Brain Metabolomics in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. GC-MS Sample Preparation and Metabolite Profiling
2.3. CGG Repeat Length
2.4. Markers of Neurodegeneration
2.5. Symptoms of FXTAS
2.6. Statistical Methods
2.6.1. Differential Metabolite Abundance Analyses
2.6.2. Enrichment and Pathway Analyses
2.6.3. Receiver Operator Characteristic (ROC) Curve Analysis—Area under the Curve (AUC)
3. Results
3.1. Participants
3.2. Primary Metabolite Profile in the Brains with FXTAS
3.3. KEGG Enrichment Analysis
3.4. Relationship between CGG Expansion and Metabolite Abundance
3.5. ROC Curve Analysis
3.6. Association between Changes in Metabolite Abundance and Markers of Neurodegeneration
3.7. Association between Changes in Metabolite Abundance and Clinical Symptoms
4. Discussion
4.1. Pathways Involved in Neuronal Membrane Synthesis Are Affected in FXTAS
4.2. Brains with FXTAS Present with a High Abundance of Markers for Oxidative Stress
4.3. Dysfunction in Energy Metabolism in Brains with FXTAS
4.4. A Central-Acting Fatty Acid Shows Lower Abundance in FXTAS
4.5. Study Advantages
4.6. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagerman, P.J.; Hagerman, R.J. Fragile X-associated tremor/ataxia syndrome. Ann. N. Y. Acad. Sci. 2015, 1338, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Summers, S.; Tassone, F.; Seritan, A.; Hessl, D.; Hagerman, P.; Hagerman, R. Women with Fragile X–associated Tremor/Ataxia Syndrome. Mov. Disord. Clin. Pract. 2020, 7, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Napoli, E.; Song, G.; Schneider, A.; Hagerman, R.; Eldeeb, M.A.A.A.; Azarang, A.; Tassone, F.; Giulivi, C. Warburg effect linked to cognitive-executive deficits in FMR1 premutation. FASEB J. 2016, 30, 3334–3351. [Google Scholar] [CrossRef] [PubMed]
- Giulivi, C.; Napoli, E.; Tassone, F.; Halmai, J.; Hagerman, R. Plasma metabolic profile delineates roles for neurodegeneration, pro-inflammatory damage and mitochondrial dysfunction in the FMR1 premutation. Biochem. J. 2016, 473, 3871–3888. [Google Scholar] [CrossRef]
- Zafarullah, M.; Palczewski, G.; Rivera, S.M.; Hessl, D.R.; Tassone, F. Metabolic profiling reveals dysregulated lipid metabolism and potential biomarkers associated with the development and progression of Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). FASEB J. 2020, 34, 16676–16692. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.E.; Lim, J.; Zhang, F.; Huang, L.; Gu, Y.; Nelson, D.L.; Allen, E.G.; Jin, P. Metabolic pathways modulate the neuronal toxicity associated with fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 2018, 28, 980–991. [Google Scholar] [CrossRef]
- Salcedo-Arellano, M.J.; Johnson, M.; Hwang, M.; Mclennan, Y.; Mcbride, E.; Juarez, P.; Durbin-Johnson, B.; Tassone, F.; Hagerman, R.; Martinez-Cerdeno, V. Metabolic profile in the brain with Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) [abstract]. In International Parkinson and Movement Disorder Society; Movement Disorders: Madrid, Spain, 2022. [Google Scholar]
- Dufour, B.D.; Albores-Gallo, L.; Luna-Muñoz, J.; Hagerman, R.; Miquelajauregui, A.; Buriticá, E.; Saldarriaga, W.; Pacheco-Herrero, M.; Silvestre-Sosa, A.Y.; Mazefsky, C.; et al. Hispano-American Brain Bank on Neurodevelopmental Disorders: An initiative to promote brain banking, research, education, and outreach in the field of neurodevelopmental disorders. Brain Pathol. 2021, 32, e13019. [Google Scholar] [CrossRef]
- Fiehn, O.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Lee, D.Y.; Lu, Y.; Moon, S.; Nikolau, B. Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant J. 2008, 53, 691–704. [Google Scholar] [CrossRef]
- Tassone, F.; Pan, R.; Amiri, K.; Taylor, A.K.; Hagerman, P.J. A Rapid Polymerase Chain Reaction-Based Screening Method for Identification of All Expanded Alleles of the Fragile X (FMR1) Gene in Newborn and High-Risk Populations. J. Mol. Diagn. 2008, 10, 43–49. [Google Scholar] [CrossRef]
- Filipovic-Sadic, S.; Sah, S.; Chen, L.; Krosting, J.; Sekinger, E.; Zhang, W.; Hagerman, P.J.; Stenzel, T.T.; Hadd, A.G.; Latham, G.J.; et al. A Novel FMR1 PCR Method for the Routine Detection of Low Abundance Expanded Alleles and Full Mutations in Fragile X Syndrome. Clin. Chem. 2010, 56, 399–408. [Google Scholar] [CrossRef]
- Aydin, E.Y.; Schneider, A.; Protic, D.; Wang, J.Y.; Martínez-Cerdeño, V.; Tassone, F.; Tang, H.-T.; Perlman, S.; Hagerman, R.J. Rapidly Progressing Neurocognitive Disorder in a Male with FXTAS and Alzheimer’s Disease. Clin. Interv. Aging 2020, 15, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Arellano, M.J.; Sanchez, D.; Wang, J.Y.; McLennan, Y.A.; Clark, C.J.; Juarez, P.; Schneider, A.; Tassone, F.; Hagerman, R.J.; Martínez-Cerdeño, V. Case Report: Coexistence of Alzheimer-Type Neuropathology in Fragile X-Associated Tremor Ataxia Syndrome. Front. Neurosci. 2021, 15, 720253. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Arellano, M.J.; Wang, J.Y.; McLennan, Y.A.; Doan, M.; Cabal-Herrera, A.M.; Jimenez, S.; Wolf-Ochoa, M.W.; Sanchez, D.; Juarez, P.; Tassone, F.; et al. Cerebral Microbleeds in Fragile X–Associated Tremor/Ataxia Syndrome. Mov. Disord. 2021, 36, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Bacalman, S.; Farzin, F.; Bourgeois, J.A.; Cogswell, J.; Goodlin-Jones, B.L.; Gane, L.W.; Grigsby, J.; Leehey, M.A.; Tassone, F.; Hagerman, R.J. Psychiatric Phenotype of the Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) in Males. J. Clin. Psychiatry 2006, 67, 87–94. [Google Scholar] [CrossRef]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 26 May 2023).
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Giulivi, C.; Napoli, E.; Tassone, F.; Halmai, J.; Hagerman, R. Plasma Biomarkers for Monitoring Brain Pathophysiology in FMR1 Premutation Carriers. Front. Mol. Neurosci. 2016, 9, 71. [Google Scholar] [CrossRef]
- Cansev, M. Uridine and cytidine in the brain: Their transport and utilization. Brain Res. Rev. 2006, 52, 389–397. [Google Scholar] [CrossRef]
- Lecca, D.; Ceruti, S. Uracil nucleotides: From metabolic intermediates to neuroprotection and neuroinflammation. Biochem. Pharmacol. 2008, 75, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Klein, J. Membrane breakdown in acute and chronic neurodegeneration: Focus on choline-containing phospholipids. J. Neural Transm. 2000, 107, 1027–1063. [Google Scholar] [CrossRef] [PubMed]
- Tsuruoka, M.; Hara, J.; Hirayama, A.; Sugimoto, M.; Soga, T.; Shankle, W.R.; Tomita, M. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis 2013, 34, 2865–2872. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhou, Y.; Huang, F.-J.; Tang, H.-D.; Xu, X.-H.; Liu, J.-J.; Wang, Y.; Deng, Y.-L.; Ren, R.-J.; Xu, W.; et al. Plasma Metabolite Profiles of Alzheimer’s Disease and Mild Cognitive Impairment. J. Proteome Res. 2014, 13, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
- Seritan, A.L.; Nguyen, D.V.; Farias, S.T.; Hinton, L.; Grigsby, J.; Bourgeois, J.A.; Hagerman, R.J. Dementia in fragile X-associated tremor/ataxia syndrome (FXTAS): Comparison with Alzheimer’s disease. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147B, 1138–1144. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Clemson, L.; Hornberger, M.; Leyton, C.E.; Hodges, J.R.; Piguet, O.; Mioshi, E. Longitudinal change in everyday function and behavioral symptoms in frontotemporal dementia. Neurol. Clin. Pract. 2016, 6, 419–428. [Google Scholar] [CrossRef]
- Gnanalingham, K.K.; Byrne, E.J.; Thornton, A.; Sambrook, M.A.; Bannister, P. Motor and cognitive function in Lewy body dementia: Comparison with Alzheimer’s and Parkinson’s diseases. J. Neurol. Neurosurg. Psychiatry 1997, 62, 243–252. [Google Scholar] [CrossRef]
- Hall, D.A.; Robertson, E.E.; Leehey, M.; McAsey, A.; Ouyang, B.; Berry-Kravis, E.; O’keefe, J.A. Open-label pilot clinical trial of citicoline for fragile X-associated tremor/ataxia syndrome (FXTAS). PLoS ONE 2020, 15, e0225191. [Google Scholar] [CrossRef]
- Calzada, E.; Onguka, O.; Claypool, S.M. Phosphatidylethanolamine Metabolism in Health and Disease. Int. Rev. Cell Mol. Biol. 2015, 321, 29–88. [Google Scholar] [CrossRef]
- Landaas, S. The formation of 2-hydroxybutyric acid in experimental animals. Clin. Chim. Acta 1975, 58, 23–32. [Google Scholar] [CrossRef]
- Sousa, A.P.; Cunha, D.M.; Franco, C.; Teixeira, C.; Gojon, F.; Baylina, P.; Fernandes, R. Which Role Plays 2-Hydroxybutyric Acid on Insulin Resistance? Metabolites 2021, 11, 835. [Google Scholar] [CrossRef] [PubMed]
- Gall, W.E.; Beebe, K.; Lawton, K.A.; Adam, K.-P.; Mitchell, M.W.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.; Nannipieri, M.; Camastra, S.; et al. α-Hydroxybutyrate Is an Early Biomarker of Insulin Resistance and Glucose Intolerance in a Nondiabetic Population. PLoS ONE 2010, 5, e10883. [Google Scholar] [CrossRef]
- Landaas, S.; Pettersen, J.E. Clinical conditions associated with urinary excretion of 2-hydroxybutyric acid. Scand J. Clin. Lab. Invest 1975, 35, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Lord, R.S.; Bralley, J.A. Clinical applications of urinary organic acids. Part 2. Dysbiosis markers. Altern. Med. Rev. 2008, 13, 292–306. [Google Scholar] [PubMed]
- Yang, J.; Chen, T.; Sun, L.; Zhao, Z.; Qi, X.; Zhou, K.; Cao, Y.; Wang, X.; Qiu, Y.; Su, M.; et al. Potential metabolite markers of schizophrenia. Mol. Psychiatry 2011, 18, 67–78. [Google Scholar] [CrossRef]
- Silva, A.; Ruschel, C.; Helegda, C.; Wyse, A.; Wannmacher, C.; Wajner, M.; Dutra-Filho, C. Inhibition of in vitro CO2 production and lipid synthesis by 2-hydroxybutyric acid in rat brain. Braz. J. Med. Biol. Res. 2001, 34, 627–631. [Google Scholar] [CrossRef]
- Kim, H.-H.; Jeong, I.H.; Hyun, J.-S.; Kong, B.S.; Kim, H.J.; Park, S.J. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS ONE 2017, 12, e0181758. [Google Scholar] [CrossRef]
- Phang, J.M.; Zhao, S.-J.; Liu, X.-J.; Tian, J.-S.; Gao, X.-X.; Liu, H.-L.; Du, G.-H.; Qin, X.-M. Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxid. Redox Signal. 2019, 30, 635–649. [Google Scholar] [CrossRef]
- Yao, J.K.; Dougherty, G.G.; Reddy, R.D.; Keshavan, M.S.; Montrose, D.M.; Matson, W.R.; McEvoy, J.; Kaddurah-Daouk, R. Homeostatic Imbalance of Purine Catabolism in First-Episode Neuroleptic-Naïve Patients with Schizophrenia. PLoS ONE 2010, 5, e9508. [Google Scholar] [CrossRef]
- Ansoleaga, B.; Jové, M.; Schlüter, A.; Garcia-Esparcia, P.; Moreno, J.; Pujol, A.; Pamplona, R.; Portero-Otín, M.; Ferrer, I. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol. Aging 2015, 36, 68–80. [Google Scholar] [CrossRef]
- Wainwright, P.E. Dietary essential fatty acids and brain function: A developmental perspective on mechanisms. Proc. Nutr. Soc. 2002, 61, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.M.; Buoli, M.; Ciappolino, V.; Agostoni, C.; Brambilla, P. The Role of Cholesterol and Fatty Acids in the Etiology and Diagnosis of Autism Spectrum Disorders. Int. J. Mol. Sci. 2021, 22, 3550. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-C.; Ho, P.-C.; Tu, Y.-K.; Jou, I.-M.; Tsai, K.-J. Lipids and Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1505. [Google Scholar] [CrossRef] [PubMed]
- Tsaluchidu, S.; Cocchi, M.; Tonello, L.; Puri, B.K. Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry 2008, 8, S5. [Google Scholar] [CrossRef]
- Cheer, J.; Cadogan, A.-K.; Marsden, C.; Fone, K.; Kendall, D. Modification of 5-HT2 receptor mediated behaviour in the rat by oleamide and the role of cannabinoid receptors. Neuropharmacology 1999, 38, 533–541. [Google Scholar] [CrossRef]
- Leggett, J.D.; Aspley, S.; Beckett, S.R.G.; D’Antona, A.M.; Kendall, D.A. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br. J. Pharmacol. 2004, 141, 253–262. [Google Scholar] [CrossRef]
- Murillo-Rodríguez, E.; Giordano, M.; Cabeza, R.; Henriksen, S.J.; Díaz, M.M.; Navarro, L.; Prospéro-García, O. Oleamide modulates memory in rats. Neurosci. Lett. 2001, 313, 61–64. [Google Scholar] [CrossRef]
- Boger, D.L.; Patterson, J.E.; Jin, Q. Structural requirements for 5-HT 2A and 5-HT 1A serotonin receptor potentiation by the biologically active lipid oleamide. Proc. Natl. Acad. Sci. USA 1998, 95, 4102–4107. [Google Scholar] [CrossRef]
- Verdon, B.; Zheng, J.; Nicholson, R.A.; Ganelli, C.R.; Lees, G. Stereoselective modulatory actions of oleamide on GABAA receptors and voltage-gated Na+ channels in vitro: A putative endogenous ligand for depressant drug sites in CNS. Br. J. Pharmacol. 2000, 129, 283–290. [Google Scholar] [CrossRef]
- Juszczak, G.R.; Swiergiel, A.H. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: Animal and human studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 181–198. [Google Scholar] [CrossRef]
- Ano, Y.; Ozawa, M.; Kutsukake, T.; Sugiyama, S.; Uchida, K.; Yoshida, A.; Nakayama, H. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity. PLoS ONE 2015, 10, e0118512. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.Y.; Na, E.J.; Lee, E.; Kwon, Y.; Kim, H.-J. Antiepileptic and Neuroprotective Effects of Oleamide in Rat Striatum on Kainate-Induced Behavioral Seizure and Excitotoxic Damage via Calpain Inhibition. Front. Pharmacol. 2017, 8, 817. [Google Scholar] [CrossRef] [PubMed]
- McCracken, C.B.; Roberts, D.C. Neuronal Gap Junctions: Expression, Function, and Implications for Behavior. Int. Rev. Neurobiol. 2006, 73, 125–151. [Google Scholar] [CrossRef] [PubMed]
- Iacobas, D.A.; Iacobas, S.; Spray, D.C. Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog. Biophys. Mol. Biol. 2007, 94, 169–185. [Google Scholar] [CrossRef]
- Nagasawa, K.; Chiba, H.; Fujita, H.; Kojima, T.; Saito, T.; Endo, T.; Sawada, N. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J. Cell. Physiol. 2006, 208, 123–132. [Google Scholar] [CrossRef]
- Amzica, F. In vivo electrophysiological evidences for cortical neuron–glia interactions during slow (<1 Hz) and paroxysmal sleep oscillations. J. Physiol. 2002, 96, 209–219. [Google Scholar] [CrossRef]
- Koehler, R.C.; Gebremedhin, D.; Harder, D.R.; Shih, E.K.; Robinson, M.B.; Merchant, S.; Medow, M.S.; Visintainer, P.; Terilli, C.; Stewart, J.M.; et al. Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol. 2006, 100, 307–317. [Google Scholar] [CrossRef]
- Parpura, V.; Scemes, E.; Spray, D.C. Mechanisms of glutamate release from astrocytes: Gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem. Int. 2004, 45, 259–264. [Google Scholar] [CrossRef]
- Theis, M.; Söhl, G.; Eiberger, J.; Willecke, K. Emerging complexities in identity and function of glial connexins. Trends Neurosci. 2005, 28, 188–195. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Rupérez, F.J.; García-Barrera, T.; Barbas, C.; Gómez-Ariza, J.L. Metabolomic-Driven Elucidation of Serum Disturbances Associated with Alzheimer’s Disease and Mild Cognitive Impairment. Curr. Alzheimer Res. 2016, 13, 641–653. [Google Scholar] [CrossRef]
- Szeremeta, M.; Pietrowska, K.; Niemcunowicz-Janica, A.; Kretowski, A.; Ciborowski, M. Applications of Metabolomics in Forensic Toxicology and Forensic Medicine. Int. J. Mol. Sci. 2021, 22, 3010. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Drug Transport across the Blood–Brain Barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, E.; Ith, M.; Dietrich, D.; Kreis, R.; Hüsler, J.; Dirnhofer, R.; Boesch, C. Statistical evaluation of time-dependent metabolite concentrations: Estimation of post-mortem intervals based onin situ1H-MRS of the brain. NMR Biomed. 2005, 18, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Dienel, G.A. Metabolomic and Imaging Mass Spectrometric Assays of Labile Brain Metabolites: Critical Importance of Brain Harvest Procedures. Neurochem. Res. 2020, 45, 2586–2606. [Google Scholar] [CrossRef] [PubMed]
- Pesko, B.K.; Weidt, S.; McLaughlin, M.; Wescott, D.J.; Torrance, H.; Burgess, K.; Burchmore, R. Postmortomics: The Potential of Untargeted Metabolomics to Highlight Markers for Time Since Death. OMICS A J. Integr. Biol. 2020, 24, 649–659. [Google Scholar] [CrossRef]
- Ith, M.; Bigler, P.; Scheurer, E.; Kreis, R.; Hofmann, L.; Dirnhofer, R.; Boesch, C. Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ1H-magnetic resonance spectroscopy. Magn. Reson. Med. 2002, 48, 915–920. [Google Scholar] [CrossRef]
- Musshoff, F.; Klotzbach, H.; Block, W.; Traeber, F.; Schild, H.; Madea, B. Comparison of post-mortem metabolic changes in sheep brain tissue in isolated heads and whole animals using 1H-MR spectroscopy—Preliminary results. Int. J. Leg. Med. 2011, 125, 741–744. [Google Scholar] [CrossRef]
Control (n = 19) | Case (n = 25) | p-Value | ||
---|---|---|---|---|
Age | 0.868 | |||
N | 19 | 25 | ||
Mean (SD) | 80.5 (8.5) | 80.8 (7.2) | ||
Median (Range) | 80 (62–97) | 81 (67–93) | ||
PMI | 0.939 | |||
N | 19 | 18 | ||
Mean (SD) | 23.5 (33) | 21.5 (28.7) | ||
Median (Range) | 8.7 (2.3–136.1) | 15.2 (2.5–127) | ||
Gender | 1 | |||
F | 9 (47.4%) | 12 (48%) | ||
M | 10 (52.6%) | 13 (52%) | ||
Blood CGG | ||||
N | 19 | 25 | ||
Mean (SD) | 30.6 (4.8) | 82 (15.7) | ||
Median (Range) | 30 (23–42) | 81 (55–120) | ||
20–44 | 19 (100%) | 0 | ||
45–54 | 0 | 0 | ||
55–74 | 0 | 7 (28%) | ||
75–94 | 0 | 14 (56%) | ||
95–120 | 0 | 4 (16%) | ||
Race/Ethnicity | ||||
White | 19 (100%) | 25 (100%) |
Inferior Temporal Gyrus | Cerebellum | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BinBase Name | Biological Role | PubChem | logFC | p-Value | adj. p-Value | BinBase Name | Biological Role | PubChem | logFC | p-Value | adj. p-Value |
Cytidine | nucleoside | 6175 | −1.381 | 0.000004 | 0.0007 | Oleamide | fatty acid amide | 5283387 | −1.060 | 0.00001 | 0.0018 |
3-hydroxybutyric acid | ketone body | 92135 | 1.075 | 0.0011 | 0.0772 | Fructose-1-phosphate | monosaccharide | 439394 | 1.362 | 0.0013 | 0.1067 |
2-hydroxybutanoic acid | organic acid | 440864 | 0.939 | 0.0015 | 0.0772 | 1,5-anhydroglucitol | monosaccharide | 64960 | 1.037 | 0.0039 | 0.1683 |
1,5-anhydroglucitol | monosaccharide | 64960 | 1.083 | 0.0016 | 0.0772 | Phosphoethanolamine | phosphomonoester | 1015 | 0.569 | 0.0046 | 0.1683 |
Oleamide | fatty acid amide | 5283387 | −0.904 | 0.0029 | 0.1115 | 2-hydroxybutanoic acid | organic acid | 440864 | 1.056 | 0.005 | 0.1683 |
Guanine | amino acid/purine | 764 | 0.747 | 0.0043 | 0.1181 | N-acetylmannosamine | amino sugar | 11096158 | −0.779 | 0.0069 | 0.1796 |
Xanthine | amino acid/purine | 1188 | −0.347 | 0.0043 | 0.1181 | Lysine | essential amino acid | 5962 | −0.398 | 0.0074 | 0.1796 |
Histidine | essential amino acid | 6274 | -0.624 | 0.0057 | 0.138 | Maltotriose | trisaccharide | 439586 | 0.908 | 0.0103 | 0.2134 |
Proline | essential amino acid | 145742 | −0.730 | 0.0094 | 0.1854 | Proline | essential amino acid | 145742 | −0.909 | 0.0114 | 0.2134 |
Phosphoric acid | organic acid | 1004 | 0.487 | 0.0096 | 0.1854 | Threonine | essential amino acid | 6288 | −0.323 | 0.0141 | 0.2353 |
Gluconic acid | organic acid | 6857417 | −0.952 | 0.0118 | 0.207 | Maltose | disaccharide | 439186 | 0.955 | 0.0161 | 0.2353 |
Cysteine | amino acid | 5862 | −0.814 | 0.0139 | 0.2232 | Xylose | monosaccharide | 135191 | 0.658 | 0.0167 | 0.2353 |
Cholesterol | lipid | 5997 | 0.354 | 0.0168 | 0.2493 | Erythritol | monosaccharide polyol | 222285 | 0.434 | 0.0234 | 0.2906 |
Threonine | essential amino acid | 6288 | −0.265 | 0.0181 | 0.2493 | Glycyl tyrosine | dipeptide | 92829 | −0.591 | 0.0241 | 0.2906 |
Maltotriose | trisaccharide | 439586 | 0.752 | 0.0199 | 0.2557 | Inosine | nucleoside | 6021 | 0.780 | 0.0268 | 0.3021 |
Glyceric acid | organic acid | 752 | −1.710 | 0.0219 | 0.2592 | Ascorbic acid | organic acid | 54670067 | 0.480 | 0.0294 | 0.3107 |
Pyrophosphoric acid | inorganic acid | 1023 | 0.446 | 0.0228 | 0.2592 | Glycerol | sugar alcohol | 753 | −0.349 | 0.0319 | 0.315 |
Pyruvic acid | organic acid | 1060 | 1.019 | 0.03 | 0.3145 | Histidine | essential amino acid | 6274 | −0.602 | 0.0336 | 0.315 |
Erythrose | monosaccharide | 439574 | −0.461 | 0.031 | 0.3145 | Arabitol | sugar alcohol | 94154 | 0.364 | 0.0356 | 0.3162 |
Adipic acid | organic acid | 196 | 0.283 | 0.0405 | 0.3904 | Serine | non-essential amino acid | 5951 | −0.342 | 0.0413 | 0.3466 |
Gluconic acid lactone | organic acid | 7027 | −0.653 | 0.0451 | 0.4145 | Leucine | essential amino acid | 6106 | −0.329 | 0.0486 | 0.3466 |
Adenosine | nucleoside | 60961 | 0.639 | 0.0474 | 0.4161 |
ITG | ||||||
---|---|---|---|---|---|---|
Pathway Name | BinBase Name | logFC | p-Value | adj. p-Value | t | KEGG |
Histidine | −0.624 | 0.006 | 0.138 | −2.912 | C00135 | |
Protein digestion and absorption Homo sapiens (human) hsa04974 p-value: 0.0019 adj. p-value 0.009 q-value 0.0039 Normalized enrichment score: −1.948 | Proline | −0.730 | 0.009 | 0.185 | −2.723 | C00148 |
Cysteine | −0.814 | 0.014 | 0.223 | −2.568 | C00097 | |
Threonine | −0.265 | 0.018 | 0.249 | −2.460 | C00188 | |
Methionine | −0.284 | 0.091 | 0.446 | −1.728 | C00073 | |
Leucine | −0.194 | 0.213 | 0.585 | −1.265 | C00123 | |
Glutamine | 0.187 | 0.442 | 0.737 | 0.776 | C00064 | |
Aspartic acid | −0.085 | 0.608 | 0.803 | −0.516 | C00049 | |
Alanine | −0.066 | 0.708 | 0.870 | −0.377 | C00041 | |
Aryptophan | −0.038 | 0.799 | 0.891 | −0.256 | C00078 | |
Aminoacyl tRNA biosynthesis Homo sapiens (human) hsa00970 p-value: 0.0053 adj. p-value 0.0132 q-value 0.0056 Normalized enrichment score: −1.868 | Histidine | −0.624 | 0.006 | 0.138 | −2.912 | C00135 |
Threonine | −0.265 | 0.018 | 0.249 | −2.460 | C00188 | |
Isoleucine | −0.276 | 0.059 | 0.446 | −1.938 | C00407 | |
Glycine | −0.236 | 0.065 | 0.446 | −1.896 | C00037 | |
Serine | −0.252 | 0.080 | 0.446 | −1.816 | C00065 | |
Asparagine | −0.139 | 0.273 | 0.643 | −1.110 | C00152 | |
O-phosphoserine | 0.627 | 0.295 | 0.643 | 1.148 | C01005 | |
Tyrosine | −0.102 | 0.547 | 0.801 | −0.608 | C00082 | |
Lysine | −0.074 | 0.622 | 0.811 | −0.497 | C00047 | |
Tryptophan | −0.038 | 0.799 | 0.891 | −0.256 | C00078 | |
D-amino acid metabolism Homo sapiens (human) hsa00470 p-value: 0.0391 adj. p-value 0.065 q-value 0.0274 Normalized enrichment score: −1.641 | Proline | −0.730 | 0.009 | 0.185 | −2.723 | C00148 |
Cysteine | −0.814 | 0.014 | 0.223 | −2.568 | C00097 | |
Threonine | −0.265 | 0.018 | 0.249 | −2.460 | C00188 | |
Methionine | −0.284 | 0.091 | 0.446 | −1.728 | C00073 | |
Glutamic acid | −0.123 | 0.262 | 0.629 | −1.137 | C00025 | |
N-acetylglutamate | −0.171 | 0.321 | 0.671 | −1.006 | C00624 | |
Trans-4-hydroxyproline | 0.139 | 0.350 | 0.675 | 0.946 | C01157 | |
Glutamine | 0.187 | 0.442 | 0.737 | 0.776 | C00064 | |
Aspartic acid | −0.085 | 0.608 | 0.804 | −0.516 | C00049 | |
Alanine | −0.066 | 0.708 | 0.870 | −0.377 | C00041 | |
Phenylalanine | −0.007 | 0.964 | 0.969 | −0.045 | C00079 | |
CB | ||||||
Pathway Name | Pathway Name | logFC | p-Value | Adjusted p-Value | t | KEGG |
Protein digestion and absorption Homo sapiens (human) hsa04974 p-value: 0.0004 adj. p-value 0.002 q-value 0.0009 Normalized enrichment score: −2.017 | Proline | −0.909 | 0.011 | 0.213 | −2.649 | C00148 |
Threonine | −0.322 | 0.014 | 0.235 | −2.562 | C00188 | |
Histidine | −0.602 | 0.034 | 0.315 | −2.198 | C00135 | |
Leucine | −0.329 | 0.049 | 0.347 | −2.031 | C00123 | |
Cysteine | −0.618 | 0.115 | 0.448 | −1.609 | C00097 | |
Methionine | −0.313 | 0.124 | 0.448 | −1.570 | C00073 | |
Alanine | −0.330 | 0.137 | 0.448 | −1.518 | C00041 | |
Aspartic acid | −0.272 | 0.155 | 0.469 | −1.447 | C00049 | |
Glutamine | 0.148 | 0.531 | 0.806 | 0.632 | C00064 | |
Tryptophan | −0.089 | 0.608 | 0.853 | −0.517 | C00078 | |
D-amino acid metabolism Homo sapiens (human) hsa00470 p-value: 0.0034 adj. p-value 0.0069 q-value 0.0036 Normalized enrichment score: −1.815 | Proline | −0.909 | 0.011 | 0.18 | −2.814 | C00148 |
Threonine | −0.322 | 0.014 | 0.235 | −2.562 | C00188 | |
Cysteine | −0.618 | 0.115 | 0.315 | −2.198 | C00097 | |
Methionine | −0.313 | 0.124 | 0.347 | −2.112 | C00073 | |
Alanine | −0.33 | 0.137 | 0.347 | −2.018 | C00041 | |
Aspartic acid | −0.272 | 0.155 | 0.473 | −1.427 | C00049 | |
Phenylalanine | −0.126 | 0.420 | 0.731 | −0.815 | C00079 | |
Glutamine | 0.148 | 0.531 | 0.806 | 0.632 | C00064 | |
Trans-4-hydroxyproline | −0.073 | 0.702 | 0.895 | −0.386 | C00157 | |
N-acetylglutamate | −0.022 | 0.902 | 0.982 | −0.124 | C00624 | |
Glutamic acid | −0.008 | 0.954 | 0.982 | −0.058 | C00025 |
ITG | ||||
---|---|---|---|---|
BinBase Name | FMR1 FXTAS Human Frozen Brain | Zafarulla 2020 [5] FMR1 FXTAS Human Plasma | Giulivi 2016 [4,21] FMR1 Premutation Human Plasma | |
3-hydroxybutyric acid | ↑ | ↑ | ↓ | |
2-hydroxybutanoic acid | ↑ | ↑ | ↓ | |
Oleamide | ↓ | ↓ | ||
Histidine | ↓ | ↓ | ||
Proline | ↓ | ↑ | ||
Gluconic acid | ↓ | ↑ | ||
Glyceric acid | ↓ | ↑ | ||
Pyruvic acid | ↑ | ↑ | ||
CB | ||||
BinBase name | FMR1 FXTAS Human Frozen brain | Zafarulla 2020 [5] FMR1 FXTAS Human Plasma | Giulivi 2016 [4,21] FMR1 premutation Human Plasma | Kong [6] FMR1 mouse Frozen CB |
Oleamide | ↓ | ↓ | ||
1,5-anhydroglucitol | ↑ | No change | ||
Phosphoethanolamine | ↑ | ↑ | No change | |
2-hydroxybutanoic acid | ↑ | ↑ | ↓ | |
Lysine | ↓ | ↓ | ↑ | |
Proline | ↓ | ↑ | No change | |
Threonine | ↓ | No change | ||
Maltose | ↑ | ↑ | ||
Xylose | ↑ | ↑ | ||
Erythritol | ↑ | No change | ||
Inosine | ↑ | ↑ | ||
Glycerol | ↓ | ↑ | ↑ | ↓ |
Histidine | ↓ | ↓ | No change | |
Serine | ↓ | No change | ||
Leucine | ↓ | ↑ | ||
↑ Increased, ↓ decreased | ||||
Similar results between FXTAS frozen brain and plasma from premutation carriers with FXTAS | ||||
Similar results between FXTAS frozen brain and plasma from premutation carriers without FXTAS | ||||
Similar results between frozen cerebellum in FXTAS cases and an FMR1 mouse model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salcedo-Arellano, M.J.; Johnson, M.D.; McLennan, Y.A.; Hwang, Y.H.; Juarez, P.; McBride, E.L.; Pantoja, A.P.; Durbin-Johnson, B.; Tassone, F.; Hagerman, R.J.; et al. Brain Metabolomics in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Cells 2023, 12, 2132. https://doi.org/10.3390/cells12172132
Salcedo-Arellano MJ, Johnson MD, McLennan YA, Hwang YH, Juarez P, McBride EL, Pantoja AP, Durbin-Johnson B, Tassone F, Hagerman RJ, et al. Brain Metabolomics in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Cells. 2023; 12(17):2132. https://doi.org/10.3390/cells12172132
Chicago/Turabian StyleSalcedo-Arellano, Maria Jimena, Michael D. Johnson, Yingratana A. McLennan, Ye Hyun Hwang, Pablo Juarez, Erin Lucille McBride, Adriana P. Pantoja, Blythe Durbin-Johnson, Flora Tassone, Randi J. Hagerman, and et al. 2023. "Brain Metabolomics in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS)" Cells 12, no. 17: 2132. https://doi.org/10.3390/cells12172132
APA StyleSalcedo-Arellano, M. J., Johnson, M. D., McLennan, Y. A., Hwang, Y. H., Juarez, P., McBride, E. L., Pantoja, A. P., Durbin-Johnson, B., Tassone, F., Hagerman, R. J., & Martínez-Cerdeño, V. (2023). Brain Metabolomics in Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Cells, 12(17), 2132. https://doi.org/10.3390/cells12172132