ALS Prognosis and Disease Progression
4.3. Biomarkers of ALS Onset Prediction
4.4. MiRNAs and Extracellular Vesicles in ALS
miRNA | Subjects | Biofluids/Tissues | Results | Reference |
---|---|---|---|---|
miR-146a, miR-524-5p and miR-582-3p | 3 controls and 5 sALS | spinal cord lysates | These miRNAs were down-regulated in ALS, regulating the NFL mRNA | [232] |
hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, etc. | 5 controls and 5 sALS, validation: 83 SALS and 61 controls | leukocytes | hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935 were down-regulated in ALS patients. The hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935 may be useful in sALS diagnosis | [233] |
miR-338-3p | 72 sALS, 62 controls (leukocytes), 10 controls, 10 sALS (CSF), 7 sALS, 3 control (spinal cord) | Leukocytes, CSF, serum, spinal cord | miR-338-3p was up-regulated in leukocytes, CSF, serum, and spinal cord of sALS patients miR-388-3p was localized in the grey matter of ALS patients | [234] |
Several miRNAs | 24 ALS, 24 controls | CSF | miR181a-5p was up-regulated, miR21-5p and miR15b-5p were down-regulated miR181a-5p/miR21-5p and miR181a-5p/miR15b-5p ratios may be useful in ALS detection | [226] |
Circulating miR-181 | 252 ALS patients | plasma | miR-181 could be a possible prognostic marker | [235] |
miR-206, miR-143-3p, miR-374b-5p | 27 sALS, 25 controls | Serum | miR-206 and miR-143-3p were increased and miR-374b-5p was decreased in patients. | [236] |
EV miRNAs | 50 patients, 50 controls | Plasma EVs | hsa-miR-4454, miR-10b-5p, miR-29b-3p were down-regulated, miR-151a-5p, miR-146a-5p, miR-199a-3p, miR-199a-5p, miR-151a-3p were up-regulated in ALS patients, possible diagnostic candidates | [237] |
6 sALS, 9 FTD, 6 AD, 9 PD, and 9 controls | Plasma small and large EVs | Deregulated miRNAs in EVs of ALS patients (such as hsa-miR-206, hsa-miR-205-5p, miR-1-3p, hsa-miR-205-5p), EVs may be helpful in differential diagnosis | [238] |
5. Discussion and Future Promise of ALS Therapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
8-OHdG | 8-hydroxy-2′-deoxyguanosine |
AAV | adeno-associated virus |
AD | Alzheimer’s disease |
ALS | Amyotrophic lateral sclerosis |
ALS2 | alsin |
ANG | angiogenin |
ANXA11 | Annexin 11 |
ASO | antisense oligonucleotides |
ATP6v1g1 | ATPase H+ Transporting V1 Subunit G1 |
ATXN2 | ataxin2 |
BD | bipolar disease |
BDNF | Brain-derived neurotrophic factor |
C1QC | subcomponent subunit C |
C9orf72 | chromosome 9 open reading frame 72 |
CAP-Gly | N-terminal glycine-rich and cytoskeleton-associated protein |
Ccl2 | C-C Motif Chemokine Ligand 2 |
CCDC190 | coiled-coil domain-containing protein 19, mitochondrial |
CCNF | Cyclin F |
CHCHD2 | Coiled-coil-helix-coiled-coil-helix domain containing 2 |
CHCHD10 | Coiled-coil-helix-coiled-coil-helix domain containing 10 |
CHIT1 | Chitotriosidase-1 |
CHI3L1 and 2 | chitinase-3-like-1 and 2 |
CHMP2B | Charged multivesicular body protein 2 |
CK1 | casein kinase 1 |
CMT | Charcot-Marie-Tooth |
CNVs | copy number variants |
COL6A1 | Collagen Type VI Alpha 1 Chain |
COX | Cyclooxygenase |
CREST | Calcium-Responsive Transactivator |
CRP | C-Reactive Protein |
CRYBB2 | Crystallin Beta B2 |
CRYBB3 | Crystallin Beta B3 |
CRYBB2P1 | Crystallin Beta B2 Pseudogene 1 |
CSF | cerebrospinal fluid |
Cxcl10 | C-X-C motif chemokine ligand 10 |
DAO | D-Amino Acid Oxidase |
DCTN1 | Dynactin 1 |
DPP6 | dipeptidyl-peptidase 6 |
DPR | dipeptide repeat protein |
EGF | Epidermal Growth Factor |
ESCRT-III | Endosomal Sorting Complex Required For Transport III |
ER | endoplasmic reticulum |
ERBB4 or HER4 | Erb-B2 Receptor Tyrosine Kinase 4 |
EV | extracellular vehicles |
fALS | familial ALS |
FIG4 | phosphoinositide 5-phosphatase |
FTD | frontotemporal dementia |
FUS | Fused In Sarcoma |
Fs | frameshift |
GOF | gain-of-function toxicity |
GSH | glutathione |
GSSG | glutathione disulfide |
HD | Huntington’s disease |
hnRNP | heterogeneous nuclear ribonucleoparticle |
HNRNPA | Heterogeneous Nuclear Ribonucleoprotein A1 |
HREM | hexanucleotide repeat expansion mutation |
HSP | hereditary spastic paraplegia |
HSPB1 | chaperon small heat-shock protein family B member 1 |
IBM | Inclusion-Body Myositis |
IL | interleukin |
IP3 | the inositol trisphosphate receptor |
LC3 | Microtubule-associated protein 1A/1B-light chain 3 |
LRP5L | LDL Receptor Related Protein 5 Like |
LMNs | lower motor neurons |
LOF | loss-of-function |
KEAP1 | Kelch-like ECH-associated protein 1 |
MATR3 | Matrin3 |
MCP-1 | monocyte chemoattractant protein-1 |
MDA | malondialdehyde |
MMN | multifocal motor neuropathy |
MMP | matrix metalloproteases |
MND | motor neuron diseases |
MSP | multisystem proteinopathy |
MT-MMP | membrane type-matrix metalloproteinase |
MVBs | multivesicular bodies |
NES | nuclear export signal motif |
NEK1 | NMA-related kinase 1 |
NEFH | Neurofilament Heavy Chain |
NEFM | Neurofilament Modest Chain |
NFs | neurofilaments |
NFHs | neurofilament heavy chain |
NFLs | neurofilament light chain |
NFMs | neurofilament medium chain |
NFE2L2/Nrf2 | nuclear erythroid derived 2, Nuclear Factor Erythroid 2-Related Factor 2 |
NIPA | NIPA Magnesium Transporter 1 |
NIR | INHAT repressor |
NLS | nuclear localization signal |
NMDA | N-methyl-D-aspartate |
NOC2L | nucleolar complex protein 2 homolog |
NRGs | neuregulin proteins |
OPA1 | optic atrophy 1 |
OPTN | optineurin |
PD | Parkinson’s disease |
PDGF | Platelet-derived growth factor |
PDCD6IP | programmed cell death 6-interacting protein |
PFN1 | Profilin-1 |
PMA | progressive muscular atrophy |
polyQ | Polyglutamine |
PRPH | Peripherin |
PRKN | parkin |
PTPRZ1 | receptor-type tyrosine-protein phosphatase zeta |
RRM | RNA recognition motifs |
RGG box | arginine-glycine rich box |
ROS | reactive oxygen species |
sALS | sporadic ALS |
SBMA | spinal and bulbar muscular atrophy |
SERPINA3 | alpha-1-antichymotrypsin |
SETX | Sentaxin |
SIGMAR1 | Sigma Non-Opioid Intracellular Receptor 1 |
SMNs | survival motor neurons |
SOD1 | Cu–Zn superoxide dismutase |
SPG11 | Spastacin |
SPP1 | secreted phosphoprotein 1 |
SQSTM | Sequestosome 1 |
SSR | subsynaptic reticulum |
TAF15 | TATA-box-binding protein-associated factor 15 |
TARDBP or TDP43 | TAR DNA Binding Protein 43 |
TAS | total antioxidant status |
TBK1 | TANK Binding Kinase 1 |
TIMP | tissue inhibitor of metalloproteinases |
TNF | tumor necrosis factor |
TUBA4A | Tubulin Alpha 4a |
UBQLN2 | Ubiquilin-2 |
UMN | upper motor neurons |
UPF1 | RNA Helicase and ATPase |
UPF3b | Up-Frameshift Suppressor 3 Homolog B |
UPS | ubiquitin-proteasome system |
VAPB | vesicle-associated membrane-protein-associated protein B |
VCAN | versican core protein |
VCP | Valosin Containing Protein |
YKL-40 | chitinase-3-like protein 1 |
References
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef]
- Hulisz, D. Amyotrophic lateral sclerosis: Disease state overview. Am. J. Manag. Care 2018, 24 (Suppl. S15), S320–S326. [Google Scholar]
- Ravits, J.M.; La Spada, A.R. ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration. Neurology 2009, 73, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Testa, D.; Lovati, R.; Ferrarini, M.; Salmoiraghi, F.; Filippini, G. Survival of 793 patients with amyotrophic lateral sclerosis diagnosed over a 28-year period. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2004, 5, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chiò, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E.; Eurals, F. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry 2010, 81, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Chio, A.; Logroscino, G.; Hardiman, O.; Swingler, R.; Mitchell, D.; Beghi, E.; Traynor, B. Eurals Consortium Prognostic factors in ALS: A critical review. Amyotroph. Lateral Scler. 2009, 10, 310–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walhout, R.; Verstraete, E.; Heuvel, M.P.V.D.; Veldink, J.H.; Berg, L.H.V.D. Patterns of symptom development in patients with motor neuron disease. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrell, J.R.; Kiernan, M.C.; Vucic, S.; Hodges, J.R. Motor neuron dysfunction in frontotemporal dementia. Brain 2011, 134, 2582–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramzon, Y.A.; Fratta, P.; Traynor, B.J.; Chia, R. The Overlapping Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front. Neurosci. 2020, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Brown, R.H., Jr. Genetics of Amyotrophic Lateral Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a024125. [Google Scholar] [CrossRef]
- Karch, C.M.; Wen, N.; Fan, C.C.; Yokoyama, J.S.; Kouri, N.; Ross, O.; Höglinger, G.; Müller, U.; Ferrari, R.; Hardy, J.; et al. Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum. JAMA Neurol. 2018, 75, 860–875. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Ingre, C.; Roos, P.M.; Kamel, F.; Piehl, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiology 2015, 7, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernyshova, K.; Inoue, K.; Yamashita, S.-I.; Fukuchi, T.; Kanki, T. Glaucoma-Associated Mutations in the Optineurin Gene Have Limited Impact on Parkin-Dependent Mitophagy. Investig. Opthalmology Vis. Sci. 2019, 60, 3625–3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nekoua, M.P.; Mercier, A.; Alhazmi, A.; Sane, F.; Alidjinou, E.K.; Hober, D. Fighting Enteroviral Infections to Prevent Type 1 Diabetes. Microorganisms 2022, 10, 768. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kapoor, V.; Thotala, D.; Hallahan, D.E. TAF15 contributes to the radiation-inducible stress response in cancer. Oncotarget 2020, 11, 2647–2659. [Google Scholar] [CrossRef]
- Yao, L.; Cen, J.; Pan, J.; Liu, D.; Wang, Y.; Chen, Z.; Ruan, C.; Chen, S. TAF15–ZNF384 fusion gene in childhood mixed phenotype acute leukemia. Cancer Genet. 2017, 211, 1–4. [Google Scholar] [CrossRef]
- Silverman, J.M.; Fernando, S.M.; Grad, L.I.; Hill, A.F.; Turner, B.J.; Yerbury, J.J.; Cashman, N.R. Disease Mechanisms in ALS: Misfolded SOD1 Transferred through Exosome-Dependent and Exosome-Independent Pathways. Cell. Mol. Neurobiol. 2016, 36, 377–381. [Google Scholar] [CrossRef]
- Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci. 2019, 13, 1310. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.J.; McKeown, S.R.; Rashid, S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 2016, 577, 109–118. [Google Scholar] [CrossRef]
- Huai, J.; Zhang, Z. Structural Properties and Interaction Partners of Familial ALS-Associated SOD1 Mutants. Front. Neurol. 2019, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Wallace, M.A.; Liou, L.L.; Martins, J.; Clement, M.H.; Bailey, S.; Longo, V.D.; Valentine, J.S.; Gralla, E.B. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J. Biol. Chem. 2004, 279, 32055–32062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, P.V.S.; Pinto, W.B.V.R.; Farias, I.B.; Badia, B.M.L.; Pinto, I.F.N.; Costa, G.C.; Marin, C.M.; Dos Santos Jorge, A.C.; Souto, E.C.; Serrano, P.L.; et al. Progressive spastic tetraplegia and axial hypotonia (STAHP) due to SOD1 deficiency: Is it really a new entity? Orphanet J. Rare Dis. 2021, 16, 360. [Google Scholar] [CrossRef]
- Orrell, R.W. Amyotrophic lateral sclerosis: Copper/zinc superoxide dismutase (SOD1) gene mutations. Neuromuscul. Disord. 2000, 10, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Q.; Ma, Y.; Yuan, H.-Y.; Zhao, K.; Zhang, M.-Y.; Wang, Q.; Huang, X.; Xu, W.-C.; Dai, B.; Chen, J.; et al. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nat. Commun. 2022, 13, 3491. [Google Scholar] [CrossRef]
- Broom, H.R.; Rumfeldt, J.A.O.; Vassall, K.A.; Meiering, E.M. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1. Protein Sci. 2015, 24, 2081–2089. [Google Scholar] [CrossRef] [Green Version]
- Kabashi, E.; Valdmanis, P.N.; Dion, P.; Rouleau, G.A. Oxidized/misfolded superoxide dismutase-1: The cause of all amyotrophic lateral sclerosis? Ann. Neurol. 2007, 62, 553–559. [Google Scholar] [CrossRef]
- Peggion, C.; Scalcon, V.; Massimino, M.L.; Nies, K.; Lopreiato, R.; Rigobello, M.P.; Bertoli, A. SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Antioxidants 2022, 11, 614. [Google Scholar] [CrossRef]
- Saeed, M.; Yang, Y.; Deng, H.-X.; Hung, W.-Y.; Siddique, N.; Dellefave, L.; Gellera, C.; Andersen, P.M.; Siddique, T. Age and founder effect of SOD1 A4V mutation causing ALS. Neurology 2009, 72, 1634–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentine, J.S.; Hart, P.J. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 2003, 100, 3617–3622. [Google Scholar] [CrossRef]
- Zou, Z.; Liu, M.-S.; Li, X.-G.; Cui, L.-Y. H46R SOD1 mutation is consistently associated with a relatively benign form of amyotrophic lateral sclerosis with slow progression. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 610–613. [Google Scholar] [CrossRef]
- Holmøy, T.; Bjørgo, K.; Roos, P.M. Slowly Progressing Amyotrophic Lateral Sclerosis Caused by H46R SOD1 Mutation. Eur. Neurol. 2007, 58, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Antonyuk, S.; Elam, J.S.; Hough, M.A.; Strange, R.W.; Doucette, P.A.; Rodriguez, J.A.; Hayward, L.J.; Valentine, J.S.; Hart, P.J.; Hasnain, S.S. Structural consequences of the familial amyotrophic lateral sclerosis SOD1 mutant His46Arg. Protein Sci. 2005, 14, 1201–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreilaus, F.; Guerra, S.; Masanetz, R.; Menne, V.; Yerbury, J.; Karl, T. Novel behavioural characteristics of the superoxide dismutase 1 G93A (SOD1G93A) mouse model of amyotrophic lateral sclerosis include sex-dependent phenotypes. Genes Brain Behav. 2020, 19, e12604. [Google Scholar] [CrossRef]
- Hensley, K.; Mhatre, M.; Mou, S.; Pye, Q.N.; Stewart, C.; West, M.; Williamson, K.S. On the relation of oxidative stress to neuroinflammation: Lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid. Redox Signal. 2006, 8, 2075–2087. [Google Scholar] [CrossRef]
- Sephton, C.F.; Cenik, B.; Cenik, B.K.; Herz, J.; Yu, G. TDP-43 in central nervous system development and function: Clues to TDP-43-associated neurodegeneration. Biol. Chem. 2012, 393, 589–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, M.; Lee, S.; Jeon, Y.-M.; Kim, S.; Kwon, Y.; Kim, H.-J. The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Exp. Mol. Med. 2020, 52, 1652–1662. [Google Scholar] [CrossRef]
- Peng, C.; Trojanowski, J.Q.; Lee, V.M.-Y. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 2020, 16, 199–212. [Google Scholar] [CrossRef]
- Buratti, E.; Baralle, F.E. TDP-43: Gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem. Sci. 2012, 37, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Deng, J.; Dong, J.; Liu, J.; Bigio, E.H.; Mesulam, M.; Wang, T.; Sun, L.; Wang, L.; Lee, A.Y.-L.; et al. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet. 2019, 15, e1007947. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Ngo, S.T. Altered TDP-43 Structure and Function: Key Insights into Aberrant RNA, Mitochondrial, and Cellular and Systemic Metabolism in Amyotrophic Lateral Sclerosis. Metabolites 2022, 12, 709. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Shan, J.; Wang, Y.; Chen, G. Insights into the aggregation mechanism of RNA recognition motif domains in TDP-43: A theoretical exploration. R. Soc. Open Sci. 2021, 8, 210160. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Wei, Y.; Lu, Y.; Song, J. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol. 2016, 14, e1002338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, R.H.; Ke, Y.D.; Ittner, L.M.; Halliday, G.M. ALS/FTLD: Experimental models and reality. Acta Neuropathol. 2017, 133, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.S.; Snead, D.; Lee, J.J.; McCaffery, J.M.; Shorter, J.; Gitler, A.D. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 2009, 284, 20329–20339. [Google Scholar] [CrossRef] [Green Version]
- Mitsuzawa, S.; Akiyama, T.; Nishiyama, A.; Suzuki, N.; Kato, M.; Warita, H.; Izumi, R.; Osana, S.; Koyama, S.; Kato, T.; et al. TARDBP p.G376D mutation, found in rapid progressive familial ALS, induces mislocalization of TDP-43. Eneurologicalsci 2018, 11, 20–22. [Google Scholar] [CrossRef]
- Lattante, S.; Rouleau, G.A.; Kabashi, E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: Summary and update. Hum. Mutat. 2013, 34, 812–826. [Google Scholar] [CrossRef]
- Pesiridis, G.S.; Lee, V.M.-Y.; Trojanowski, J.Q. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum. Mol. Genet. 2009, 18, R156–R162. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ding, X.; Akram, N.; Xue, S.; Luo, S.-Z. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases. Molecules 2019, 24, 1622. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.Y.; Agrawal, I.; Tyan, S.-H.; Sanford, E.; Chang, W.-T.; Lim, K.; Ong, J.; Tan, B.S.Y.; Moe, A.A.K.; Yu, R.; et al. Dysfunction in nonsense-mediated decay, protein homeostasis, mitochondrial function, and brain connectivity in ALS-FUS mice with cognitive deficits. Acta Neuropathol. Commun. 2021, 9, 9. [Google Scholar] [CrossRef]
- Deng, H.; Gao, K.; Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol. 2014, 10, 337–348. [Google Scholar] [CrossRef]
- An, H.; Skelt, L.; Notaro, A.; Highley, J.R.; Fox, A.H.; La Bella, V.; Buchman, V.L.; Shelkovnikova, T.A. ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathol. Commun. 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Huang, E.J. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 2016, 1647, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Scotter, E.L.; Chen, H.-J.; Shaw, C.E. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015, 12, 352–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sama, R.R.K.; Fallini, C.; Gatto, R.; McKeon, J.E.; Song, Y.; Rotunno, M.S.; Penaranda, S.; Abdurakhmanov, I.; Landers, J.E.; Morfini, G.; et al. ALS-linked FUS exerts a gain of toxic function involving aberrant p38 MAPK activation. Sci. Rep. 2017, 7, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Liu, S.; Liu, G.; Öztürk, A.; Hicks, G.G. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 2013, 9, e1003895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamelgarn, M.; Chen, J.; Kuang, L.; Jin, H.; Kasarskis, E.J.; Zhu, H. ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 2018, 115, E11904–E11913. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Rademakers, R.; Roeber, S.; Baker, M.; Kretzschmar, H.A.; Mackenzie, I.R.A. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009, 132, 2922–2931. [Google Scholar] [CrossRef] [Green Version]
- King, O.D.; Gitler, A.D.; Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012, 1462, 61–80. [Google Scholar] [CrossRef] [Green Version]
- Nakaya, T.; Maragkakis, M. Amyotrophic Lateral Sclerosis associated FUS mutation shortens mitochondria and induces neurotoxicity. Sci. Rep. 2018, 8, 15575. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Zhao, X.; Wu, W.; Wang, Q.; Liu, J.; Zhang, W.; Yuan, Y.; Hong, D.; Wang, Z.; Deng, J. Widespread Mislocalization of FUS Is Associated with Mitochondrial Abnormalities in Skeletal Muscle in Amyotrophic Lateral Sclerosis With FUS Mutations. J. Neuropathol. Exp. Neurol. 2022, 81, 172–181. [Google Scholar] [CrossRef]
- Smeyers, J.; Banchi, E.G.; Latouche, M. C9ORF72: What It Is, What It Does, and Why It Matters. Front Cell Neurosci. 2021, 15, 661447. [Google Scholar] [CrossRef] [PubMed]
- DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011, 72, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Renton, A.E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten, J.C.; Myllykangas, L.; et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011, 72, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gijselinck, I.; Van Mossevelde, S.; van der Zee, J.; Sieben, A.; Engelborghs, S.; De Bleecker, J.; Ivanoiu, A.; Deryck, O.; Edbauer, D.; Zhang, M.; et al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry 2015, 21, 1112–1124. [Google Scholar] [CrossRef] [Green Version]
- Van der Zee, J.; Gijselinck, I.; Dillen, L.; Van Langenhove, T.; Theuns, J.; Engelborghs, S.; Philtjens, S.; Vandenbulcke, M.; Sleegers, K.; Sieben, A.; et al. European Early-Onset Dementia Consortium. A pan-European study of the C9orf72 repeat associated with FTLD: Geographic prevalence, genomic instability, and intermediate repeats. Hum. Mutat. 2013, 34, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Koppers, M.; Blokhuis, A.M.; Westeneng, H.; Terpstra, M.L.; Zundel, C.A.C.; de Sá, R.V.; Schellevis, R.D.; Waite, A.J.; Blake, D.J.; Veldink, J.H.; et al. C 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann. Neurol. 2015, 78, 426–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, K.; Weng, S.-M.; Arzberger, T.; May, S.; Rentzsch, K.; Kremmer, E.; Schmid, B.; Kretzschmar, H.A.; Cruts, M.; Van Broeckhoven, C.; et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013, 339, 1335–1338. [Google Scholar] [CrossRef]
- Quaegebeur, A.; Glaria, I.; Lashley, T.; Isaacs, A.M. Soluble and insoluble dipeptide repeat protein measurements in C9orf72-frontotemporal dementia brains show regional differential solubility and correlation of poly-GR with clinical severity. Acta Neuropathol. Commun. 2020, 8, 184. [Google Scholar] [CrossRef]
- May, S.; Hornburg, D.; Schludi, M.H.; Arzberger, T.; Rentzsch, K.; Schwenk, B.M.; Grässer, F.A.; Mori, K.; Kremmer, E.; Banzhaf-Strathmann, J.; et al. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol. 2014, 128, 485–503. [Google Scholar] [CrossRef] [Green Version]
- Mizielinska, S.; Grönke, S.; Niccoli, T.; Ridler, C.E.; Clayton, E.L.; Devoy, A.; Moens, T.; Norona, F.E.; Woollacott, I.O.C.; Pietrzyk, J.; et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345, 1192–1194. [Google Scholar] [CrossRef] [Green Version]
- Haeusler, A.R.; Donnelly, C.J.; Rothstein, J.D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 2016, 17, 383–395. [Google Scholar] [CrossRef]
- Chitiprolu, M.; Jagow, C.; Tremblay, V.; Bondy-Chorney, E.; Paris, G.; Savard, A.; Palidwor, G.; Barry, F.A.; Zinman, L.; Keith, J.; et al. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 2018, 9, 2794. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.; Herranz-Martin, S.; Karyka, E.; Liao, C.; Lewis, K.; Elsayed, W.; Lukashchuk, V.; Chiang, S.-C.; Ray, S.; Mulcahy, P.J.; et al. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci. 2017, 20, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Mead, R.J.; Shan, N.; Reiser, H.J.; Marshall, F.; Shaw, P.J. Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 2023, 22, 185–212. [Google Scholar] [CrossRef]
- Ugbode, C.; West, R.J. Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol. Dis. 2021, 147, 105144. [Google Scholar] [CrossRef] [PubMed]
- Babst, M.; Katzmann, D.J.; Estepa-Sabal, E.J.; Meerloo, T.; Emr, S.D. Escrt-III: An endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 2002, 3, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Sun, X.; Yue, W.; Duan, Y.; Hu, R.; Zhang, K.; Ni, J.; Cui, J.; Wang, Q.; Chen, Y.; et al. CHMP2B regulates TDP-43 phosphorylation and cytotoxicity independent of autophagy via CK1. J. Cell Biol. 2022, 221, e202103033. [Google Scholar] [CrossRef] [PubMed]
- Koppers, M.; van Blitterswijk, M.M.; Vlam, L.; Rowicka, P.A.; van Vught, P.W.; Groen, E.J.; Spliet, W.G.; Engelen-Lee, J.; Schelhaas, H.J.; de Visser, M.; et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 2012, 33, 837.e7–837.e13. [Google Scholar] [CrossRef]
- Ferrari, V.; Cristofani, R.; Tedesco, B.; Crippa, V.; Chierichetti, M.; Casarotto, E.; Cozzi, M.; Mina, F.; Piccolella, M.; Galbiati, M.; et al. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int. J. Mol. Sci. 2022, 23, 1939. [Google Scholar] [CrossRef]
- Shaw, C.E. Capturing VCP: Another Molecular Piece in the ALS Jigsaw Puzzle. Neuron 2010, 68, 812–814. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.O.; Mandrioli, J.; Benatar, M.; Abramzon, Y.; Van Deerlin, V.M.; Trojanowski, J.Q.; Gibbs, J.R.; Brunetti, M.; Gronka, S.; Wuu, J.; et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 2010, 68, 857–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadoni, M.P.L.; Biggio, M.L.; Arru, G.; Secchi, G.; Orrù, N.; Clemente, M.G.; Sechi, G.; Yamoah, A.; Tripathi, P.; Orrù, S.; et al. VAPB ER-Aggregates, A Possible New Biomarker in ALS Pathology. Cells 2020, 9, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landers, J.E.; Leclerc, A.L.; Shi, L.; Virkud, A.; Cho, T.; Maxwell, M.M.; Henry, A.F.; Polak, M.; Glass, J.D.; Kwiatkowski, T.J.; et al. New VAPB deletion variant and exclusion of VAPB mutations in familial ALS. Neurology 2008, 70, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, G.; Lenk, G.M.; Reddel, S.W.; Grant, A.E.; Towne, C.F.; Ferguson, C.J.; Simpson, E.; Scheuerle, A.; Yasick, M.; Hoffman, S.; et al. Distinctive genetic and clinical features of CMT4J: A severe neuropathy caused by mutations in the PI(3,5)P2 phosphatase FIG4. Brain 2011, 134, 1959–1971. [Google Scholar] [CrossRef] [Green Version]
- Kon, T.; Mori, F.; Tanji, K.; Miki, Y.; Toyoshima, Y.; Yoshida, M.; Sasaki, H.; Kakita, A.; Takahashi, H.; Wakabayashi, K. ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neuropathology 2014, 34, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Osmanovic, A.; Rangnau, I.; Kosfeld, A.; Abdulla, S.; Janssen, C.; Auber, B.; Raab, P.; Preller, M.; Petri, S.; Weber, R.G. FIG4 variants in central European patients with amyotrophic lateral sclerosis: A whole-exome and targeted sequencing study. Eur. J. Hum. Genet. 2017, 25, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Bertolin, C.; Querin, G.; Bozzoni, V.; Martinelli, I.; De Bortoli, M.; Rampazzo, A.; Gellera, C.; Pegoraro, E.; Sorarù, G. New FIG4 gene mutations causing aggressive ALS. Eur. J. Neurol. 2018, 25, e41–e42. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Lin, J.-L.; Feng, S.-Y.; Che, C.-H.; Huang, H.-P.; Zou, Z.-Y. Novel Variants in the FIG4 Gene Associated with Chinese Sporadic Amyotrophic Lateral Sclerosis with Slow Progression. J. Clin. Neurol. 2022, 18, 41–47. [Google Scholar] [CrossRef]
- Khani, M.; Shamshiri, H.; Fatehi, F.; Rohani, M.; Ashtiani, B.H.; Akhoundi, F.H.; Alavi, A.; Moazzeni, H.; Taheri, H.; Ghani, M.T.; et al. Description of combined ARHSP/JALS phenotype in some patients with SPG11 mutations. Mol. Genet. Genom. Med. 2020, 8, e1240. [Google Scholar]
- Boutry, M.; Pierga, A.; Matusiak, R.; Branchu, J.; Houllegatte, M.; Ibrahim, Y.; Balse, E.; El Hachimi, K.-H.; Brice, A.; Stevanin, G.; et al. Loss of spatacsin impairs cholesterol trafficking and calcium homeostasis. Commun. Biol. 2019, 2, 380. [Google Scholar] [CrossRef] [Green Version]
- Blauw, H.M.; van Rheenen, W.; Koppers, M.; Van Damme, P.; Waibel, S.; Lemmens, R.; van Vught, P.W.J.; Meyer, T.; Schulte, C.; Gasser, T.; et al. NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis. Hum. Mol. Genet. 2012, 21, 2497–2502. [Google Scholar] [CrossRef] [Green Version]
- Goytain, A.; Hines, R.M.; El-Husseini, A.; Quamme, G.A. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J. Biol. Chem. 2007, 282, 8060–8068. [Google Scholar] [CrossRef] [Green Version]
- Corrado, L.; Brunetti, M.; Di Pierro, A.; Barberis, M.; Croce, R.; Bersano, E.; De Marchi, F.; Zuccalà, M.; Barizzone, N.; Calvo, A.; et al. Analysis of the GCG repeat length in NIPA1 gene in C9orf72-mediated ALS in a large Italian ALS cohort. Neurol Sci. 2019, 40, 2537–2540. [Google Scholar] [CrossRef]
- Tazelaar, G.H.; Dekker, A.M.; van Vugt, J.J.; van der Spek, R.A.; Westeneng, H.-J.; Kool, L.J.; Kenna, K.P.; van Rheenen, W.; Pulit, S.L.; McLaughlin, R.L.; et al. Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiol. Aging 2019, 74, 234.e9–234.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.L.; Topp, S.; Yang, S.; Smith, B.; Fifita, J.A.; Warraich, S.T.; Zhang, K.Y.; Farrawell, N.; Vance, C.; Hu, X.; et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun. 2016, 7, 11253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, S.L.; Hogan, A.; Davidson, J.M.; Cheng, F.; Luu, L.; Morsch, M.; Blair, I.; Chung, R.; Lee, A. Cyclin F, Neurodegeneration, and the Pathogenesis of ALS/FTD. Neuroscientist 2022, 5, 10738584221120182. [Google Scholar] [CrossRef] [PubMed]
- Farrawell, N.E.; Bax, M.; McAlary, L.; McKenna, J.; Maksour, S.; Do-Ha, D.; Rayner, S.L.; Blair, I.P.; Chung, R.S.; Yerbury, J.J.; et al. ALS-linked CCNF variant disrupts motor neuron ubiquitin homeostasis. Hum. Mol. Genet. 2023, 32, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Nakagawa, T.; Morohoshi, A.; Nakagawa, M.; Ishida, N.; Suzuki, N.; Aoki, M.; Nakayama, K. Pathogenic mutations in the ALS gene CCNF cause cytoplasmic mislocalization of Cyclin F and elevated VCP ATPase activity. Hum. Mol. Genet. 2019, 28, 3486–3497. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.-X.; Chen, W.; Hong, S.-T.; Boycott, K.M.; Gorrie, G.H.; Siddique, N.; Yang, Y.; Fecto, F.; Shi, Y.; Zhai, H.; et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011, 477, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Monteiro, M.J. Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations. PLoS ONE 2015, 10, e0130162. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.J.; Cai, A.; Greenslade, J.E.; Higgins, N.R.; Fan, C.; Le, N.T.; Tatman, M.; Whiteley, A.M.; Prado, M.A.; Dieriks, B.V.; et al. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc. Natl. Acad. Sci. USA 2021, 118, e2114051118. [Google Scholar] [CrossRef]
- Capponi, S.; Geuens, T.; Geroldi, A.; Origone, P.; Verdiani, S.; Cichero, E.; Adriaenssens, E.; De Winter, V.; di Poggio, M.B.; Barberis, M.; et al. Molecular Chaperones in the Pathogenesis of Amyotrophic Lateral Sclerosis: The Role of HSPB1. Hum. Mutat. 2016, 37, 1202–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilman, P.L.; Song, S.; Miranda, C.J.; Meyer, K.; Srivastava, A.K.; Knapp, A.; Wier, C.G.; Kaspar, B.K.; Kolb, S.J. HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons. Exp. Neurol. 2017, 297, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Haidar, M.; Asselbergh, B.; Adriaenssens, E.; De Winter, V.; Timmermans, J.P.; Auer-Grumbach, M.; Juneja, M.; Timmerman, V. Neuropathy-causing mutations in HSPB1 impair autophagy by disturbing the formation of SQSTM1/p62 bodies. Autophagy 2019, 15, 1051–1068. [Google Scholar] [CrossRef]
- Dierick, I.; Irobi, J.; Janssens, S.; Theuns, J.; Lemmens, R.; Jacobs, A.; Corsmit, E.; Hersmus, N.; Van Den Bosch, L.; Robberecht, W. Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response. Hum Mutat. 2007 Aug;28(8):830. Hum Mutat. 2007, 28, 830. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Waguri, S.; Koike, M.; Sou, Y.S.; Ueno, T.; Hara, T.; Mizushima, N.; Iwata, J.; Ezaki, J.; Murata, S.; et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131, 1149–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goode, A.; Butler, K.; Long, J.; Cavey, J.; Scott, D.; Shaw, B.; Sollenberger, J.; Gell, C.; Johansen, T.; Oldham, N.J.; et al. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy 2016, 12, 1094–1104. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Lim, J.; Wang, Q.; Purtell, K.; Wu, S.; Palomo, G.M.; Tan, H.; Manfredi, G.; Zhao, Y.; Peng, J.; et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 2020, 16, 917–931. [Google Scholar] [CrossRef]
- Xiao, Y.; Zou, Q.; Xie, X.; Liu, T.; Li, H.S.; Jie, Z.; Jin, J.; Hu, H.; Manyam, G.; Zhang, L.; et al. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity. J. Exp. Med. 2017, 214, 1493–1507. [Google Scholar] [CrossRef]
- Harding, O.; Evans, C.S.; Ye, J.; Cheung, J.; Maniatis, T.; Holzbaur, E.L.F. ALS- and FTD-associated missense mutations in TBK1 differentially disrupt mitophagy. Proc. Natl. Acad. Sci. USA 2021, 118, e2025053118. [Google Scholar] [CrossRef]
- Ye, J.; Cheung, J.; Gerbino, V.; Ahlsén, G.; Zimanyi, C.; Hirsh, D.; Maniatis, T. Effects of ALS-associated TANK binding kinase 1 mutations on protein–protein interactions and kinase activity. Proc. Natl. Acad. Sci. USA 2019, 116, 24517–24526. [Google Scholar] [CrossRef] [PubMed]
- Toth, R.P.; Atkin, J.D. Dysfunction of Optineurin in Amyotrophic Lateral Sclerosis and Glaucoma. Front. Immunol. 2018, 9, 1017. [Google Scholar] [CrossRef]
- Wild, P.; Farhan, H.; McEwan, D.G.; Wagner, S.; Rogov, V.V.; Brady, N.R.; Richter, B.; Korac, J.; Waidmann, O.; Choudhary, C.; et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, B.; Sliter, D.A.; Herhaus, L.; Stolz, A.; Wang, C.; Beli, P.; Zaffagnini, G.; Wild, P.; Martens, S.; Wagner, S.A.; et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, 4039–4044. [Google Scholar] [CrossRef]
- Li, Y.; Kang, J.; Horwitz, M.S. Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol. Cell. Biol. 1998, 18, 1601–1610. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H.; et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Ayloo, S.; Lazarus, J.E.; Dodda, A.; Tokito, M.; Ostap, E.M.; Holzbaur, E.L. Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nat. Commun. 2014, 5, 4807. [Google Scholar] [CrossRef] [Green Version]
- Vilarino-Guell, C.; Wider, C.; Soto-Ortolaza, A.I.; Cobb, S.A.; Kachergus, J.M.; Keeling, B.H.; Dachsel, J.C.; Hulihan, M.M.; Dickson, D.W.; Wszolek, Z.K.; et al. Characterization of DCTN1 genetic variability in neurodegeneration. Neurology 2009, 72, 2024–2028. [Google Scholar] [CrossRef] [Green Version]
- Deshimaru, M.; Kinoshita-Kawada, M.; Kubota, K.; Watanabe, T.; Tanaka, Y.; Hirano, S.; Ishidate, F.; Hiramoto, M.; Ishikawa, M.; Uehara, Y.; et al. DCTN1 Binds to TDP-43 and Regulates TDP-43 Aggregation. Int. J. Mol. Sci. 2021, 22, 3985. [Google Scholar] [CrossRef] [PubMed]
- Thiel, C.; Kessler, K.; Giessl, A.; Dimmler, A.; Shalev, S.A.; von der Haar, S.; Zenker, M.; Zahnleiter, D.; Stöss, H.; Beinder, E.; et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am. J. Hum. Genet. 2011, 88, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Kenna, K.P.; van Doormaal, P.T.; Dekker, A.M.; Ticozzi, N.; Kenna, B.J.; Diekstra, F.P.; van Rheenen, W.; van Eijk, K.R.; Jones, A.R.; Keagle, P.; et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 2016, 48, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.; Müller, K.; Wieland, T.; Weydt, P.; Böhm, S.; Lulé, D.; Hübers, A.; Neuwirth, C.; Weber, M.; Borck, G.; et al. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain 2016, 139, e28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-H.; Fallini, C.; Ticozzi, N.; Keagle, P.J.; Sapp, P.C.; Piotrowska, K.; Lowe, P.; Koppers, M.; McKenna-Yasek, D.; Baron, D.M.; et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012, 488, 499–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Danielson, E.W.; Qiao, T.; Metterville, J.; Brown, R.H., Jr.; Landers, J.E.; Xu, Z. Mutant PFN1 causes ALS phenotypes and progressive motor neuron degeneration in mice by a gain of toxicity. Proc. Natl. Acad. Sci. USA 2016, 113, E6209–E6218. [Google Scholar] [CrossRef]
- Schmidt, E.J.; Funes, S.; McKeon, J.E.; Morgan, B.R.; Boopathy, S.; O’connor, L.C.; Bilsel, O.; Massi, F.; Jégou, A.; Bosco, D.A. ALS-linked PFN1 variants exhibit loss and gain of functions in the context of formin-induced actin polymerization. Proc. Natl. Acad. Sci. USA 2021, 118, e2024605118. [Google Scholar] [CrossRef]
- Teyssou, E.; Chartier, L.; Roussel, D.; Perera, N.D.; Nemazanyy, I.; Langui, D.; Albert, M.; Larmonier, T.; Saker, S.; Salachas, F.; et al. The Amyotrophic Lateral Sclerosis M114T PFN1 Mutation Deregulates Alternative Autophagy Pathways and Mitochondrial Homeostasis. Int. J. Mol. Sci. 2022, 23, 5694. [Google Scholar] [CrossRef]
- Romano, R.; Del Fiore, V.S.; Bucci, C. Role of the Intermediate Filament Protein Peripherin in Health and Disease. Int. J. Mol. Sci. 2022, 23, 15416. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Montiel, M.J.; Chaineau, M.; Durcan, T.M. The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front. Cell. Neurosci. 2020, 14, 594975. [Google Scholar] [CrossRef] [PubMed]
- Corrado, L.; Carlomagno, Y.; Falasco, L.; Mellone, S.; Godi, M.; Cova, E.; Cereda, C.; Testa, L.; Mazzini, L.; D’Alfonso, S. A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient. Neurobiol. Aging 2011, 32, 552.e1–552.e6. [Google Scholar] [CrossRef]
- Robertson, J.; Doroudchi, M.M.; Nguyen, M.D.; Durham, H.D.; Strong, M.J.; Shaw, G.; Julien, J.-P.; Mushynski, W.E. A neurotoxic peripherin splice variant in a mouse model of ALS. J. Cell Biol. 2003, 160, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Campos-Melo, D.; Hawley, Z.C.E.; Strong, M.J. Dysregulation of human NEFM and NEFH mRNA stability by ALS-linked miRNAs. Mol. Brain 2018, 11, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mol, M.O.; Wong, T.H.; Melhem, S.; Basu, S.; Viscusi, R.; Galjart, N.; Rozemuller, A.J.; Fallini, C.; Landers, J.E.; Kaat, L.D.; et al. Novel TUBA4A Variant Associated with Familial Frontotemporal Dementia. Neurol. Genet. 2021, 7, e596. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.N.; Ticozzi, N.; Fallini, C.; Gkazi, A.S.; Topp, S.; Kenna, K.P.; Scotter, E.L.; Kost, J.; Keagle, P.; Miller, J.W.; et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 2014, 84, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Rademakers, R.; van Blitterswijk, M. Excess of rare damaging TUBA4A variants suggests cytoskeletal defects in ALS. Neuron 2014, 84, 241–243. [Google Scholar] [CrossRef] [Green Version]
- Daneshmandpour, Y.; Bahmanpour, Z.; Kazeminasab, S.; Moghadam, E.A.; Alehabib, E.; Chapi, M.; Tafakhori, A.; Aghaei, N.; Darvish, H.; Emamalizadeh, B. A novel mutation in the ALS2 gene in an iranian kurdish family with juvenile amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2022, 24, 148–151. [Google Scholar] [CrossRef]
- Hand, C.K.; Devon, R.S.; Gros-Louis, F.; Rochefort, D.; Khoris, J.; Meininger, V.; Bouchard, J.-P.; Camu, W.; Hayden, M.R.; Rouleau, G.A. Mutation Screening of the ALS2 Gene in Sporadic and Familial Amyotrophic Lateral Sclerosis. Arch. Neurol. 2003, 60, 1768–1771. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, S.; Nahm, M.; Li, T.-N.; Lin, H.-C.; Kim, Y.D.; Lee, J.; Yao, C.-K.; Lee, S. ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival. J. Cell Biol. 2021, 220, e202007112. [Google Scholar] [CrossRef]
- Chen, Y.-Z.; Hashemi, S.H.; Anderson, S.K.; Huang, Y.; Moreira, M.-C.; Lynch, D.R.; Glass, I.A.; Chance, P.F.; Bennett, C.L. Senataxin, the yeast Sen1p orthologue: Characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol. Dis. 2006, 23, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Shi, Y.; Chen, Z.; Li, S.; Zhang, J. A novel SETX gene mutation associated with Juvenile amyotrophic lateral sclerosis. Brain Behav. 2018, 8, e01066. [Google Scholar] [CrossRef] [Green Version]
- Kapeli, K.; Pratt, G.A.; Vu, A.Q.; Hutt, K.R.; Martinez, F.J.; Sundararaman, B.; Batra, R.; Freese, P.; Lambert, N.J.; Huelga, S.C.; et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun. 2016, 7, 12143. [Google Scholar] [CrossRef] [Green Version]
- Ticozzi, N.; Vance, C.; LeClerc, A.; Keagle, P.; Glass, J.; McKenna-Yasek, D.; Sapp, P.; Silani, V.; Bosco, D.; Shaw, C.; et al. Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2011, 156, 285–290. [Google Scholar] [CrossRef]
- Aluri, K.C.; Salisbury, J.P.; Prehn, J.H.M.; Agar, J.N. Loss of angiogenin function is related to earlier ALS onset and a paradoxical increase in ALS duration. Sci. Rep. 2020, 10, 3715. [Google Scholar] [CrossRef]
- Bradshaw, W.J.; Rehman, S.; Pham, T.T.K.; Thiyagarajan, N.; Lee, R.L.; Subramanian, V.; Acharya, K.R. Structural insights into human angiogenin variants implicated in Parkinson’s disease and Amyotrophic Lateral Sclerosis. Sci. Rep. 2017, 7, 41996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sproviero, W.; Shatunov, A.; Stahl, D.; Shoai, M.; van Rheenen, W.; Jones, A.R.; Al-Sarraj, S.; Andersen, P.M.; Bonini, N.M.; Conforti, F.L.; et al. ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiol. Aging 2017, 51, 178.e1–178.e9. [Google Scholar] [CrossRef] [PubMed]
- Elden, A.C.; Kim, H.J.; Hart, M.P.; Chen-Plotkin, A.S.; Johnson, B.S.; Fang, X.; Armakola, M.; Geser, F.; Greene, R.; Lu, M.M.; et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010, 466, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Beijer, D.; Kim, H.J.; Guo, L.; O’donovan, K.; Mademan, I.; Deconinck, T.; Van Schil, K.; Fare, C.M.; Drake, L.E.; Ford, A.F.; et al. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. J. Clin. Investig. 2021, 6, e148363. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Hamasaki, H.; Wakamiya, T.; Koyama, S.; Suzuki, S.O.; Fujii, N.; Iwaki, T. Loss of hnRNPA1 in ALS spinal cord motor neurons with TDP-43-positive inclusions. Neuropathology 2014, 35, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, J.-E.; Shkreta, L.; Moszczynski, A.J.; Sidibé, H.; Semmler, S.; Fouillen, A.; Bennett, E.R.; Bekenstein, U.; Destroismaisons, L.; Toutant, J.; et al. TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain 2018, 141, 1320–1333. [Google Scholar] [CrossRef]
- Fratta, P.; Isaacs, A.M. The snowball effect of RNA binding protein dysfunction in amyotrophic lateral sclerosis. Brain 2018, 141, 1236–1238. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.M.; Barmada, S.J. Matrin 3 in neuromuscular disease: Physiology and pathophysiology. J. Clin. Investig. 2021, 6, e143948. [Google Scholar] [CrossRef]
- Johnson, J.O.; Pioro, E.P.; Boehringer, A.; Chia, R.; Feit, H.; Renton, A.E.; Pliner, H.A.; Abramzon, Y.; Marangi, G.; Winborn, B.J.; et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 2014, 17, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Boehringer, A.; Garcia-Mansfield, K.; Singh, G.; Bakkar, N.; Pirrotte, P.; Bowser, R. ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export. Sci. Rep. 2017, 7, 14529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankovic, M.; Novakovic, I.; Dawod, P.G.A.; Dawod, A.G.A.; Drinic, A.; Motaleb, F.I.A.; Ducic, S.; Nikolic, D. Current Concepts on Genetic Aspects of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021, 22, 9832. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.; Serre, V.; Moore, D.G.; et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 2014, 137, 2329–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, Y.; Hu, J.; Che, Y.; Liu, Y.; Luo, Z.; Cheng, J.; Han, Q.; He, H.; Zhou, Q. CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death Dis. 2022, 13, 156. [Google Scholar] [CrossRef]
- Straub, I.R.; Weraarpachai, W.; A Shoubridge, E. Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Hum. Mol. Genet. 2021, 30, 687–705. [Google Scholar] [CrossRef]
- Genin, E.C.; Hounoum, B.M.; Bannwarth, S.; Fragaki, K.; Lacas-Gervais, S.; Mauri-Crouzet, A.; Lespinasse, F.; Neveu, J.; Ropert, B.; Augé, G.; et al. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10S59L/+ mouse. Acta Neuropathol. 2019, 138, 123–145. [Google Scholar] [CrossRef]
- Genin, E.C.; Bannwarth, S.; Lespinasse, F.; Ortega-Vila, B.; Fragaki, K.; Itoh, K.; Villa, E.; Lacas-Gervais, S.; Jokela, M.; Auranen, M.; et al. Loss of MICOS complex integrity and mitochondrial damage, but not TDP-43 mitochondrial localisation, are likely associated with severity of CHCHD10-related diseases. Neurobiol. Dis. 2018, 119, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Straub, I.R.; Janer, A.; Weraarpachai, W.; Zinman, L.; Robertson, J.; Rogaeva, E.; Shoubridge, E.A. Loss of CHCHD10-CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS. Hum. Mol. Genet. 2018, 27, 178–189. [Google Scholar] [CrossRef]
- Brockmann, S.J.; Freischmidt, A.; Oeckl, P.; Müller, K.; Ponna, S.K.; Helferich, A.M.; Paone, C.; Reinders, J.; Kojer, K.; Orth, M.; et al. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency. Hum. Mol. Genet. 2018, 27, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Su, T.-P. Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival. Cell 2007, 131, 596–610. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, K.; Shinoda, Y.; Tagashira, H. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. J. Pharmacol. Sci. 2015, 127, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreser, A.; Vollrath, J.T.; Sechi, A.; Johann, S.; Roos, A.; Yamoah, A.; Katona, I.; Bohlega, S.; Wiemuth, D.; Tian, Y.; et al. The ALS-linked E102Q mutation in Sigma receptor-1 leads to ER stress-mediated defects in protein homeostasis and dysregulation of RNA-binding proteins. Cell Death Differ. 2017, 24, 1655–1671. [Google Scholar] [CrossRef]
- Takahashi, Y.; Fukuda, Y.; Yoshimura, J.; Toyoda, A.; Kurppa, K.; Moritoyo, H.; Belzil, V.V.; Dion, P.A.; Higasa, K.; Doi, K.; et al. ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am. J. Hum. Genet. 2013, 93, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, X.; He, J.; Zhang, N.; Chen, L.; Tang, L.; Fan, D. Analysis of ERBB4 Variants in Amyotrophic Lateral Sclerosis Within a Chinese Cohort. Front. Neurol. 2022, 13, 865264. [Google Scholar] [CrossRef] [PubMed]
- Nahm, M.; Lim, S.M.; Kim, Y.-E.; Park, J.; Noh, M.-Y.; Lee, S.; Roh, J.E.; Hwang, S.-M.; Park, C.-K.; Kim, Y.H.; et al. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci. Transl. Med. 2020, 12, eaax3993. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Duan, X.; Zhou, X.; Wang, R.; Zhang, X.; Cao, Z.; Wang, X.; Zhou, Z.; Sun, Y.; Peng, D. ANXA11 mutations are associated with amyotrophic lateral sclerosis-frontotemporal dementia. Front. Neurol. 2022, 13, 886887. [Google Scholar] [CrossRef]
- Sung, W.; Nahm, M.; Lim, S.M.; Noh, M.-Y.; Lee, S.; Hwang, S.-M.; Kim, Y.H.; Park, J.; Oh, K.-W.; Ki, C.-S.; et al. Clinical and genetic characteristics of amyotrophic lateral sclerosis patients with ANXA11 variants. Brain Commun. 2022, 4, fcac299. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, K.; Wu, X.; Zhang, Y.; Shan, S.; Gitler, A.; Ghosh, A.; Qiu, Z. Loss of CREST leads to neuroinflammatory responses and ALS-like motor defects in mice. Transl. Neurodegener. 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Kondori, N.R.; Paul, P.; Robbins, J.P.; Liu, K.; Hildyard, J.C.W.; Wells, D.J.; De Belleroche, J.S. Focus on the Role of D-serine and D-amino Acid Oxidase in Amyotrophic Lateral Sclerosis/Motor Neuron Disease (ALS). Front. Mol. Biosci. 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.; Paul, P.; Chen, H.-J.; Morris, A.; Payling, M.; Falchi, M.; Habgood, J.; Panoutsou, S.; Winkler, S.; Tisato, V.; et al. Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc. Natl. Acad. Sci. USA 2010, 107, 7556–7561. [Google Scholar] [CrossRef] [PubMed]
- Cronin, S.; Blauw, H.M.; Veldink, J.H.; van Es, M.A.; Ophoff, R.A.; Bradley, D.G.; Berg, L.H.v.D.; Hardiman, O. Analysis of genome-wide copy number variation in Irish and Dutch ALS populations. Hum. Mol. Genet. 2008, 17, 3392–3398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-B.; Cui, N.-H.; Gao, J.-J.; Qiu, X.-P.; Zheng, F. SMN1 duplications contribute to sporadic amyotrophic lateral sclerosis susceptibility: Evidence from a meta-analysis. J. Neurol. Sci. 2014, 340, 63–68. [Google Scholar] [CrossRef]
- Corcia, P.; Camu, W.; Halimi, J.M.; Vourc’h, P.; Antar, C.; Vedrine, S.; Giraudeau, B.; de Toffol, B.; Andres, C.R.; French ALS Study Group. SMN1 gene, but not SMN2, is a risk factor for sporadic ALS. Neurology 2006, 67, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Moisse, M.; Zwamborn, R.A.J.; Vugt, J.; Spek, R.; Rheenen, W.; Kenna, B.; Van Eijk, K.; Kenna, K.; Corcia, P.; Couratier, P.; et al. The Effect of SMN Gene Dosage on ALS Risk and Disease Severity. Ann. Neurol. 2021, 89, 686–697. [Google Scholar] [CrossRef]
- Blauw, H.M.; Veldink, J.H.; van Es, M.A.; van Vught, P.W.; Saris, C.G.; van der Zwaag, B.; Franke, L.; Burbach, J.P.; Wokke, J.H.; Ophoff, R.A.; et al. Copy-number variation in sporadic amyotrophic lateral sclerosis: A genome-wide screen. Lancet Neurol. 2008, 7, 319–326. [Google Scholar] [CrossRef]
- Blauw, H.M.; Al-Chalabi, A.; Andersen, P.M.; van Vught, P.W.; Diekstra, F.P.; van Es, M.A.; Saris, C.G.; Groen, E.J.; van Rheenen, W.; Koppers, M.; et al. A large genome scan for rare CNVs in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2010, 19, 4091–4099. [Google Scholar] [CrossRef] [Green Version]
- Robelin, L.; De Aguilar, J.L.G. Blood Biomarkers for Amyotrophic Lateral Sclerosis: Myth or Reality? BioMed Res. Int. 2014, 2014, 525097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarasiuk, J.; Kułakowska, A.; Drozdowski, W.; Kornhuber, J.; Lewczuk, P. CSF markers in amyotrophic lateral sclerosis. J. Neural Transm. 2012, 119, 747–757. [Google Scholar] [CrossRef]
- Raghunathan, R.; Turajane, K.; Wong, L.C. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 9299. [Google Scholar] [CrossRef]
- Porter, L.; Shoushtarizadeh, A.; Jelinek, G.A.; Brown, C.R.; Lim, C.K.; De Livera, A.M.; Jacobs, K.R.; Weiland, T.J. Metabolomic Biomarkers of Multiple Sclerosis: A Systematic Review. Front. Mol. Biosci. 2020, 7, 574133. [Google Scholar] [CrossRef]
- Calvo, A.C.; Pradat, P.-F.; Mendonça, D.M.F.; Manzano, R. Decoding amyotrophic lateral sclerosis: Discovery of novel disease-related biomarkers and future perspectives in neurodegeneration. BioMed Res. Int. 2014, 2014, 629630. [Google Scholar] [CrossRef] [PubMed]
- Pradat, P.-F.; Dubourg, O.; de Tapia, M.; di Scala, F.; Dupuis, L.; Lenglet, T.; Bruneteau, G.; Salachas, F.; Lacomblez, L.; Corvol, J.-C.; et al. Muscle gene expression is a marker of amyotrophic lateral sclerosis severity. Neurodegener. Dis. 2011, 9, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhao, X.; Li, S.; Yang, F.; Wang, H.; Cui, F.; Huang, X. CSF Neurofilament Light Chain Elevation Predicts ALS Severity and Progression. Front. Neurol. 2020, 11, 919. [Google Scholar] [CrossRef] [PubMed]
- Tortelli, R.; Copetti, M.; Ruggieri, M.; Cortese, R.; Capozzo, R.; Leo, A.; D’Errico, E.; Mastrapasqua, M.; Zoccolella, S.; Pellegrini, F.; et al. Cerebrospinal fluid neurofilament light chain levels: Marker of progression to generalized amyotrophic lateral sclerosis. Eur. J. Neurol. 2015, 22, 215–218. [Google Scholar] [CrossRef]
- King, A.E.; Blizzard, C.A.; Southam, K.A.; Vickers, J.C.; Dickson, T.C. Degeneration of axons in spinal white matter in G93A mSOD1 mouse characterized by NFL and α-internexin immunoreactivity. Brain Res. 2012, 1465, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Forgrave, L.M.; Ma, M.; Best, J.R.; DeMarco, M.L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: A systematic review and meta-analysis. Alzheimer’s Dement. 2019, 11, 730–743. [Google Scholar] [CrossRef]
- Verde, F.; Steinacker, P.; Weishaupt, J.H.; Kassubek, J.; Oeckl, P.; Halbgebauer, S.; Tumani, H.; von Arnim, C.A.F.; Dorst, J.; Feneberg, E.; et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 157–164. [Google Scholar] [CrossRef]
- Vacchiano, V.; Mastrangelo, A.; Zenesini, C.; Masullo, M.; Quadalti, C.; Avoni, P.; Polischi, B.; Cherici, A.; Capellari, S.; Salvi, F.; et al. Plasma and CSF Neurofilament Light Chain in Amyotrophic Lateral Sclerosis: A Cross-Sectional and Longitudinal Study. Front. Aging Neurosci. 2021, 13, 753242. [Google Scholar] [CrossRef]
- Behzadi, A.; Pujol-Calderón, F.; Tjust, A.E.; Wuolikainen, A.; Höglund, K.; Forsberg, K.; Portelius, E.; Blennow, K.; Zetterberg, H.; Andersen, P.M. Neurofilaments can differentiate ALS subgroups and ALS from common diagnostic mimics. Sci. Rep. 2021, 11, 22128. [Google Scholar] [CrossRef]
- De Schaepdryver, M.; Jeromin, A.; Gille, B.; Claeys, K.; Herbst, V.; Brix, B.; Van Damme, P.; Poesen, K. Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-H.; Petzold, A.; Topping, J.; Allen, K.; Macdonald-Wallis, C.; Clarke, J.; Pearce, N.; Kuhle, J.; Giovannoni, G.; Fratta, P.; et al. Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: Insights from a longitudinal study. J. Neurol. Neurosurg. Psychiatry 2015, 86, 565–573. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, F.; Munitic, I.; Amedei, A.; Berry, J.D.; Feldman, E.L.; Aronica, E.; Nardo, G.; Van Weehaeghe, D.; Niccolai, E.; Prtenjaca, N.; et al. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci. Biobehav. Rev. 2021, 127, 958–978. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cao, C.; Qin, X.-Y.; Yu, Y.; Yuan, J.; Zhao, Y.; Cheng, Y. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: A meta-analysis study. Sci. Rep. 2017, 7, 9094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.-H.; Allen, K.; Oei, F.; Leoni, E.; Kuhle, J.; Tree, T.; Fratta, P.; Sharma, N.; Sidle, K.; Howard, R.; et al. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e244. [Google Scholar] [CrossRef] [Green Version]
- Michaelson, N.; Facciponte, D.; Bradley, W.; Stommel, E. Cytokine expression levels in ALS: A potential link between inflammation and BMAA-triggered protein misfolding. Cytokine Growth Factor Rev. 2017, 37, 81–88. [Google Scholar] [CrossRef]
- Tortelli, R.; Zecca, C.; Piccininni, M.; Benmahamed, S.; Dell’Abate, M.T.; Barulli, M.R.; Capozzo, R.; Battista, P.; Logroscino, G. Plasma Inflammatory Cytokines Are Elevated in ALS. Front. Neurol. 2020, 11, 552295. [Google Scholar] [CrossRef]
- Blasco, H.; Garcon, G.; Patin, F.; Veyrat-Durebex, C.; Boyer, J.; Devos, D.; Vourc’h, P.; Andres, C.R.; Corcia, P. Panel of Oxidative Stress and Inflammatory Biomarkers in ALS: A Pilot Study. Can. J. Neurol. Sci./J. Can. des Sci. Neurol. 2017, 44, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.C.; Cawston, E.E.; Chen, G.; Brooks, C.; Douwes, J.; McLean, D.; Graham, E.S.; Dragunow, M.; Scotter, E.L. Serum biomarkers of neuroinflammation and blood-brain barrier leakage in amyotrophic lateral sclerosis. BMC Neurol. 2022, 22, 216. [Google Scholar] [CrossRef]
- Paladino, P.; Valentino, F.; Piccoli, T.; Piccoli, F.; La Bella, V. Cerebrospinal fluid tau protein is not a biological marker in amyotrophic lateral sclerosis. Eur. J. Neurol. 2009, 16, 257–261. [Google Scholar] [CrossRef]
- Scarafino, A.; D’errico, E.; Introna, A.; Fraddosio, A.; Distaso, E.; Tempesta, I.; Morea, A.; Mastronardi, A.; Leante, R.; Ruggieri, M.; et al. Diagnostic and prognostic power of CSF Tau in amyotrophic lateral sclerosis. J. Neurol. 2018, 265, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Kasai, T.; Noto, Y.-I.; Ohmichi, T.; Tatebe, H.; Kitaoji, T.; Tsuji, Y.; Kitani-Morii, F.; Shinomoto, M.; Allsop, D.; et al. Amyotrophic lateral sclerosis: Correlations between fluid biomarkers of NfL, TDP-43, and tau, and clinical characteristics. PLoS ONE 2021, 16, e0260323. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Bhattarai, A.; Shah, S.; Chand, S.; Bagherieh, S.; Mirmosayyeb, O.; Mishra, S.K. Diagnostic Role of Tau Proteins in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Acta Neurologica. Scandinavica. 2023, 2023, 2791622. [Google Scholar] [CrossRef]
- Sun, J.; Carrero, J.J.; Zagai, U.; Evans, M.; Ingre, C.; Pawitan, Y.; Fang, F. Blood biomarkers and prognosis of amyotrophic lateral sclerosis. Eur. J. Neurol. 2020, 27, 2125–2133. [Google Scholar] [CrossRef]
- Gendron, T.F.; Daughrity, L.M.; Heckman, M.G.; Diehl, N.N.; Wuu, J.; Miller, T.M.; Pastor, P.; Trojanowski, J.Q.; Grossman, M.; Berry, J.D.; et al. Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF 72 -associated amyotrophic lateral sclerosis. Ann. Neurol. 2017, 82, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Gaiani, A.; Martinelli, I.; Bello, L.; Querin, G.; Puthenparampil, M.; Ruggero, S.; Toffanin, E.; Cagnin, A.; Briani, C.; Pegoraro, E.; et al. Diagnostic and Prognostic Biomarkers in Amyotrophic Lateral Sclerosis: Neurofilament Light Chain Levels in Definite Subtypes of Disease. JAMA Neurol. 2017, 74, 525–532. [Google Scholar] [CrossRef]
- Jamerlan, A.M.; Shim, K.H.; Youn, Y.C.; Teunissen, C.; An, S.S.A.; Scheltens, P.; Kim, S. Increased oligomeric TDP-43 in the plasma of Korean frontotemporal dementia patients with semantic dementia. Alzheimer’s Dement. 2023. [Google Scholar] [CrossRef]
- Kasai, T.; Tokuda, T.; Ishigami, N.; Sasayama, H.; Foulds, P.; Mitchell, D.J.; Mann, D.M.A.; Allsop, D.; Nakagawa, M. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol. 2009, 117, 55–62. [Google Scholar] [CrossRef]
- Beyer, L.; Günther, R.; Koch, J.C.; Klebe, S.; Hagenacker, T.; Lingor, P.; Biesalski, A.S.; Hermann, A.; Nabers, A.; Gold, R.; et al. TDP-43 as structure-based biomarker in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2021, 8, 271–277. [Google Scholar] [CrossRef]
- Gille, B.; De Schaepdryver, M.; Dedeene, L.; Goossens, J.; Claeys, K.G.; Van Den Bosch, L.; Tournoy, J.; Van Damme, P.; Poesen, K. Inflammatory markers in cerebrospinal fluid: Independent prognostic biomarkers in amyotrophic lateral sclerosis? J. Neurol. Neurosurg. Psychiatry 2019, 90, 1338–1346. [Google Scholar] [CrossRef]
- Demestre, M.; Parkin-Smith, G.; Petzold, A.; Pullen, A. The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J. Neuroimmunol. 2005, 159, 146–154. [Google Scholar] [CrossRef]
- Łukaszewicz-Zając, M.; Mroczko, B.; Słowik, A. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in amyotrophic lateral sclerosis (ALS). J. Neural Transm. 2014, 121, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Sokołowska, B.; Jóźwik, A.; Niebroj-Dobosz, I.; Janik, P.; Kwiecinski, H. Evaluation of matrix metalloproteinases in serum of patients with amyotrophic lateral sclerosis with pattern recognition methods. J. Physiol. Pharmacol. 2009, 60 (Suppl. S5), 117–120. [Google Scholar] [PubMed]
- Irwin, K.E.; Jasin, P.; Braunstein, K.E.; Sinha, I.; Bowden, K.D.; Moghekar, A.; Oh, E.S.; Raitcheva, D.; Bartlett, D.; Berry, J.D.; et al. A fluid biomarker reveals loss of TDP-43 splicing repression in pre-symptomatic ALS. bioRxiv 2023, arXiv:2023.01.23.525202. [Google Scholar]
- Gendron, T.F.; Chew, J.; Stankowski, J.N.; Hayes, L.R.; Zhang, Y.-J.; Prudencio, M.; Carlomagno, Y.; Daughrity, L.M.; Jansen-West, K.; Perkerson, E.A.; et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72 -associated amyotrophic lateral sclerosis. Sci. Transl. Med. 2017, 9, eaai7866. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, G.; Raitcheva, D.; Bartlett, D.; Prudencio, M.; McKenna-Yasek, D.M.; Douthwright, C.; Oskarsson, B.E.; Ladha, S.; King, O.D.; Barmada, S.J.; et al. Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. Nat. Commun. 2022, 13, 2799. [Google Scholar] [CrossRef]
- Gertsman, I.; Wuu, J.; McAlonis-Downes, M.; Ghassemian, M.; Ling, K.; Rigo, F.; Bennett, F.; Benatar, M.; Miller, T.M.; Da Cruz, S. An endogenous peptide marker differentiates SOD1 stability and facilitates pharmacodynamic monitoring in SOD1 amyotrophic lateral sclerosis. JCI Investig. 2019, 4, e122768. [Google Scholar] [CrossRef] [Green Version]
- Winer, L.; Srinivasan, D.; Chun, S.; Lacomis, D.; Jaffa, M.; Fagan, A.; Holtzman, D.M.; Wancewicz, E.; Bennett, C.F.; Bowser, R.; et al. SOD1 in Cerebral Spinal Fluid as a Pharmacodynamic Marker for Antisense Oligonucleotide Therapy. JAMA Neurol. 2013, 70, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.G.; Gray, E.; Bampton, A.; Raciborska, D.; Talbot, K.; Turner, M.R. CSF chitinase proteins in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1215–1220. [Google Scholar] [CrossRef]
- Steinacker, P.; Verde, F.; Fang, L.; Feneberg, E.; Oeckl, P.; Roeber, S.; Anderl-Straub, S.; Danek, A.; Diehl-Schmid, J.; Fassbender, K.; et al. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J. Neurol. Neurosurg. Psychiatry 2018, 89, 239–247. [Google Scholar] [CrossRef]
- Niebroj-Dobosz, I.; Janik, P.; Sokołowska, B.; Kwiecinski, H. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2010, 17, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Månberg, A.; Skene, N.; Sanders, F.; Trusohamn, M.; Remnestål, J.; Szczepińska, A.; Aksoylu, I.S.; Lönnerberg, P.; Ebarasi, L.; Wouters, S.; et al. Altered perivascular fibroblast activity precedes ALS disease onset. Nat. Med. 2021, 27, 640–646. [Google Scholar] [CrossRef]
- Gaur, N.; Perner, C.; Witte, O.W.; Grosskreutz, J. The Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis: Signals From the CNS and Beyond. Front. Neurol. 2020, 11, 377. [Google Scholar] [CrossRef]
- Mizielinska, S.; Lashley, T.; Norona, F.E.; Clayton, E.L.; Ridler, C.E.; Fratta, P.; Isaacs, A.M. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol. 2013, 126, 845–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benatar, M.; Wuu, J.; Andersen, P.M.; Lombardi, V.; Malaspina, A. Neurofilament light: A candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann. Neurol. 2018, 84, 130–139. [Google Scholar] [CrossRef]
- Benigni, M.; Ricci, C.; Jones, A.R.; Giannini, F.; Al-Chalabi, A.; Battistini, S. Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients. NeuroMolecular Med. 2016, 18, 551–560. [Google Scholar] [CrossRef]
- Barbo, M.; Ravnik-Glavač, M. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes 2023, 14, 325. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Ma, M.; Teng, J.; Teng, R.K.; Zhou, S.; Yin, J.; Fonkem, E.; Huang, J.H.; Wu, E.; Wang, X. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 2015, 6, 24178–24191. [Google Scholar] [CrossRef] [Green Version]
- An, Y.R.; Hwang, S.Y. Toxicology study with microRNA. Mol. Cell. Toxicol. 2014, 10, 127–134. [Google Scholar] [CrossRef]
- Kim, H.; Pyo, J.Y.; Moon, J.; Lee, S.; Kim, M.; Choi, Y.; Shin, D.-I.; Park, B.-G. Identification of miRNA expression associated with Alzheimer’s disease and neurodegeneration in rat models with obstructive sleep apnea. Mol. Cell. Toxicol. 2022. [Google Scholar] [CrossRef]
- Campos-Melo, D.; Droppelmann, C.A.; He, Z.; Volkening, K.; Strong, M.J. Altered microRNA expression profile in amyotrophic lateral sclerosis: A role in the regulation of NFL mRNA levels. Mol. Brain 2013, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wei, Q.; Chen, X.; Li, C.; Cao, B.; Ou, R.; Hadano, S.; Shang, H.-F. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci. 2016, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, N.; Doi, H.; Kurata, Y.; Kagawa, H.; Atobe, Y.; Funakoshi, K.; Tada, M.; Katsumoto, A.; Tanaka, K.; Kunii, M.; et al. Proteomic analysis of exosome-enriched fractions derived from cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurosci. Res. 2020, 160, 43–49. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Annunziata, A.; Fiorentino, G.; Borra, M.; Biffali, E.; Coppola, C.; Cotrufo, R.; Brettschneider, J.; Giordana, M.L.; Dalmay, T.; et al. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 2014, 15, 243–253. [Google Scholar] [CrossRef]
- Magen, I.; Yacovzada, N.S.; Yanowski, E.; Coenen-Stass, A.; Grosskreutz, J.; Lu, C.-H.; Greensmith, L.; Malaspina, A.; Fratta, P.; Hornstein, E. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat. Neurosci. 2021, 24, 1534–1541. [Google Scholar] [CrossRef]
- Waller, R.; Goodall, E.F.; Milo, M.; Cooper-Knock, J.; Da Costa, M.; Hobson, E.; Kazoka, M.; Wollff, H.; Heath, P.R.; Shaw, P.J.; et al. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiol. Aging 2017, 55, 123–131. [Google Scholar] [CrossRef]
- Sproviero, D.; Gagliardi, S.; Zucca, S.; Arigoni, M.; Giannini, M.; Garofalo, M.; Olivero, M.; Dell’orco, M.; Pansarasa, O.; Bernuzzi, S.; et al. Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 2737. [Google Scholar] [CrossRef]
- Banack, S.A.; Dunlop, R.A.; Stommel, E.W.; Mehta, P.; Cox, P.A. miRNA extracted from extracellular vesicles is a robust biomarker of amyotrophic lateral sclerosis. J. Neurol. Sci. 2022, 442, 120396. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, S.K.; Zhang, Y.; Rostami, A.; Kenkare, A.; Casella, G.; Yuan, Z.Q.; Li, X. Role of extracellular vesicles in neurodegenerative diseases. Prog. Neurobiol. 2021, 201, 102022. [Google Scholar]
- McCluskey, G.; Morrison, K.E.; Donaghy, C.; Rene, F.; Duddy, W.; Duguez, S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Life 2022, 13, 121. [Google Scholar] [CrossRef]
- Sproviero, D.; Gagliardi, S.; Zucca, S.; Arigoni, M.; Giannini, M.; Garofalo, M.; Fantini, V.; Pansarasa, O.; Avenali, M.; Ramusino, M.C.; et al. Extracellular Vesicles Derived from Plasma of Patients with Neurodegenerative Disease Have Common Transcriptomic Profiling. Front. Aging Neurosci. 2022, 14, 785741. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Ettcheto, M.; Bernuz, M.; Puerta, R.; Esteban de Antonio, E.; Sánchez-López, E.; Souto, E.B.; Camins, A.; Martí, M.; Pividori, M.I.; et al. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int. J. Biol. Sci. 2023, 19, 721–743. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Wu, D.; Hu, C.-J.; Chen, H.-Y.; Hsieh, Y.-C.; Huang, C.-C. Exosomal TAR DNA-binding protein-43 and neurofilaments in plasma of amyotrophic lateral sclerosis patients: A longitudinal follow-up study. J. Neurol. Sci. 2020, 418, 117070117070. [Google Scholar] [CrossRef] [PubMed]
- Pasetto, L.; Callegaro, S.; Corbelli, A.; Fiordaliso, F.; Ferrara, D.; Brunelli, L.; Sestito, G.; Pastorelli, R.; Bianchi, E.; Cretich, M.; et al. Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis. Mol. Neurodegener. 2021, 16, 52. [Google Scholar] [CrossRef]
- Pregnolato, F.; Cova, L.; Doretti, A.; Bardelli, D.; Silani, V.; Bossolasco, P. Exosome microRNAs in Amyotrophic Lateral Sclerosis: A Pilot Study. Biomolecules 2021, 11, 1220. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, K.; Chen, L.; Fan, D. Increased Interleukin-6 Levels in the Astrocyte-Derived Exosomes of Sporadic Amyotrophic Lateral Sclerosis Patients. Front. Neurosci. 2019, 13, 574. [Google Scholar] [CrossRef] [Green Version]
- Dhasmana, S.; Dhasmana, A.; Narula, A.S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci. 2022, 288, 120156. [Google Scholar] [CrossRef]
- Traynor, B.J. A roadmap for genetic testing in ALS. J. Neurol. Neurosurg. Psychiatry 2014, 85, 476. [Google Scholar] [CrossRef] [Green Version]
- Chiò, A.; Battistini, S.; Calvo, A.; Caponnetto, C.; Conforti, F.L.; Corbo, M.; Giannini, F.; Mandrioli, J.; Mora, G.; Sabatelli, M.; et al. Genetic counselling in ALS: Facts, uncertainties and clinical suggestions. J. Neurol. Neurosurg. Psychiatry 2014, 85, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Witzel, S.; Mayer, K.; Oeckl, P. Biomarkers for amyotrophic lateral sclerosis. Curr. Opin. Neurol. 2022, 35, 699–704. [Google Scholar] [CrossRef]
- Rinchetti, P.; Rizzuti, M.; Faravelli, I.; Corti, S. MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Mol. Neurobiol. 2018, 55, 2617–2630. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, F.; Guan, Y.; Meng, F.; Zhao, Z.; Su, Q.; Bao, W.; Wang, X.; Zhao, J.; Huo, Z.; et al. The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 2022, 11, 572. [Google Scholar] [CrossRef]
- Goyal, N.A.; Berry, J.D.; Windebank, A.; Staff, N.P.; Maragakis, N.J.; Berg, L.H.V.D.; Genge, A.; Miller, R.; Baloh, R.H.; Kern, R.; et al. Addressing heterogeneity in amyotrophic lateral sclerosis CLINICAL TRIALS. Muscle Nerve 2020, 62, 156–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beghi, E.; Mennini, T.; Bendotti, C.; Bigini, P.; Logroscino, G.; Chio, A.; Hardiman, O.; Mitchell, D.; Swingler, R.; Traynor, B.; et al. The Heterogeneity of Amyotrophic Lateral Sclerosis: A Possible Explanation of Treatment Failure. Curr. Med. Chem. 2007, 14, 3185–3200. [Google Scholar] [CrossRef]
- Leoni, E.; Bremang, M.; Mitra, V.; Zubiri, I.; Jung, S.; Lu, C.H.; Adiutori, R.; Lombardi, V.; Russell, C.; Koncarevic, S.; et al. Combined Tissue-Fluid Proteomics to Unravel Phenotypic Variability in Amyotrophic Lateral Sclerosis. Sci. Rep. 2019, 9, 4478. [Google Scholar] [CrossRef] [Green Version]
- Sturmey, E.; Malaspina, A. Blood biomarkers in ALS: Challenges, applications and novel frontiers. Acta Neurol. Scand. 2022, 146, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Kueffner, R.; Zach, N.; Bronfeld, M.; Norel, R.; Atassi, N.; Balagurusamy, V.; Di Camillo, B.; Chio, A.; Cudkowicz, M.; Dillenberger, D.; et al. Stratification of amyotrophic lateral sclerosis patients: A crowdsourcing approach. Sci. Rep. 2019, 9, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.S.; Lee, M.Y.; David, A.E.; Park, Y.S. Nanoparticles for gene delivery: Therapeutic and toxic effects. Mol. Cell. Toxicol. 2014, 10, 1–8. [Google Scholar] [CrossRef]
- Lejman, J.; Panuciak, K.; Nowicka, E.; Mastalerczyk, A.; Wojciechowska, K.; Lejman, M. Gene Therapy in ALS and SMA: Advances, Challenges and Perspectives. Int. J. Mol. Sci. 2023, 24, 11301130. [Google Scholar] [CrossRef]
- Miller, T.M.; Cudkowicz, M.E.; Genge, A.; Shaw, P.J.; Sobue, G.; Bucelli, R.C.; Chiò, A.; Van Damme, P.; Ludolph, A.C.; Glass, J.D.; et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. New Engl. J. Med. 2022, 387, 1099–1110. [Google Scholar] [CrossRef]
- Benatar, M.; Wuu, J.; Andersen, P.M.; Bucelli, R.C.; Andrews, J.A.; Otto, M.; Farahany, N.A.; Harrington, E.A.; Chen, W.; Mitchell, A.A.; et al. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: The ATLAS Study. Neurotherapeutics 2022, 19, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dodart, J.-C.; Tran, H.; Berkovitch, S.; Braun, M.; Byrne, M.; Durbin, A.F.; Hu, X.S.; Iwamoto, N.; Jang, H.G.; et al. Variant-selective stereopure oligonucleotides protect against pathologies associated with C9orf72-repeat expansion in preclinical models. Nat. Commun. 2021, 12, 847. [Google Scholar] [CrossRef] [PubMed]
- Smukowski, S.N.; Maioli, H.; Latimer, C.S.; Bird, T.D.; Jayadev, S.; Valdmanis, P.N. Progress in Amyotrophic Lateral Sclerosis Gene Discovery: Reflecting on Classic Approaches and Leveraging Emerging Technologies. Neurol. Genet. 2022, 8, e669. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.; Cudkowicz, M.; Shaw, P.J.; Andersen, P.M.; Atassi, N.; Bucelli, R.C.; Genge, A.; Glass, J.; Ladha, S.; Ludolph, A.L.; et al. Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2020, 383, 109–119. [Google Scholar] [CrossRef]
- Arnold, C. Custom therapies pose huge financial burdens. Nat. Med. 2019. [Google Scholar] [CrossRef]
- Stoica, L.; Todeasa, S.H.; Cabrera, G.T.; Salameh, J.S.; ElMallah, M.K.; Mueller, C.; Brown, R.H., Jr.; Sena-Esteves, M. Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann. Neurol. 2016, 79, 687–700. [Google Scholar] [CrossRef] [Green Version]
- Mueller, C.; Berry, J.D.; McKenna-Yasek, D.M.; Gernoux, G.; Owegi, M.A.; Pothier, L.M.; Douthwright, C.L.; Gelevski, D.; Luppino, S.D.; Blackwood, M.; et al. SOD1 Suppression with Adeno-Associated Virus and MicroRNA in Familial ALS. N. Engl. J. Med. 2020, 383, 151–158. [Google Scholar] [CrossRef]
- Fang, T.; Je, G.; Pacut, P.; Keyhanian, K.; Gao, J.; Ghasemi, M. Gene Therapy in Amyotrophic Lateral Sclerosis. Cells 2022, 11, 2066. [Google Scholar] [CrossRef]
- Martier, R.; Liefhebber, J.M.; Garcia-Osta, A.; Miniarikova, J.; Cuadrado-Tejedor, M.; Espelosin, M.; Ursua, S.; Petry, H.; van Deventer, S.J.; Evers, M.M.; et al. Targeting RNA-Mediated Toxicity in C9orf72 ALS and/or FTD by RNAi-Based Gene Therapy. Mol. Ther. Nucleic Acids 2019, 16, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Martier, R.; Liefhebber, J.M.; Miniarikova, J.; van der Zon, T.; Snapper, J.; Kolder, I.; Petry, H.; van Deventer, S.J.; Evers, M.M.; Konstantinova, P. Artificial MicroRNAs Targeting C9orf72 Can Reduce Accumulation of Intra-nuclear Transcripts in ALS and FTD Patients. Mol. Ther. Nucleic Acids 2019, 14, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Benatar, M.; Wuu, J. Presymptomatic studies in ALS: Rationale, challenges, and approach. Neurology 2012, 79, 1732–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benatar, M.; Turner, M.R.; Wuu, J. Defining pre-symptomatic amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Corcia, P.; Lumbroso, S.; Cazeneuve, C.; Mouzat, K.; Camu, W.; Vourc’h, P.; on Behalf the FILSLAN network. Pre-symptomatic diagnosis in ALS. Rev. Neurol. 2020, 176, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Benatar, M.; Wuu, J.; McHutchison, C.; Postuma, R.B.; Boeve, B.F.; Petersen, R.; A Ross, C.; Rosen, H.; Arias, J.J.; Fradette, S.; et al. Preventing amyotrophic lateral sclerosis: Insights from pre-symptomatic neurodegenerative diseases. Brain 2022, 145, 27–44. [Google Scholar] [CrossRef] [PubMed]
Gene | Function | Pathways, ALS Impact | Examples of Significant Mutations | Additional Disease Impact |
---|---|---|---|---|
SOD1 | Cu–Zn superoxide dismutase, protection against oxidative stress, proteosome turnover | Abnormal SOD1 dimerization, aggregation, proteosome dysfunctions Calcium homeostasis is impaired, neuroinflammation | A4V H46R, G93R | Spastic Tetraplegia, Axial Hypotonia, Progressive |
C9orf72 | Regulation of gene expression, splicing, endosome function and autophagy | Abnormal splicing, haploinsufficiency, DPR aggregates, reduced gene expression | G4C2 repeat expansion (over 30 possibly pathogenic) | FTD (possible association with AD and PD) |
TARDBP | Regulates the splicing, transport of RNA and miRNA generation | TDP43 aggregation, TDP43 mislocalization, abnormal protein interaction Possible propagation | Q331K, M337V, Q343R, N345K, R361S, N390D | FTD |
FUS | Regulates the splicing, transport of RNA and miRNA processing, impacts the genome integrity | FUS overexpression, FUS aggregation, nonsense-mediated decay Possible propagation | R521 mutations, R495X, R522G, ΔExon15 | FTD |
Gene | Function | Pathways, Impact ALS | Examples of ALS-Related Mutations | Additional Disease Impact |
---|---|---|---|---|
CHMP2B | Sorting endosomes and forming endo-lysosomes | Abnormal TD43 phosphorylation by slower ubiquitination of CK3 | Q165X, Q206H | FTD, HSP |
VCP | Chaperon functions, autophagy, protein QC, vesicle trafficking | TDP43 mislocalization, abnormal autophagy | R159H, I114V | IBM, Paget’s disease, FTD |
CCNF | E3 ubiquitin-protein ligase | Impairing the proteosome turnover, disturbed E3 ligase activity | S621G, S195R, K97R, S509P, I772T, S3G, K97R | FTD |
UBQLN2 | Ubiquitin proteosome system, protein QC | Reduced proteosome-mediated degradation, impaired autophagy, neuroinflammation | R497H, P506S, P509S | FTD |
HSB1 | Molecular chaperon, proteosome maintenance | Loss of chaperon, impaired proteosome | Q190H, A204Gfs* 6 | CMTD, MND |
VAPB | Vesicle trafficking, formation of neuromuscular junctions, Ca homoeostasis | Disorganization of ER structures | P56S | NA |
NIPA1 | Magnesium transporter, early endosome regulation | Abnormal splicing, haploinsufficiency, reduced gene expression | GCG repeat expansion | Prader-Willi/Angelman syndrome 1 |
SPG11 | Vesicle transport | lysosome trafficking, cholesterol transport, autophagy, calcium homeostasis | c.704_705delAT, c.5199delA | HSP |
FIG4 | Vesicle transport in the endosome/lysosome system | Abnormal endosome process | I41T, F254Sfs*8, Y647C | CMT, motor diseases |
SQSTM1 | p62 in protein degradation, aggregation, autophagy | oxidative stress, abnormal autophagy | L341V, G427R | FTD |
TBK1 | NF-κB activator, mitophagy, autophagy, autoimmunity | Abnormal auto-and mitophagy, reduced autophosphorylation, autoimmunity, inflammation | D135N, G217R, R357Q, M559R | FTD |
OPTN | Different forms of autophagy, protection against inflammation | Reduced gene expression (stop codon mutations), OPTN immunoreactions, inflammation | Q398X, E478G, R69L, Q165X, I451T, E516Q | glaucoma |
DCTN1 | Binding of microtubules, vesicle transport, DNA repair | Abnormal vesicle and microtubule functions | M571T, R785W, R1101K | FTD, MNDs |
NEK1 | Mitotic checkpoint, microtubule and cilia functions, DNA repair | Reduced NEK1 expression, actin impairment | R261H, N181S, G399A, M545T | NA |
PFN1 | Regulation of actin functions, cytoskeleton functions | Abnormal actin assembly, impaired autophagy, mitochondrial dysfunctions | G118V, M114T, C71G | MNDs, such as HD |
PRPH | Different cytoskeletal processes, DNA-RNA processing, vesicle transport, axon regeneration | Cytoskeletal dysfunctions, formation of intracellular aggregates | R133P, D141Y | CMT, diabetes enterovirus-A71 infection |
NEF genes | Regulating cytoskeleton formation, axon dendrite transport | Reduced expression, cytoskeletal dysfunctions | S586F, K599T | CMT |
TUB4A | Cytoskeleton regulation, microtubule formation | Reduced microtubule assembly | W407X | FTD |
ALS2 | Rho Guanine Nucleotide Exchange Factor | Multiple impairments, such as cytoskeleton issues, SSR dysfunctions | I94V, E159K, M368V, IVS7 + 3A > G | HSP |
SETX | Helicase regulates the gene expression and DNA/RNA repair | impaired DNA repair and gene expression | N264S, M386T T1118I | ataxia |
TAF15 | RNA synthesis, protein splicing | Impaired synthesis of RNA, RNA aggregation | A31T, D386N, R388H, R395Q | Leukemia, cancer |
ATXN2 | Regulation of RNA processing with TARDBP | Enhancing the TDP43 toxicity | PolyQ repeats | SCA2, FTD |
HNRNPA1 | mRNA processing, splicing, gene expression | Impaired RNA regulation processes | P288A, G264R or D262V | FTD, MSP, IBM |
MATR3 | Regulation of gene expression, DNA repair | Impaired RNA processing, abnormal TDP43 and FUS transport | S85C, F115C, P154S, T622A | FTD, distal myopathy |
ANG | Activates the ribosomal RNA, regulates the transcription and ribosomal RNA synthesis, angiogenesis | Reduced RNAse activity, reduced cell proliferation and angiogenesis | H13R, K40R, K54R V103I, H114R, R121C | PD, AD |
CHCHD10 | Regulates mitochondrial dynamics and its response to stress | Mitochondrial fragmentation, cristae disorganization Haploinsufficiency | S59L, R15L, G66V | FTD |
SIGMAR1 | neuroprotection, neuroplasticity, mitochondrial Ca transport | Reduced mitochondrial respiration, autophagy, abnormal RBP assembly | E102Q | NA |
ERBB4 | Growth factor, receptor tyrosine kinase | Reduced neuregulin phosphorylation and activation | R927Q, R1275W | cancer |
ANXA11 | calcium-dependent phospholipid-binding protein | abnormal protein aggregation and loss of intracellular calcium responses, abnormal stress granules | D40G, G228Lfs*29, H390P or R456H | FTD |
CREST | calcium-dependent activator of transcription | Possible inflammatory mechanisms | Q388X | cancer |
DAO | Brain D-serine regulation, dopamine synthesis | D-serine accumulation in the spinal cord reduced neuroprotection | R199W | Bipolar diseases |
Marker | Subjects | Biofluids | Results | Use of Marker | Reference |
---|---|---|---|---|---|
NFL | 44 ALS, 20 FTD, 20AD, 19 PD, 6 CJD | serum | NFL levels were elevated in ALS patients and positively correlated with disease progression and shorter survival. Therefore, a cut-off level was established for ALS diagnosis. | Differential diagnosis, prognosis | [188] |
NFL | 45 sporadic ALS, 21 OCNSDs, 19 MPN, 14 NIMPN and 19 controls | CSF | CSF-NFL may not be useful in differential diagnosis, but a positive correlation was found between disease progression. Negative correlation with ALS function scores. | Differential diagnosis, disease progression | [184] |
NFL | 171 ALS, 60 mimic-ALS | Plasma, CSF | Both plasma and CSF NFL levels were higher in ALS patients than in mimic-ALS patients. In addition, rapidly progressive ALS and short survival were associated with higher plasma and CSF NFL levels. | Differential diagnosis, prognosis | [189] |
NFH and NFL | 234 ALS, 44 mimic-ALS | Plasma, CSF | CSF NFH and plasma NFL were higher in ALS patients compared to non-ALS. Plasma NFL may be useful to distinguish the long-and-short survival patients. | Differential diagnosis, prognosis | [190] |
pNFH | 135 c9orf72 carriers (28 controls, 86 ALS 21 FTD) 107 non-carrier (37 controls, 45ALS, 25 FTD) | CSF | In c9orf72 carriers, pNFH levels were higher, especially in patients with rapid progression. Higher pNFH levels were also associated with shorter survival in C9orf72 carrier ALS patients. | Disease course prediction, prognosis | [205] |
pNFH | 85 ALS patients, 31 mimic-ALS, 215 controls | CSF, serum | Serum and CSF pNFH were correlated with disease duration, and symptoms of pNFH in serum did not correlate with motor neuron dysfunctions. | Disease progression | [191] |
NFH | 136 ALS 104 controls | plasma | Higher NFH levels were associated with rapid progression and shorter duration in the early stage but not in the late stage. | Disease progression, prognosis | [192] |
TDP43 | 30 ALS 29 controls | CSF | TDP increases in patients’ CSF, especially in the early disease stage. | Disease onset prediction | [208] |
TDP43 | 36 ALS, 30 PD, 24 controls | CSF | CSF-TDP43 may be useful in the differential diagnosis from ALS. | Differential diagnosis | [209] |
TDP43 | C9orf72 carriers and non-carriers, healthy and non-ALS controls | CSF | Loss of TDP43 splicing in c9orf72 carriers, even before clinical symptoms. | Disease onset prediction | [214] |
Tau | 57 ALS, 110 non-ALS | CSF | No significant difference between ALS and controls in CSF-Tau. | NA | [200] |
t-Tau, p-Tau, NFL | 85 ALS, 30 ALS mimic 51 other NDD | CSF | The p-Tau/t-Tau ratio was lower in ALS patients compared to ALS mimic and other NDDs. High t-Tau and NFL possibly associated with lower survival. | Differential diagnosis, prognosis | [201] |
t-Tau, TDP43 NFL | 75 ALS patients | plasma | NFL and Tau predictive markers for rapid ALS progression. | Disease progression | [202] |
p-Tau/T-Tau | NA | Meta-analysis | Increased t-Tau and reduced pTau/tTau ratio in ALS may be promising candidates. | Disease diagnosis, prognosis | [203] |
poly-GP (c9orf72) | C9orf72 carriers (27 asymptomatic, 83 ALS/FTD, 24 other), non-carriers (48 controls, 57 ALS, 15 others) | CSF, blood | Elevated poly(GP) proteins were detected in the CSF of ALS and asymptomatic c9orf72 repeat expansion carriers. CSF levels of poly(GP) remained constant during the disease course, and they reflected the responses to ASO treatments. | Disease onset prediction, therapy response | [215] |
poly(GA), poly(GR) | Healthy individuals and C9orf72 carriers | CSF | CSF poly(GA) and poly(GR) levels were reduced during ASO treatment. | Disease onset prediction, therapy response | [216] |
SOD1 | SOD1 carrier ALS patients | CSF | Reduced levels of mutant SOD1 in CSF after ASO treatment. Reduced mutant SOD1 expression (mRNA). | Disease onset prediction, therapy response | [217] |
SOD1 | 93 ALS, 88 controls, 89 other NDD | CSF | Reduced mutant SOD1 expression (mRNA). CSF SOD levels were higher in ALS patients. Potentially a good pharmacodynamic marker. | Disease onset prediction, therapy response | [218] |
cytokines | 812 ALS, 639 controls | Meta-analysis | Elevated levels of TNF alpha, TNFR1, IL6, IL1beta, meta-analysis in ALS patients. | Diagnosis | [195] |
cytokines | 95 ALS, 88 controls | Blood | Several pro-inflammatory markers (such as IL-2, IL-8, and TNF alpha) were elevated. IFN gamma reductions. | Diagnosis | [196] |
cytokines | 79 ALS 79 controls | Plasma | Many cytokines are elevated in ALS. IL6 is potentially the most effective marker for ALS diagnosis. | Diagnosis | [197] |
cytokines | 10 ALS 10 controls | Serum | Reduced antioxidant, malondialdehyde and 8-hydroxy-2′-deoxyguanosine level in serum. Elevated GSSG/GSH ratio, IL6, and IL8 levels. | Diagnosis | [198] |
106 cytokines, GFs, BB markers | ALS patients in controls | Serum | Several markers (such as fractalkine, BDNF, EGF, PDGF, Dkk-1, MIF, angiopoietin-2 or S100β) may be segregated with ALS. Serum proteins reflect peripheral rather than CNS biofluids. | diagnosis | [199] |
CHIT1, YKL-40 MCP-1 | 105 ALS, 102 disease control, 16 ALS-mimic | CSF | CHIT1 and YKL-40 correlated with disease progression. CHIT1 levels were higher in patients with motor neuron degeneration. | Disease progression, prognosis | [210] |
chitinases | 82 ALS, 10 ALS-mimic, 10 PLS, 25 controls | CSF | Chitinases were elevated with ALS compared with control and correlated with disease progression. | Disease progression, diagnosis | [219] |
CHIT1 | 316 patients (ALS, ALS mimic, FTD, AD, PD and controls) | CSF | CHIT1 was elevated in ALS patients. Useful marker in microglia and macrophage activation. | Disease progression | [220] |
MMPs and TIMPs | 30ALS 15 controls | CSF, serum | MT-MMP-1, MMP-2, MMP-9, and TIMP-1 expression was increased in ALS, and MMP9 decreased. In addition, a correlation was found between MMPs, TIMPs, and disease duration. | Disease progression, prognosis | [221] |
MMPS | 30 ALS, 15 controls | Serum | MT-MMP-1 and MMP-9 potential application in differentiating ALS and controls. | Disease diagnosis, prognosis | [213] |
SPP1 and COL6A1 | 763 ALS, 703 controls | plasma | Elevated fibroblast markers were associated with shorter survival. | Disease prognosis | [222] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagyinszky, E.; Hulme, J.; An, S.S.A. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023, 12, 1948. https://doi.org/10.3390/cells12151948
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells. 2023; 12(15):1948. https://doi.org/10.3390/cells12151948
Chicago/Turabian StyleBagyinszky, Eva, John Hulme, and Seong Soo A. An. 2023. "Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy" Cells 12, no. 15: 1948. https://doi.org/10.3390/cells12151948
APA StyleBagyinszky, E., Hulme, J., & An, S. S. A. (2023). Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells, 12(15), 1948. https://doi.org/10.3390/cells12151948