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Abstract: Estrogens have been implicated in the pathogenesis of various cancers, with increasing
concern regarding the overall rising incidence of disease and exposure to environmental estrogens.
Estrogens, both endogenous and environmental, manifest their actions through intracellular and
plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad
transcriptional response that is mediated through multiple regulatory enhancers, including estrogen
response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs).
Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied
upon an endogenous estrogen–ER binary rubric that does not account for environmental estrogens
or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via
ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do
not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER
is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine
resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic
response. This review focuses on the critical importance and value of GPER-targeted therapeutics as
part of a more holistic approach to the treatment of estrogen-driven malignancies.

Keywords: GPER; ERα; ERβ; estrogen; xenoestrogens; phytoestrogens; breast cancer; metabolic
disease; endocrine therapy; antiandrogen

1. Introduction

It is an honor to contribute a feature article for this issue of Cells focusing on the G
protein-coupled estrogen receptor (GPER), which has been linked to metaboregulation
and cancer. It has been approximately twenty years since the first studies providing
evidence that the orphan receptor, GPR30, promotes specific estrogen binding [1,2] and
rapid, nongenomic estrogen signaling [2–5] were published. A large body of literature
describes its mechanism of action and the physiological and pathophysiological responses
associated with this receptor, and collectively, these findings led to its rechristening to its
functional designation as GPER by the receptor nomenclature committee of the IUPHAR
(International Union of Pharmacologists) in 2015 [6].

This review focuses on the need for a more holistic approach to endocrine therapy
that considers the roles and interplay between all sources of estrogen, endogenous and
environmental, and estrogen receptors, with a special focus on GPER, given its potential
importance for cancer and metabolic regulation. This review is organized in three parts.
Firstly, key arguments that support the broad family of estrogens as tumor promoters
in multiple human malignancies are outlined. Secondly, the receptor-based mechanisms
that coordinately promote the diverse array of intracellular signaling actions activated by
estrogens are discussed. Finally, we evaluate the current modalities for endocrine therapy
in the context of a broader view of estrogen action that includes environmental estrogens
and GPER.
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2. Estrogens and Their Implications in Carcinogenesis

According to the 2020 GLOBOCAN estimates, 18.1 million new cancer cases were
detected worldwide, with breast cancer surpassing colon cancer as the most diagnosed
cancer (2.3 million cases, 11.7%). The World Health Organization’s International Agency for
Research on Cancer (IARC) tracked 685,000 breast cancer deaths during 2020 and projects
that these numbers will rise to 3 million new cases and 1 million deaths by 2040 [7]. Of
considerable importance is the fact that breast cancer incidence is rising rapidly in transi-
tioning countries where mortality rates from the disease remain high. Equally alarming is
the rapid rise in colon cancer, a malignancy previously recognized to have a strong genetic
component, with a gender bias toward men [8,9]. While historical numbers show a striking
disparity between premenopausal women and age-matched men, recent epidemiological
data indicate that this difference has decreased significantly [10]. Causal factors driving
colon cancer in younger adults are not clear; however, environmental factors, including
diet, microbiome, and inflammation, have been proposed [11]. Equally concerning is that
this trend is consistent with increasing human exposure to environmental estrogens and
the rise in obesity among young adults [12]. While ER plays an important role in metabolic
regulation, the link between lifestyle, metabolic disorder, and increased exposure to en-
vironmental estrogens also point to the potential significance of GPER, based on several
observations: (i) many environmental estrogens exhibit high affinity for GPER [13]; (ii) the
genetic silencing of GPER alters metabolic homeostasis [14]; (iii) increased exposure to
environmental estrogens is associated with metabolic syndrome [15]; and (iv) metabolic
syndrome is a collection of diseases, which contribute to the genesis of cancer, particularly
cancers that arise from the breast [16,17] and colon [18].

Estrogens have been implicated in the pathogenesis of various cancers, including fe-
male reproductive cancer [19,20] as well as lung [21–23], liver [24–26], colon [27], and kidney
cancer [28,29]. Mechanisms of carcinogenesis by estrogen center on its genotoxic or mito-
genic activity on tumor target cells, and this has been reviewed in detail elsewhere [30,31].
These models suggest that receptor-based estrogen signaling promotes the expansion of the
transformed population, and in some instances, the subsequent accumulation of somatic
mutations occurs, which drives cancer progression via the metabolic activation of catechol
estrogens or environmental estrogens, or through epigenetic mechanisms. Alternative
mechanisms of carcinogenesis have focused on chronic estrogen signaling and oxidative
stress [32,33]. Regardless of the precise nature of the model that drives estrogen-induced
carcinogenesis, understanding the receptor-based mechanisms through which endoge-
nous and environmental estrogens promote their biochemical and biological actions is
fundamentally required.

3. Estrogen Promotes Biochemical Actions That Are Manifested through Two Distinct
Receptor Mechanisms

Endogenous and environmental estrogens promote biochemical actions that occur
over a broad range of time and span signaling events that can be measured from seconds
to over several hours. These actions are manifested by three estrogen receptors, named
ERα, ERβ, and GPER, which are encoded at individual genetic loci in the human genome:
ERα/ESR1 (6q25.1), ERβ/ESR2 (14q23.2), and GPER (7p22.3). The molecular basis of ligand
binding and intracellular signaling by each of these receptors has been reviewed in detail
elsewhere [30,34–38], and low nanomolar binding affinities have been measured for each
of these receptors for the most abundant endogenous estrogen, 17β-estradiol (17β-E2). The
binding activities, including relative affinities and effective half-maximal concentrations
(EC50s) of 17β-E2 and environmental estrogens for ERs or GPER, have also been widely
examined, and they exhibit distinct relative binding affinities and pharmacological activities
toward synthetic estrogens and environmental estrogens [6,13,39].

The biochemical signaling activities manifested by ERα, ERβ, and GPER are schema-
tized in Figure 1. ERα and ERβ belong to the steroid hormone receptor family and act as
ligand-induced transcription factors, with conserved functional domains for hormone and
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DNA binding. Both ERα and ERβ exhibit different ligand affinities and, in some cases,
specificities for various estrogenic ligands [39]. Crystal structures for ERα and ERβ, and the
allosteric changes that occur in response to ligand binding and association with molecular
chaperones and accessory proteins, have been resolved and identified [40–43]. ERα and
ERβ directly activate gene transcription through their ability to bind to transcriptional
regulatory sites encoded in DNA, known as estrogen response elements (EREs). In contrast,
GPER, a member of the G protein-coupled receptor (GPCR) superfamily, promotes its
transcriptional effects indirectly from its ability to employ heterotrimeric G proteins to
stimulate cAMP and EGFR signaling. The former occurs because GPER is a Gαs-linked
protein [1] that directly stimulates adenylyl cyclase, which in turn converts ATP into
cAMP [4]. The latter is mediated by the free Gβγ subunit dimer, which triggers the release
of intracellular calcium, resulting in Src family kinase Shc-dependent proteolytic cleavage,
and consequent release of membrane-tethered, heparan-bound epidermal growth factor
(HB-EGF) from the exoplasmic face of the plasma membrane [44]. In this manner, estrogens
act via GPER to transactivate EGFR family members [45] while in parallel stimulating
cAMP-dependent signaling pathways. Although GPER actions are initiated through the
activation of plasma membrane-associated enzymes (i.e., adenylyl cyclase and matrix
metalloproteinases), ultimately, these pregenomic actions lead to gene transactivation [46].
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Figure 1. Schematic diagram showing the receptor-mediated signaling mechanisms that promote
estrogen-regulated gene transcription: ER mediates direct gene transactivation by binding to estrogen-
regulated enhancers (EREs) (green arrows). In contrast, GPER promotes gene transactivation indi-
rectly as a downstream consequence of parallel cAMP-dependent (blue arrows) and EGFR-dependent
(red arrows) signaling pathways that may be regulated by cyclic AMP-regulated enhancers (CREs) or
serum-regulated enhancers (SREs). The inset in the upper right shows that members of the EGFR
family form homodimers and heterodimers, and that prolonged and robust EGFR signaling occurs in
cells in which her2/neu is amplified.

Several lines of experimental evidence support the idea that GPER transcriptional
activation occurs independently of ER. First, in both rodent uterine epithelial cells and
human MCF-7 breast cancer cells, both active estrogens and antiestrogen (4-hydroxy-
tamoxifen or ICI 182780) have been shown to be capable of promoting gene transcription
via reporter plasmids containing cyclic AMP-regulated enhancer (CRE) elements [47].
Importantly, these investigations revealed that the inhibitors of RNA or protein synthesis
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did not block estrogen-induced cAMP signaling or CRE-mediated gene transcription,
indicating that these effects did not require de novo gene expression. GPER-mediated
gene transactivation was established through experiments that demonstrated c-fos gene
transactivation by 17β-estradiol or phytoestrogens (quercetin or genistein) in ER-negative,
GPER-positive human SKBR3 breast cancer cells or in human MDA-MB-231 cells following
the reconstitution of GPER [5]. Further proof of concept demonstrating GPER-specific gene
transcription was developed through additional experiments using the GPER-selective
agonist, G1, and a c-fos reporter plasmid in ER-positive, GPER-positive human BG-1
ovarian carcinoma [48]. These findings are consistent with earlier work that first identified
GPER as a plasma membrane receptor that can robustly activate the EGFR-to-erk-1/2
signaling conduit [3,34,45]. While the full scope of genes whose transcription is mediated
through GPER-dependent EGFR transactivation has yet to be fully determined, it is well
recognized that EGFR signaling can lead to the activation of transcription factors that bind
to serum response elements (SREs). A broader view of gene signatures that can be traced
to GPER signaling is provided by a recent study by Lappano and Maggiolini analyzing
the transcriptomes of ER-negative breast cancer patients from The Cancer Genome Atlas
(TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
datasets [49]. This study showed a correlation in the expression of GPER with genes that
align with pro-metastatic pathways. Similar transcriptomic analyses were performed by Xu
and colleagues in a study of 360 Chinese patients with triple-negative breast cancer (TNBC),
an aggressive breast cancer subtype that expresses low levels of ER, progesterone receptor
(PR), and her2/neu [50]. These investigators were able to identify four distinct TNBC
molecular subtypes, with the highest levels of GPER correlating with the poorest metastasis-
free survival. These findings are consistent with other studies performed using clinically
relevant immunohistochemical staining that have shown that GPER is expressed in the
majority of TNBC cases and collectively have implications on rational drug design to combat
a type of cancer traditionally thought to be nonresponsive to endocrine therapy [50–52]—a
subject we will return to later.

4. Promotion of Carcinogenesis via Interplay between Estrogens and Estrogen
Receptors, ER and GPER

The estrogen receptor signaling mechanisms shown in Figure 1 are at the core of
carcinogenesis and can be triggered by endogenous and exogenous sources of estrogen.
As such, both endogenous and exogenous estrogens have been unequivocally labeled
as carcinogens [30,31]. However, an incomplete understanding of the complement of
estrogen receptors expressed in cancer has led to confusion regarding the role of estrogen
in carcinogenesis. Despite the strong evidentiary examples supporting a pro-oncogenic
role for GPER in breast cancer, it has been suggested that GPER does not drive cancer but
may act as a “tumor suppressor”, with both genetic and pharmacological data reported in
support of this label. Evidence for GPER as an antioncogene is extrapolated from studies
that show that the GPER promoter is hypermethylated in some tumors [53,54] and thus
rendered transcriptionally inactive. It is important to point out that, in these studies,
methylation was not evaluated as a global effect due to genome instability; nor was the
methylation status of other genetic loci, including ER, assessed. By the criteria applied
from this work, ER should also be classified as a tumor suppressor, as its promoter and
locus are commonly hypermethylated in breast cancer, and because this is the primary
mechanism through which ER protein expression is silenced in breast cancer [55], occurring
in as many as one of three cases of breast cancer. Moreover, if ERα were defined as a
tumor suppressor based on its frequent hypermethylation, this definition would contradict
its role in breast carcinogenesis and the success achieved by specifically targeting this
receptor with antiestrogen therapy for breast cancer. Furthermore, the assignment of the
term “tumor suppressor” to GPER does not fit with retrospective clinical data showing
that GPER aligns with disease progression and worse survival in breast and gynecological
cancer [49,50,56–59] or with experimental data indicating that its genetic inactivation
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in PDX biopsies significantly reduces tumor growth [60]. Pharmacological evidence in
support of the antioncogenic activity of GPER is derived from data that have shown that
GPER selective agonists can promote biochemical and cellular events leading to cell death,
including the disruption of tubulin [61,62], G2/M mitotic arrest and the upregulation of
p53 and p21 [63], and the cAMP-dependent exhaustion of c-myc [64]. In the context of this
argument, it is important to point out that the GPER-selective antagonist, G36, also inhibits
the growth of endometrial cancer [65] and nonsmall cell lung cancer [66]. Nevertheless,
further complexity is added by the fact that ER antagonists function as GPER agonists [13].
Thus, it may be more appropriate to recognize that total estrogen exposure—endogenous
and environmental—is a chronic stimulus that promotes estrogen action, independent of
receptor type and where the complementary action of these receptors is associated with
estrogen-driven malignancies. This view aligns more closely with the traditional evaluation
of estrogen as a carcinogenic agent (i.e., as a tumor promoter).

While the notion of estrogen carcinogenicity is clear in breast cancer, other tissues not
traditionally considered as being estrogen-responsive, such as colonic epithelia, may be
sensitive to estrogens, as manifested through their specific cellular receptors. This makes
sense considering that human exposure to environmental estrogens can be accounted for
directly in food as well as in plastic containers used to store preserved food and bottled
water as well as other beverages, which ultimately reside as solid waste in the colon. While
several observations support a role for estrogen in colorectal carcinogenesis (CRC) [67–70],
it has been argued that the protective, or “antioncogenic”, effect of endogenous estrogen is
a key reason that premenopausal women are less likely to develop colorectal cancer [69].
However, this latter theory contradicts the observation that diseases associated with dis-
rupted gastrointestinal homeostasis (i.e., constipation and irritable bowel syndrome) are
far more likely to occur in women than men [71]. Moreover, experimental evidence demon-
strates that estrogen promotes profound effects upon colonic epithelia that can disrupt
water and electrolyte homeostasis [72]. It is noteworthy that the best-studied pathogenic
mechanism for inducing diarrhea is the enzymatic activation of the Gαs subunit protein
and adenylyl cyclase following cholera toxin exposure [73], a signaling event that is also
accomplished following the stimulation of GPER with 17β-E2 [4]. Nonetheless, it has
alternatively been suggested that xenoestrogens that function as endocrine disruptors (e.g.,
bisphenol A, plant-derived polyphenols) may interfere with the antioncogenic effects of
estrogen for colorectal carcinoma [70]. Because ERβ is less well expressed than ERα, it
has been suggested that the balance of endogenous estrogens versus xenoestrogens may
determine antioncogenesis versus pro-oncogenesis in the colon. However, it is curious that
the expression of ERβ is commonly absent in advanced colorectal cancer (CRC) [74]. A
more recent study has implicated GPER as a “pro-oncogenic” factor in CRC [75], and this
is a research area that warrants further study.

Evidence for estrogen in the carcinogenesis of other solid neoplasms has been provided
by a recent work by Ridky and colleagues that has shed some light on the “pregnancy-
mediated protective effects” associated with improved patient outcomes in cutaneous
melanoma [64]. This work has implicated GPER in activating cAMP-dependent gene tran-
scription responses that result in an increased expression of melanocyte antigens, decreased
expression of the oncodriver c-myc, and increased sensitivity to PD-L1 checkpoint inhibi-
tion. Similar observations by Sun and coworkers have demonstrated that the stimulation
of melanoma cells with the synthetic GPER agonist, G1, promotes the cAMP-dependent
activation of the microphthalmic transcription factor (MITF), which regulates tyrosinase,
a rate-limiting enzyme in melanin production [76]. These results are consistent with an
earlier work that identified GPER as a Gαs-coupled GPCR [1,34]. A more recent work by
Ridky has shown that GPER agonism can also heighten PD-L1 sensitivity in a preclinical
model of pancreatic ductal adenocarcinoma [77]. In another study, the stimulation of uveal
melanoma cells with the GPER agonist LNS8801 (under development by Linnaeus Thera-
peutics) also induced melanocyte differentiation markers and concomitantly upregulated
p53 and p21, G2/M mitotic arrest and the disruption of the mitotic spindle [63]. Whether or
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not these results are associated with cAMP-dependent GPER signaling or receptor down-
modulation is unclear at present. Similarly, G2/M arrest was achieved in GPER-positive
human HCC1806 TNBC cells following treatment with a GPER-targeted proteolytic tar-
geting chimera (PROTAC), while cell cycle blockade did not occur in GPER-low human
MDA-MB-231 breast cancer cells [78].

5. Human Exposure to Environmental Estrogens and Implications for
Estrogen-Induced Carcinogenesis in the Context of Multiple Cancer-Involved
Estrogen Receptors

Our environment is replete with compounds that function as estrogen mimetics known
as xenoestrogens, many of which act as endocrine-disrupting chemicals (EDCs). Xenoe-
strogens can be readily found in food, plastics, food containers, cosmetics, and skin care
products [79]. A few select examples of xenoestrogens are dietary phytoestrogens (genistein
and daidzein), the synthetic environmental pollutant bisphenol A, and 4-hydoxytamoxifen.
The active metabolites of the antiandrogen tamoxifen are listed in Table 1 along with relative
binding affinities (RBAs) toward ERα, ERβ, and GPER.

Table 1. Relative binding affinities for 17β-E2 and examples of environmental estrogens to GPER,
ERα, and ERβ 1. “*” indicates a multiplication operator.

Estrogen Structure

% Relative Binding Affinity:
AffinityEstrogen/Affinity17β-E2 * 100%

ERα ERβ GPER 5

17β-E2
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Table 1. Cont.

Estrogen Structure

% Relative Binding Affinity:
AffinityEstrogen/Affinity17β-E2 * 100%

ERα ERβ GPER 5
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EDCs have long been implicated in carcinogenesis [82], although their contribution
to cancer has remained controversial [83]. To some extent, this confusion arises from past
adherence to a receptor model that centers on the nuclear estrogen receptors ERα and
ERβ but does not incorporate GPER. For example, the potential contributions of abundant
xenoestrogens such as bisphenols and dietary soy isoflavones in breast cancer have been
dismissed largely due to their low relative binding affinities (RBAs) for ERα, even though
many of these exhibit significantly higher RBAs for GPER, and this has been previously
described [6,13,39,81]. Genistein provides an example of this where the potential for it to
significantly interfere with the binding of 4-hydroxytamoxifen to ER has been discounted
due to the large difference in the RBAs between them: 175–257% for 4-hydroxytamoxifen
versus 0.021% and 6.8% for ERα and ERβ for genistein, respectively. In contrast, the RBAs
of genistein and tamoxifen to GPER are similar (2–5% and 0.3–6%, respectively), and both
compounds function as GPER agonists.

However, apart from RBA values, it is equally if not more important to also consider
several other factors that can potentially affect the potential carcinogenicity of EDCs, for
example, the fact that the bioavailability of phytoestrogens and other EDCs relative to
17β-E2 may be significantly higher due to their inability to complex with sex hormone
binding globulin (SHBG) [84]. This difference may be even higher in the context of tamox-
ifen, which is known to increase SHBG levels. Furthermore, this concentration difference
is expected to be exacerbated in patients receiving hormone therapy such as aromatase
inhibitors or ovarian suppressors to block 17β-E2 production. For patients taking tamoxifen
or fulvestrant to downregulate ER, there remains the potential for GPER agonism, either
from EDCs, 17β-E2, or the drug itself as tamoxifen and fulvestrant are GPER agonists
(discussed in Section 9). Collectively, these factors have the potential to offset the effect of a
low RBA for EDCs in terms of the potential for agonizing ER and GPER.

Daidzein is yet another example of a common dietary soy isoflavone that has impor-
tance with regard to promoting chronic estrogenic stimulation since postprandial serum
concentrations of daidzein can exceed preovulatory serum concentrations of 17β-E2 by
ten-fold [85], which may overcome the relatively low RBA to ER. A recent study demon-
strated that daidzein-induced, GPER-dependent migration could be measured in glial
cells at a half-maximal effective concentration EC50 of 10 nM [86]. In a separate report,
S-(–)equol, the bacterial metabolite of daidzein, was also demonstrated to be an effective
GPER agonist, with an EC50 of 100 nM for eNOS stimulation in endothelial cells [87]. In
this context, S-(–)equol may be an effective physiological modulator of GPER activity since
only 50% of it is serum protein-bound (50% is free and bioavailable), while <5% of 17β-E2
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is not serum-bound [88]. This may have significance for breast cancer in that S-(–)equol
producer status has been linked to lower breast cancer risk [89]; however, further studies
are needed to evaluate the bacterial metabolism of soy isoflavones in breast cancer patients
whose tumors contain distinct estrogen receptor profiles. In summary, while there are obvi-
ously considerable commercial drivers behind the popular usage of dietary soy isoflavones
as antioxidants and anti-inflammatory agents, their potential to counteract or modulate
endocrine responses remains a concern [90,91].

Increased exposure to environmental synthetic estrogens such as diethyl phthalates [92],
o,p′-DDT [93], polychlorinated biphenyls (PCBs) [94,95], and bisphenols [96] have been
hypothesized in part to contribute to the increased breast cancer risk in developed coun-
tries [97,98]. Also of concern is the synthetic estrogen, bisphenol A (BPA) which exhibits an
approximate 30–60-fold lower relative binding affinity for ERα or ERβ than GPER (0.008%
for ERα or ERβ compared with 0.5–1% for GPER (Table 1) [6,99]. This may have important
ramifications regarding the need to target GPER, based on the sheer abundance of BPA
and its easily modifiable structure. At present, more than 40 chemical analogs of BPA exist,
and several of these have been reported to have high RBAs for GPER (i.e., bisphenol AF
and bisphenol B) [100]. With regard to bisphenols, human exposure is significant, and as
discussed below, there has been considerable attention and pressure placed upon regulatory
agencies to re-evaluate current standards for public safety. This may have further impor-
tance considering the high affinity of GPER for bisphenols and the nonlinear relationship
that many GPCRs demonstrate between receptor occupancy and signaling.

Bisphenols are ubiquitously utilized in the production of polycarbonate plastics,
plasticized liners on packaged food, dental sealants, and thermal receipt papers [101,102].
More than 6 billion pounds of BPA alone were produced worldwide in 2020, with the US
consuming more than 40% of total production [103]. The US Environmental Protection
Agency (EPA) estimates that more than 1 M pounds of BPA leaches into the environment
each year, and it is detected in over 95% of all people, with the highest concentrations
measured in infants and children [104,105]. Their common presence in food packaging has
resulted in renewed requests for the US Food and Drug Administration (FDA) to limit the
use of BPA to 0.05 ng/kg of food in January 2022 [106]. While the current safe reference dose
set by the FDA is at a threshold of 50 µg/kg body weight per day [96], this is significantly
higher than the safety standards that have been set in Europe. In December 2021, the
European Food Safety Authority (EFSA) revised its previous safety limit for BPA from
4 µg/kg body weight per day to a new standard of 0.04 ng/kg body weight per day [106].
These cautionary changes imposed by the EFSA may be justified based on multiple studies
that have demonstrated that BPA and other endocrine-disrupting chemicals commonly
result in nonmonotonic dose responses (NMDRs) [107], with biological/cytotoxic responses
measured at very low drug concentrations that are in the range of typical human exposure
levels. Several laboratory studies have provided experimental evidence demonstrating that
BPA has an “instigating effect” on breast carcinogenesis [96,108]. Among the mechanistic
explanations that are offered by toxicologists for nonmonotonicity is the effect of excess
hormone concentration in the context of inactivated, degraded, or desensitized receptors.
This explanation is particularly relevant for this review as G protein-coupled receptors
(GPCRs) have been modeled as receptors to explain NMDRs [96,108].

6. GPER as a Therapeutic Target in Metabolic Disease and Cancer

The observation that colon and breast cancers are two malignancies that best align with
central adiposity and cancer risk may further suggest a role between GPER, metabolic syn-
drome, and cancer. This has been borne out in part from experimental evidence demonstrat-
ing that GPER null mice develop metabolic syndrome [14] and GPER agonists effectively
reduce this phenotype in mice that are fed an obesogenic diet [109]. These observations
may be relevant to parallel increases in the incidence of breast cancer, obesity, and insulin
resistance in socioeconomically developed countries [110]. For example, in the United
States, approximately one in four adults will develop insulin resistance syndrome, which is
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more common in older people and will continue to increase as the population ages and be-
comes more obese [110]. Insulin resistance syndrome co-occurs with metabolic risk factors
for type II diabetes mellitus and cardiovascular disease, including obesity, dyslipidemia,
hyperglycemia, and hypertension. These core pathologies collectively define metabolic
syndrome and increase the risk of developing cancer [111] (Figure 2). It may therefore
not be merely coincidental that a link can be drawn between exposure to environmental
estrogens and the development of metabolic syndrome [12,112]. It has become increasingly
clear that insulin resistance and diabetogenesis are not merely a function of genetics and
Western diet and lifestyle choices, but that environmental pollutants, such as persistent
organic pollutants, pesticides, bisphenol A, and phthalates, are also considered risk factors.
These observations deserve further consideration in the context of our understanding that
more than one estrogen receptor participates in estrogen action.
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Figure 2. Schematic showing the relationship between estrogens, metabolic syndrome, and cancer.
The hallmark features of metabolic syndrome are clustered around abdominal obesity and are
measured as hypertension, hyperglycemia, hyperglyceridemia, and low serum concentrations of high-
density lipoproteins. Individuals with metabolic syndrome are likely to develop several associated
diseases, including cardiovascular, renal, and liver disease, as well as diabetes and cancer. In
the model above, estrogens (both environmental and endogenous) act as toxicants, which further
contribute to disease progression (adapted from Vijayalakshmi Varma, National Center for Toxicology
Studies, USDA) [111].

A role for GPER in estrogen-induced carcinogenesis is logically argued from the
perspective that views “cancer as the chronic wound that does not heal” [113], and this
idea has been reviewed previously [30]. In this context, GPER drives estrogen-induced
carcinogenesis by triggering intracellular signaling pathways that allow for (i) a loss of
epithelial cell polarity and invasion of the basement membrane associated with epithelial-
to-mesenchymal transition (EMT) [114]; (ii) the invasion of local tissue via the activation of
matrix metalloproteinases (MMPs) and other cell surface proteinases [115–117]; (iii) escape
from apoptosis [118,119] and survival outside the confines of its basement membrane;
(iv) the synthesis of a provisional fibronectin matrix [44,120]; (v) the production and release
of soluble factors that alter local and peripheral immunity [35,121]; (vi) a mechanism to acti-
vate its signaling in a hypoxic environment [119,122,123] and to activate cancer-associated
fibroblasts [124] that lead to the development of a reactive cancer stroma; and (vii) the
elicitation of signals that promote the recruitment of a vascular supply to reoxygenate the
“wounded” tissue [125], which ultimately may result in systemic tumor cell dissemination.
GPER-mediated cellular responses associated with cancer are not limited to endogenous es-
trogens. The environmental pollutant BPA is linked to GPER action in testicular seminoma
cells [126,127] and upregulates GPER target genes: c-fos, early growth response-1 protein
(EGR-1), and connective tissue growth factor (CTGF) in breast cancer cells and stromal
fibroblasts [128]. BPA may indirectly promote carcinogenesis through its diabetogenic ef-
fects as its administration results in hyperinsulinemia in mice [129] and humans [130]. More
recent studies have shown that BPA is able to act via GPER to reverse the antiapoptotic
effects of 17β-E2-mediated ER in insulin-producing pancreatic beta cells [128].
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Despite the connection between GPER, carcinogenesis, and cancer, it is surprising that
antiestrogen therapies for breast cancer remain persistently designed to target only ER. More-
over, the fact that GPER directly associates with tumor size and distant metastasis [56,58,59],
while ER varies inversely with these disease progression variables [131], suggests that ER and
GPER may collaboratively and complementarily contribute to breast carcinogenesis [132].
This hypothesis is strongly supported by a retrospective clinical study of 742 ER+ low-risk
(lymph node-negative, postmenopausal) breast cancer patients whose primary tumors were
GPER-negative and showed improved disease-free survival [57]. Experimental data also
support a pro-oncogenic role for GPER in breast cancer. Firstly, it has been shown that GPER
is required for the survival of tumor-initiating “stem” cells derived from patient-derived
tumor xenografts (PDXs) [60]. Secondly, less aggressive disease occurs upon the somatic
cell silencing of GPER in a robust model of PyMT-induced breast carcinogenesis [133].
Additionally, GPER-selective ligands have shown efficacy in nonclinical and clinical set-
tings. For example, the GPER antagonist, G36, delays the estrogen-dependent outgrowth
of transplanted ER−/GPER+ endometrial carcinoma in mice [65], while the GPER agonist,
G1, has been shown to attenuate the growth of patient-derived xenografts of pancreatic
ductal adenocarcinoma [77]. Lastly, it is also important to consider the fact that certain
ER antagonists such as tamoxifen, fulvestrant, and raloxifene act as GPER agonists [6],
with evidence that tamoxifen can upregulate aromatase activity in tumor and stromal
fibroblasts [134]. Thus, the broad role GPER plays in carcinogenesis calls into question
the extent to which the current rubric for endocrine therapy can truly be effective beyond
tumors that are only ER involved—in other words, for cancers such as ER+/GPER+ and
ER−/GPER+, which account for almost half of all breast cancer types (discussed in more
detail in Section 10 below) [56,135]. Collectively, these observations strongly suggest a link
between the effectiveness of cancer therapy and the involvement of GPER.

7. GPER-Targeted Drugs for Metaboregulation and Cancer

GPCR-targeted drugs account for approximately 35% of all FDA-approved drugs [136].
Collectively, these drugs serve as effective treatments for modulating a wide assortment of
diseases affecting almost every known physiological system. Experimental data strongly
support the idea that GPCRs play a critical role in cancer, which is consistent with their
role in tissue homeostasis, and this has been reviewed in detail [137–141]. In brief, these
data include (i) the demonstration of a link between excessive signaling by GPCR cancers
such as Mas-1, angiotensin II metabolite, angiotensin-(1-7) neuropeptides, gut hormones,
and neuroendocrine and digestive cancers; (ii) findings showing that the constitutively
acting mutations (CAMs) of GPCRs are associated with head and neck squamous cell
carcinoma, small-cell lung cancer, thyroid cancer, pancreatic cancer, and prostate can-
cer; and (iii) laboratory evidence pointing to the overexpression of the α1B adrenoceptor
(α1B-AR) in rodent fibroblasts resulted in focus formation. Further supporting a case
for dysregulated GPCR signaling and cancer is the concept that ligands that act through
GPCRs promote cellular responses associated with a loss of tissue homeostasis. Chemokine
receptors are well known for their central role in leukocyte diapedesis, the process through
which immune cells extravasate from the vasculature and invade parenchymal tissue.
Moreover, smoothened receptors and frizzled receptors, as well as their Wnt ligands and
hedgehog ligands, play critical roles in development and embryogenesis and have attracted
significant interest as therapeutic targets for cancer [142–145]. Finally, it is important to
recognize that targeting GPCRs is a successful strategy for the treatment of breast cancer,
as the disruption of the neuroendocrine–ovarian cascade of estrogen biosynthesis, lead-
ing to ovarian suppression, is effectively achieved through the bolus administration of
LHRH superagonists [146].

From the prevalence of GPCRs in current drug design and the role they play in
cancer, it is not surprising that the development of cancer drugs that target GPCRs is
gaining traction [141,147–149]. A variety of different treatment strategies are under devel-
opment, including small molecule pharmacological compounds that target GPCRs and
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G proteins [150], as well as antibody-based approaches [84]. In 2006, Prossnitz and col-
leagues developed a small molecule selective GPER agonist, named G-1 [151], that has
been instrumental in deciphering the individual molecular signaling activities of GPER,
ERα, and ERβ. Since its discovery, G-1 has been used by a large number of investiga-
tors to assess the pathophysiological role of GPER in various disease states, including
diabetes and obesity [109,152], autoimmune encephalomyelitis [152], hypertension [153],
atherosclerosis [154], endometriosis [27], rheumatoid arthritis [155], acute colitis [156], and
schizophrenia [157]. These studies have not only demonstrated the involvement of GPER in
these estrogen-induced pathological conditions, but they have also served to demonstrate
that G-1 is a relatively safe compound that does not elicit overt toxicological responses in
mice, even when used in the long term. Because of the link between metabolic disease and
cancer, research showing that G-1 (under preclinical development as Tespria™) can reverse
obesity and improve glucose homeostasis in mice that are fed an obesogenic diet may be
particularly relevant [109]. As was discussed earlier, Ridky and colleagues have shown
that GPER agonism can also heighten PD-L1 sensitivity in a preclinical model of pancreatic
ductal adenocarcinoma [77]. In another study, the stimulation of uveal melanoma cells with
LNS8801 also induced melanocyte differentiation markers and concomitantly upregulated
p53 and p21, G2/M mitotic arrest and the disruption of the mitotic spindle [63]. Whether or
not these results are associated with cAMP-dependent GPER signaling or receptor down-
modulation is unclear at present. Similarly, G2/M arrest was achieved in GPER-positive
human HCC1806 TNBC cells following treatment with a GPER-targeted proteolytic target-
ing chimera, while cell cycle blockade did not occur in GPER-low human MDA-MB-231
breast cancer cells [78]. Recently reported Phase 1 results demonstrated that LNS8801 alone
and in combination with pembrolizumab (Keytruda®) was tolerable and showed antitumor
activity in 15 patients with metastatic uveal melanoma (mUM) studied to date. The fact
that the mUM cohort from this study featured an overrepresented hypofunctional germline
GPER variant compared with the normal population suggested a potentially significant
role for GPER in the development of therapies to treat this for melanoma [158,159].

An alternative method for targeting GPER has been demonstrated by the develop-
ment of GPER antagonists. Several have been developed, including G15, G36, CIMBA,
MIBE, PBX1, PBX2, C4PY, and CPT, with half-inhibitory constants (IC50) that range from
200 to 5000 nM [160–163]. Among these GPER antagonists, G15 is noteworthy due to
its high binding affinity for GPER (Kd = 20 nM) [161]. While the ERα affinity for G15 is
quite low (>10 mM), an improved GPER antagonist, named G36, was developed by the
same investigators with still lower affinity for ERα, and the ability to block the growth
of transplanted ER-negative type II endometrial cancer cells [65]. The GPER antagonists
G15/G36 have been developed based on their ability to prevent G-1 binding to GPER
and inhibit GPER-dependent 17β-E2 signaling (Ki = 200 nM) [161,164]. An independent
series of GPER antagonists with an affinity for GPER and in vivo efficacy was developed
by Arnatt and coworkers. The lead compound in this series is, 2-cyclohexyl-4-isopropyl-N-
(4-methoxybenzyl) aniline (CIMBA), which shows good selectivity and inhibitory activity
(IC50 = 75 nM) and inhibits the formation of estrogen-induced cholesterol gallstones in
mice [160]. Whether the mechanism associated with efficacy is due to pharmacological
activation, the inhibition of GPER and/or its downmodulation has yet to be clearly deter-
mined. Other modalities of inhibiting GPER, including targeting G proteins, downstream
effectors of GPER, and the use of therapeutic antibodies and antibody conjugates, have
been discussed previously [84].

8. Rationale for Assignment of Endocrine Therapy for Breast Cancer

Guidelines for Estrogen and Progesterone Receptor Testing in Breast Cancer rec-
ommend the measurement of ER in biopsied breast tumor tissue using a standardized,
semiquantitative immunohistochemistry test that is used to diagnose cancer as the rationale
basis for predicting which patients may benefit from endocrine therapy (although in prac-
tice, clinicians may prescribe treatment regimens that include endocrine therapy to breast
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cancer patients when it is not clear that it will be efficacious). At present, no other assays
are recommended for this purpose. However, there is a large variation in the presence or ab-
sence of ER that helps determine the eligibility for endocrine treatment. This is underscored
by the findings of the 2020 update guideline from the American Society of Clinical Oncology
(ASCO)/College of American Pathologists (CAP) that acknowledged that limited data have
shown the benefit of endocrine therapy for tumors with ER 1–10% expression, which were
termed “ER-low positive breast cancer” [165,166]. Moreover, the current standardized test
for the presence of ER in tumor tissue does not discriminate whether biopsied tumor tissue
expresses ERα, ERβ, or both. Significantly, GPER expression is not currently evaluated
in tumor biopsy specimens, despite its established role in breast cancer carcinogenesis,
and corroborating data from a significant number of studies have shown that GPER is
expressed independently from ER in treatment-naïve breast tumors [49,56,57,167,168].

The consequence of reliance on ER as the canonical breast cancer-involved estrogen
receptor is that therapies available to date and those under development are designed to
target and treat this receptor and not GPER. Thus, patients receiving endocrine therapy to
treat tumors that express both ER and GPER are at risk of being inadequately treated, as
shown in Figure 3 [56,135].
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The finding that GPER and ER are independently expressed in breast cancer suggests
that ER-only-targeted endocrine treatments, including those under development, ade-
quately treat only 19% of breast cancer patients (ER+/GPER−, red-shaded area), while 43%
of all patients (ER+/GPER+, blue-shaded area) are treated partially. The ER−/GPER+ and
ER−/GPER− expressed breast cancer (green- and grey-shaded areas, respectively) account
for 19% each and are not expected to respond to ER-based treatment. Perhaps most signifi-
cantly, unlike ER, GPER is expressed in the majority of triple-negative breast cancer (TNBC),
providing a potential therapeutic target for this aggressive breast cancer subtype [50–52].

9. Evaluation of FDA-Approved Endocrine Therapies for the Treatment of
Breast Cancer

As has been discussed, the onset and proliferation of estrogen-related breast cancer
are controlled by the prevalence of, and interplay between, estrogen or estrogen-like (envi-
ronmental) ligands and estrogen receptors (ER and GPER) that results in the formation of
estrogen–estrogen receptor complexes and subsequent signaling that promotes carcinogen-
esis. Clinically, however, the drug development of endocrine therapy for the treatment of
breast cancer has focused on addressing two complementary approaches to prevent the
formation of an estrogen–estrogen receptor complex—i.e., 17β-E2–ER complex—by using
small molecule drugs that either (i) downregulate estrogen production within the body or
(ii) downregulate ER function. The former approach targets the machinery that produces
estrogen in the body and includes the use of aromatase inhibitors (AIs) and luteinizing
hormone-releasing hormone (LHRH) analogs (also called GnRH receptor modulators). AIs
are molecules that bind either reversibly or irreversibly to the enzyme aromatase and pre-
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vent the conversion of androgens such as testosterone to estrogen, estradiol (17β-E2) [169],
the penultimate step in estrogen biosynthesis. LHRH analogs suppress the secretion of
gonadotropin, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), resulting
in a reduction in estrogen production in the ovaries [170].

In contrast to controlling the production of estrogen in the body, the complementary
approach to endocrine therapy focuses on the estrogen receptors themselves by utilizing lig-
and molecules that can bind to ER competitively with estrogen, thus preventing the forma-
tion of the 17β-E2–ER complex required to carry out signaling and transcriptional functions
necessary for cancer cell growth. Drug development focused on the downregulation of
estrogen receptor function has further evolved into two approaches: (i) selective estrogen
receptor modulators (SERMs) that bind to estrogen receptors as regulators/inhibitors, and
(ii) selective estrogen receptor degraders (SERDs) that bind to and subsequently induce the
destruction of estrogen receptor proteins via innate ubiquitination processes responsible for
maintaining tissue homeostasis. Since its inception nearly 60 years ago, endocrine therapy
has evolved, and advances have been made on two fronts. First, the combinatorial use of
more than one treatment modality to reduce endogenous estrogen and/or block ER signal-
ing (i.e., pairing ovarian suppression with an aromatase inhibitor or an aromatase inhibitor
with a SERM such as tamoxifen) has been shown to be slightly more effective in treating
premenopausal women [146]. The second area of advancement has been in developing
SERDs with better bioavailability (e.g., elacestrant and camizestrant), although it remains
to be seen whether these agents are significantly different than fulvestrant, discussed in
a later section. A summary of historical and current approaches to endocrine therapy is
discussed below and evaluated in terms of their ability to account for key elements that
contribute to breast cancer (Table 2).

Table 2. Modalities and attributes of endocrine treatment for regulatory approved drugs.

Therapy/Attributes AI LHRH Analog SERM SERD

Class Inhibitor Inhibitor Inhibitor Degrader
(noncatalytic)

Receptor Target Aromatase GnRH Receptor ER ER

Downregulation MOA Inhibition of estrogen
biosynthesis Ovarian suppression ER-mediated

gene transactivation
ER degradation
and signaling

Examples
Exemestane,
Anastrozole,

Letrozole

Leuprolide, Goserelin,
Triptorelin

Tamoxifen, Toremifene,
Raloxifene Fulvestrant, Elacestrant

Treatment First line First line First line Second line

ER+/GPER+ Yes Yes Yes a Yes a

ER+/GPER− Yes Yes Yes Yes

ER−/GPER+ No No No No

ER−/GPER− No No No No

TNBC No No No No

Drug Resistance Yes Yes Yes Yes

Endogenous Estrogen Yes Yes No No

Environmental Estrogen No No No No

Premenopausal Yes b Yes c Yes d No

Postmenopausal Yes Yes Yes Yes
a Efficacy is expected to be predicated to the extent that ER involvement overrides GPER involvement in cancer
cell growth and/or these drugs adventitiously inhibit or degrade GPER. b In combination with SERMS. c In
combination with AIs and SERMS. d In combination with AIs.
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9.1. Aromatase Inhibitors (AIs)

Aromatase inhibitors were first developed in the early 1960s, leading to the devel-
opment and European Medicines Agency (EMA) approval of formestane (marketed as
Lentaron™ by Lisboa B.P.) in 1992, indicated as a first-line treatment for estrogen-receptor-
positive (ER+) breast cancer in postmenopausal women. Formestane is steroidal-based,
administered intramuscularly, and is currently only sparsely used in the EU, South America,
and Asia [171,172]. Since then, other steroidal and nonsteroidal drugs have been devel-
oped to enable oral administration, leading to the approval of anastrozole (Arimidex™,
nonsteroidal), exemestane (Aromasin™, steroidal), and letrozole (Femara™, nonsteroidal)
that are used today. AIs are generally used as a first-line therapy in adjuvant and metastatic
settings to treat postmenopausal women with hormone-responsive cancer [170,173] and
have been shown to reduce the risk for recurrence postcurative treatment. In the adjuvant
setting, AIs are often used in combination with other endocrine therapies such as LHRH
inhibitors and tamoxifen (a SERM, discussed below), and for metastatic disease, they are
often prescribed with a CDK4/6 inhibitor [174]. Common side effects from AIs include
symptoms of menopause (hot flashes, night sweats, and vaginal dryness), joint and muscle
pain, bone brittleness and loss, and raised levels of cholesterol [175].

AIs are ineffective in premenopausal women where estrogen production also occurs
in the ovaries. However, they may be utilized when combined with ovarian suppression
via either the surgical resection of the ovaries (oophorectomy) or the use of a drug such as
leuprolide (Lupron™) or goserelin (Zoladex™) [176,177]. For example, a recently published
meta-analysis of premenopausal women (7030) with ER+ breast cancer demonstrated that
the use of AIs in conjunction with an ovarian suppressor such as an LRHR agonist (below)
or ablation reduced the risk of breast cancer recurrence versus the SERM tamoxifen [178].
While AIs have shown promise in endocrine therapy by blocking the interconversion
of androgens to estrogens, they obviously have no effect on the biological actions of a
multitude of environmental estrogens, including phytoestrogens as well as estrogen-like
molecules known to function as EDCs. Such chemicals are found in plasticizers, household
products, cosmetics, and organopesticides such as BPA, which has been extensively used in
plastics and is a potent GPER agonist [100].

9.2. Luteinizing Hormone-Releasing Hormone (LHRH) Analogs

LHRH analogs, also referred to as gonadotropin-releasing hormone modulators
(GnRH modulators), are agonists or antagonists that modulate the GnRH receptor. LHRH
analogs can enable the elevation or suppression of hormone secretions within the go-
nads and subsequently increase or reduce hormone levels (estradiol, progesterone, and
testosterone) [179]. In the context of breast cancer, LHRH agonists act as ovarian sup-
pressors and include leuprolide (Lupron™) and goserelin (Zoladex™) [175–177]. They
are effective for the treatment of disease in premenopausal women and are used alone
or in combination with AIs, SERMs, and SERDs (below) in an adjuvant or metastatic
setting [170,176,177,180]. Common side effects are typical of menopausal symptoms and
include hot flashes, vaginal dryness, and mood swings [175]. However, like AIs, these phar-
macological agents are limited in their ability to block neuroendocrine-mediated estrogen
biosynthesis through the hypothalamic–pituitary–ovarian axis. LHRH/GnRH drugs do not
block nonovarian estrogen biosynthesis that occurs in a variety of tissues in postmenopausal
women; nor do they have any effect on the activity of environmental estrogens.

9.3. Selective Estrogen Receptor Modulators (SERMs)

SERMs were first developed in the 1960s and 1970s for the treatment of infertility
and/or menopause (clomifene, Clomid™, 1967; cyclofenil, Sexovid™, 1970). Since then, the
development of SERMs continued with the discovery and approval of drugs for hormonal
contraception (ormeloxifene, Saheli™, 1991) and osteoporosis (raloxifene, Evista™, 1997;
lasofoxifene Fablyn™, 2009). In the context of breast cancer treatment, the most used SERM
is tamoxifen (marketed as Nolvadex®, Genox®, and Tamifen®, among others), which was
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discovered in 1962, approved in 1978, and remains a first-line therapeutic mainstay to
the extent of nearly 1 million prescriptions as of 2020 [181]. Tamoxifen is indicated for
premenopausal and postmenopausal women and men and is typically administered orally
for a period of 5 years, after surgery [182,183]. More recently, the National Comprehensive
Cancer Network (NCCN) has recommended that the adjuvant administration of tamoxifen
be extended to 10 years for patients with early-stage disease, based on the results from the
ATLAS clinical trial [184], as well as for patients with metastatic disease [185]. For patients
who are prescribed chemotherapy and endocrine therapy post surgery, tamoxifen typically
follows chemotherapy. Since the advent of tamoxifen, other SERMs that have been devel-
oped for the treatment of breast cancer include raloxifene (Evista™, 1997) and toremifene
(Fareston™, 1997) [186]. Compared with tamoxifen, raloxifene and toremifene have similar
efficacy but also reduce the risks of other complications such as thromboembolic events
and cataracts [187,188]. However, while raloxifene was approved for the prevention of
breast cancer and has been shown to reduce the risk associated with endometrial cancer,
this comes with an increased risk of DCIS in early-stage breast cancer [188].

As with other SERMs, tamoxifen acts as an allosteric inhibitor by competitively binding
to estrogen receptors over estrogen, thus preventing the alpha–beta heterodimerization
of the ER and the recognition of the ER–ERE gene promoter responsible for transcription
factors necessary for cancer cell growth [189]. Nonserious side effects common to tamoxifen
and other SERMs include irregular menstruation, weight loss, and hot flashes, with more
serious side effects of a slightly increased risk of uterine cancer, stroke, vision problems,
and pulmonary embolism [183]. Although SERMs such as tamoxifen have substantial
benefit to patients and continue to be used in the treatment of breast cancer, they suffer
from drug resistance resulting from the hypersensitivity of ERα to estrogen and mutations
to the ligand binding domain or the stabilization of ERα that are either ligand-independent
or SERM-induced [190,191]. Furthermore, it has been shown that tamoxifen and raloxifene
act as GPER agonists, raising the possibility that whatever efficacy they provide in silencing
cancer growth signaling by antagonizing ER may be countered to some extent by promoting
signaling via GPER. In addition, it has also been observed that while tamoxifen acts as
an ER+ antagonist, it also acts as an agonist in the uterus, which can lead to an increased
chance of endometrial cancer [192,193].

9.4. Selective Estrogen Receptor Degraders (SERDs)

ER signaling that is required for the proliferation of many breast cancers eventually
becomes resistant to the positive, inhibitory effects of aromatase inhibitors or SERMs such
as tamoxifen, due in part to the effect of mutations on the ER structure. Therefore, thera-
peutic approaches that can permanently disrupt signaling and transcriptional pathways
represent a means of potentially thwarting drug resistance [194,195]. In contrast to aro-
matase inhibitors, LHRH agonists and antagonists such as SERMS, protein destabilization
and degradation represent a third mechanism for downregulating the function of estrogen
receptors [196]. Selective estrogen receptor degraders (or downregulators), SERDs, are a
class of small molecules that principally function by binding to the ER estrogen receptor to
form an ER–SERD complex with reduced mobility and stability, resulting in a conforma-
tional change in the protein and subsequent degradation of the receptor [197] and blocking
transcriptional activity [198,199]. Thus, with respect to their interaction with estrogen
receptors, SERDs are often described as functioning as event-driven drugs, whereas SERMs
act as occupancy-driven drugs [200]. In addition to effecting degradation, SERDs can act
antagonistically, somewhat analogous to SERMs, where the compromised mobility and
altered conformation of the ER–SERD complex reduces the rate of intracellular nuclear
translocation and the turnover of estrogen receptors and downregulates the transcription of
ER-modulated genes [174]. By degrading, rather than simply inhibiting, receptor estrogen
function, SERDs overcome the limitations of SERMS irreversibly reducing selective pressure
from downmodulation that otherwise promotes mutations leading to drug resistance [201].
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Fulvestrant, an injectable steroidal drug marketed by AstraZeneca as Faslodex™, is a
first-generation SERD, and until very recently, it was the only FDA-approved example of
such. It is indicated as a first- or second-line endocrine therapy for postmenopausal
women with ER-positive metastatic breast cancer or locally advanced disease that is
unresectable [202]. The mechanism of action for fulvestrant involves binding to the ER
to form a fulvestrant–ER complex that prevents the dimerization and localization of ER
in the nucleus, rendering it unstable toward degradation [195,203]. Fulvestrant has also
shown efficacy toward ESR1 mutations in the ER, although the maintenance of clinical
effectiveness requires elevated dosing [203,204]. Fulvestrant suffers from several limitations
typical of SERDs, including eventual drug resistance and the need for painful, regular intra-
muscular administration due to poor oral bioavailability [193]. The sterically encumbered
steroidal nature of fulvestrant also presents challenges in terms of chemical derivatization
to improve bioavailability without compromising efficacy [205]. There are many SERDs in
various stages of clinical development with the goal of overcoming such limitations. One
such example is the drug elacestrant (marketed by the Menarini Group as Orserdu™), an
orally administered, nonsteroidal hybrid SERM–SERD drug that was approved by the FDA
in early 2023. It is indicated for the treatment of postmenopausal women or adult men
with ER-positive, HER2-negative, ESR1 mutated advanced or metastatic breast cancer with
disease progression following at least one line of endocrine therapy [206]. From Phase 3
clinical studies (the EMERALD study), elacestrant showed improved progression-free sur-
vival for patients with ESR1 mutations (which are largely responsible for drug resistance)
and exhibited manageable safety for patients with ER-positive/HER2-negative advanced
breast cancer versus standard of care (SOC) fulvestrant or AIs [207]. Another example
of a second-generation SERD targeting improved bioavailability is camizestrant, under
development by AstraZeneca. The results from a recent Phase 2 study (SERENA-2) demon-
strated potential superiority over fulvestrant in patients with HER2-negative breast cancer,
including a two-fold increase in progression-free survival attributed to a reduction in the
levels of ESR1 mutation [208,209]. As was noted for tamoxifen, fulvestrant and raloxifene
can also act as GPER agonists [191], thus creating a situation where their overall efficacy is
likely predicated on their antagonism of ER overriding their agonism of GPER. It remains
to be seen whether elacestrant and camizestrant also demonstrate GPER agonism, and if so,
the extent to which this may limit their efficacy as well.

10. Assessment of Approved Endocrine Therapies in View of the Current Rubric and
the Effect of Elements Not Considered

Regulatory-approved endocrine therapeutics based on the current rubric have per-
sistently focused on downregulating endogenous estrogen (17β-E2) production and ER
signaling function and have been successful as therapies (Figure 4a). However, the com-
pleteness of their efficacy in terms of addressable cancer types, drug resistance, and sources
of estrogen is ultimately limited by environmental estrogen and GPER elements not con-
sidered, along with the potential for the formation of a significant number of cancer cell
growth-promoting complexes (Figure 4b; Table 2). Consequently, and as shown in Table 2,
controlling endogenous estrogen production either by AI or LHRH analogs cannot account
for the potential effects of environmental estrogens. Similarly, drug approaches that attempt
to downregulate ER function and discount GPER are limited to cancers that are ER+ in
nature and are not expected to be significantly efficacious for cancers such as TNBC, which
has been shown to be GPER-regulated and not ER-regulated [50]. Moreover, therapies
designed to target ER are expected to be most effective for ER+/GPER− cancers, whereas
for ER+/GPER+ cancers, efficacy will always be limited by the extent of undrugged GPER
involvement, or where such therapies adventitiously target GPER. The observation that
drugs designed to downregulate ER function (ER drugs, Figure 4b) can act as agonists fur-
ther confounds the picture for endocrine therapy. Clearly, the current rubric for endocrine
therapy must therefore be reconsidered to account for all endocrine elements involved in
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promoting cancer cell growth. In particular, the ability to effectively mitigate the effect of
environmental estrogens rests on the downmodulation of ER and GPER.
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Figure 4. Schematic depicting (a) the current rubric for rational assignment of endocrine therapy and
(b) elements not considered in the rubric. Panel (a) shows current endocrine therapies that prevent
the formation of endogenous estrogen (17β-E2)–ER complex by either blocking endogenous estrogen
biosynthesis (via aromatase inhibitors or LHRH agonists, orange box) or through the molecular
action of estrogen at the estrogen receptor ER via ER Drugs (i.e., SERMs/SERDs, grey icon). Panel (b)
also shows elements and interactions that are not accounted for in the current rubric: (i) endocrine-
disrupting chemicals in the environment (EDCs, i.e., xenoestrogens and phytoestrogens; red icon)
and GPER (green icon), and (ii) cancer-promoting complexes resulting from combinations of 17β-E2
and EDCs that can interact with and agonize ER and GPER, and ER drugs (antagonists) that can also
interact with and function as GPER agonists.

11. New Approaches to Targeted Protein Degradation and Future Considerations

Protein degradation approaches in endocrine therapy have emerged as a necessary
element in front-line endocrine therapy by offering a means to account for not only the
irreversible silencing of ER but also the potential effects of environmental estrogens that
can agonize this receptor. One of the principal limitations of degraders such as SERDs,
e.g., fulvestrant, is that their efficacy is tied to their ability to bind to the ligand binding
pocket (LBP) of ER to form a SERD–ER complex (notwithstanding the role GPER plays in
carcinogenesis and the need to target this critical receptor in addition to ER). Mutations
to the ER can therefore lead to changes in the structure of the LBP and the inability
of the SERD to properly bind, leading to drug resistance. Moreover, the degradation
of the SERD–ER complex via tissue homeostasis relies on the efficiency of the body’s
innate ubiquitination processes to recognize and target the affected ER. To overcome such
limitations, rational drug design for endocrine therapy has evolved into a variety of novel
targeted protein degradation strategies, which include molecular glues, lysosome-targeting
chimeras (LYTACs), antibody-targeting chimeras (AbTACs), and proteolysis-targeting
chimeras (PROTACs) [210].

PROTACs have received considerable attention in the past several decades since their
initial discovery by Sakamoto and Crews [211] and are the subject of numerous clinical trials,
notably including the PROTAC ARV-471 currently being studied in Phase 3 clinical trials for
patients with ER+/HER2- breast cancer. PROTACs are heterobifunctional protein degrader
molecules that comprise two protein-binding ligands and a flexible linker that connects
them. One of the ligands is designed to bind to the protein of interest (POI) targeted for
degradation, while the other ligand is designed to bind to the E3 ligand ligase protein
responsible for ubiquitination and degradation. The mechanism of action involves the
binding of the ligands of the PROTAC to their respective protein targets to form a ternary
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complex characterized by the simultaneous antagonism of the POI and the activation of
the E3 ligase, inducing the direct degradation of the POI via ubiquitination. Following the
degradation of the POI, the PROTAC is recycled and can degrade additional POIs [212].
PROTACs do not have to bind strongly to their POI or bind to their LBP to be effective.
Therefore, they have the potential to be structurally modified to enhance solubility without
affecting ligand binding—an aspect that is advantageous over SERDs. Furthermore, the
ability for PROTACs to be recycled after each POI degradation event classifies them as
catalytic rather than stoichiometric degraders. The catalytic nature of PROTACs therefore
offers the potential for efficacy at substantially lower doses and within solubility limitations
imposed by their structures compared with other endocrine therapy drugs [197,205].

Emergent protein degradation strategies such as PROTACs are exciting and offer
significant promise in the treatment of breast cancer and address some of the shortcomings
of SERDs. However, such strategies can only be most effective if their designs account
for the mitigation of all estrogen and estrogen receptor interactions responsible for cancer
incidence and proliferation.

12. Conclusions and Outlook

Endocrine therapy is the most widely prescribed and efficacious cancer therapy. Single
orally delivered agents, including AIs and SERMs, are the cornerstone of front-line therapy
for early-stage, ER+ breast cancer in postmenopausal women. Over the past several years,
new methods of inhibiting estrogen action have been incorporated into the treatment of
ER+ breast cancer, including the use of pharmaceutical agents that block ovarian suppres-
sion and the development of ER degraders such as SERDs with improved bioavailability.
However, despite these improvements, antiestrogens require prolonged use, resulting in
adverse effects, including osteoporosis, an increased risk of endometrial cancer and throm-
bosis, and ultimately drug resistance [213]. These undesirable consequences have in turn
led to complex explanations for endocrine resistance while simultaneously ignoring the
role played by environmental estrogens and GPER in the genesis of breast cancer, as well
as a variety of other malignancies. There is a significant need to improve endocrine therapy
to address the deficiencies in current modalities in terms of (i) accounting for the effects of
all estrogens, (ii) targeting all cancer-involved estrogen receptors, and (iii) accounting for
antagonizing one estrogen receptor target while unwittingly agonizing the another.

The global rise in cancer incidence, the known carcinogenic influence of environmental
estrogens, their abundance in economically developed countries, and the prominent role
that GPER plays in metabolic syndrome, a cancer-promoting health condition, are addi-
tional reasons for developing GPER-targeted cancer therapeutics. Given the fact that AIs
and ovarian suppression are ineffectual to the carcinogenic potential of environmental estro-
gens, the effective mitigation of the role played by all estrogens in cancer proliferation will
rely on the targeted protein degradation of nuclear estrogen receptors and GPER. Presently,
GPER remains an “undrugged” therapeutic target in this space with tremendous and excit-
ing potential to enable a more complete approach to endocrine therapy for breast cancer and
other solid malignancies. Clinical and experimental data strongly support the need for de-
veloping GPER-targeted therapies. These findings include a direct association of GPER with
clinicopathological indices that predict advanced disease, as measured by stage progression,
poor patient outcomes, and endocrine resistance. Significantly, GPER expression occurs
commonly in ER breast cancer and TNBC—breast cancer subtypes that are not considered
candidates for the rationale assignment of endocrine therapy [49,50,135]. In preclinical
studies, the genetic silencing of GPER in breast cancer resulted in significantly smaller
tumors and reduced cancer stem cell activity [60,133]. Similarly, the pharmacologic mod-
ulation of GPER resulted in tumor suppression in preclinical models of endometrial [65],
nonsmall cell lung carcinoma [77], pancreatic adenocarcinoma [66], and melanoma [64].

Significantly, Linnaeus Therapeutics has made progress toward the development of
drugs targeting GPER. Clinical trial NCT 04130516, a Phase 1/2, first-in-human, open-label,
multicenter study is underway to establish the safety, tolerability, PK, and antitumor effects
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of the GPER agonist, LNS8801, alone and in combination with the checkpoint inhibitor
pembrolizumab. Early clinical results show favorable toxicology and a partial antitumor
response in one patient [158]. Future results from the dose escalation phase of this study, as
well as future clinical trials assessing the value of GPER as a therapeutic target, will help to
establish the value of this promising therapeutic target. Successful results from these types
of clinical studies have the potential to help expand our current view of which patients
may benefit from antiestrogen therapy and should complement existing modalities for
antiestrogen therapy.
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