TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale
Abstract
:1. Introduction
2. TEM8 Structure and (Patho)physiologic Functions
2.1. The Physiologic Roles of TEM8
2.2. The Role of TEM8 in Key Pathways: Wnt/β-Catenin, Metabolomics, and Mechanosensing in the Bone Marrow
2.3. The Pathiophysioloic Roles of TEM8 in Cancer
3. Review of Pre-Clinical and Clinical Data Surrounding TEM8
3.1. Pre-Clinical Data
3.2. Clinical Data
4. Future Directions for Research Involving TEM8
Author Contributions
Funding
Conflicts of Interest
References
- St Croix, B.; Rago, C.; Velculescu, V.; Traverso, G.; Romans, K.E.; Montgomery, E.; Lal, A.; Riggins, G.J.; Lengauer, C.; Vogelstein, B.; et al. Genes Expressed in Human Tumor Endothelium. Science 2000, 289, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Bradley, K.A.; Mogridge, J.; Mourez, M.; Collier, R.J.; Young, J.A. Identification of the Cellular Receptor for Anthrax Toxin. Nature 2001, 414, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Burga, L.N.; Gardner, E.E.; Bostina, M.; Poirier, J.T.; Rudin, C.M. Anthrax Toxin Receptor 1 Is the Cellular Receptor for Seneca Valley Virus. J. Clin. Investig. 2017, 127, 2957–2967. [Google Scholar] [CrossRef] [PubMed]
- Corbett, V.; Hallenbeck, P.; Rychahou, P.; Chauhan, A. Evolving Role of Seneca Valley Virus and Its Biomarker TEM8/ANTXR1 in Cancer Therapeutics. Front. Mol. Biosci. 2022, 9, 930207. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-S.; Dunleavey, J.M.; Szot, C.; Yang, L.; Hilton, M.B.; Morris, K.; Seaman, S.; Feng, Y.; Lutz, E.M.; Koogle, R.; et al. Cancer Cell Survival Depends on Collagen Uptake into Tumor-Associated Stroma. Nat. Commun. 2022, 13, 7078. [Google Scholar] [CrossRef]
- Jayawardena, N.; Burga, L.N.; Easingwood, R.A.; Takizawa, Y.; Wolf, M.; Bostina, M. Structural Basis for Anthrax Toxin Receptor 1 Recognition by Seneca Valley Virus. Proc. Natl. Acad. Sci. USA 2018, 115, E10934–E10940. [Google Scholar] [CrossRef]
- Evans, D.J.; Wasinger, A.M.; Brey, R.N.; Dunleavey, J.M.; St Croix, B.; Bann, J.G. Seneca Valley Virus Exploits TEM8, a Collagen Receptor Implicated in Tumor Growth. Front. Oncol. 2018, 8, 506. [Google Scholar] [CrossRef]
- Fu, S.; Tong, X.; Cai, C.; Zhao, Y.; Wu, Y.; Li, Y.; Xu, J.; Zhang, X.C.; Xu, L.; Chen, W.; et al. The Structure of Tumor Endothelial Marker 8 (TEM8) Extracellular Domain and Implications for Its Receptor Function for Recognizing Anthrax Toxin. PLoS ONE 2010, 5, e11203. [Google Scholar] [CrossRef]
- Chaudhary, A.; Hilton, M.B.; Seaman, S.; Haines, D.C.; Stevenson, S.; Lemotte, P.K.; Tschantz, W.R.; Zhang, X.M.; Saha, S.; Fleming, T.; et al. TEM8/ANTXR1 Blockade Inhibits Pathological Angiogenesis and Potentiates Tumoricidal Responses against Multiple Cancer Types. Cancer Cell 2012, 21, 212–226. [Google Scholar] [CrossRef]
- Nanda, A.; Carson-Walter, E.B.; Seaman, S.; Barber, T.D.; Stampfl, J.; Singh, S.; Vogelstein, B.; Kinzler, K.W.; St Croix, B. TEM8 Interacts with the Cleaved C5 Domain of Collagen Alpha 3(VI). Cancer Res. 2004, 64, 817–820. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, K.A.; Basile, C.M.; Spring, S.C.; Bonuccelli, G.; Lisanti, M.P.; Terman, B.I. TEM8 Expression Stimulates Endothelial Cell Adhesion and Migration by Regulating Cell-Matrix Interactions on Collagen. Exp. Cell Res. 2005, 305, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.-F.; Hu, X.-W.; Chen, J.-L.; Gao, L.-H.; Xi, Y.-Y.; Lu, Y.; Li, J.-F.; Zhao, S.-R.; Xu, J.-J.; Chen, H.-P.; et al. Antitumor Activities of TEM8-Fc: An Engineered Antibody-like Molecule Targeting Tumor Endothelial Marker 8. J. Natl. Cancer Inst. 2007, 99, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Y.; Ruan, Y.; Bai, C.; Qiu, L.; Cui, Y.; Ying, G.; Li, B. PKM2 Promotes Reductive Glutamine Metabolism. Cancer Biol. Med. 2018, 15, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-X.; Xiong, H.-F.; Wang, S.; Wang, J.; Nie, X.; Guo, Q.; Li, X.; Qi, Y.; Liu, J.-J.; Lin, B. Overexpression of TEM8 Promotes Ovarian Cancer Progression via Rac1/Cdc42/JNK and MEK/ERK/STAT3 Signaling Pathways. Am. J. Transl. Res. 2020, 12, 3557–3576. [Google Scholar]
- Baek, J.M.; Kwak, S.C.; Yoon, K.-H.; Kim, J.-Y.; Lee, M.S. Role of ANTXR1 in the Regulation of RANKL-Induced Osteoclast Differentiation and Function. Biochem. Biophys. Res. Commun. 2019, 510, 296–302. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, Y.; Zhao, Y.; Li, Q.; Liu, Y.; Wang, J.; Chen, Y.; Zhang, M. The Role of Anthrax Toxin Protein Receptor 1 as a New Mechanosensor Molecule and Its Mechanotransduction in BMSCs under Hydrostatic Pressure. Sci. Rep. 2019, 9, 12642. [Google Scholar] [CrossRef]
- Ding, C.; Liu, J.; Zhang, J.; Wan, Y.; Hu, L.; Charwudzi, A.; Zhan, H.; Meng, Y.; Zheng, H.; Wang, H.; et al. Tumor Endothelial Marker 8 Promotes Proliferation and Metastasis via the Wnt/β-Catenin Signaling Pathway in Lung Adenocarcinoma. Front. Oncol. 2021, 11, 712371. [Google Scholar] [CrossRef]
- Xu, J.; Yang, X.; Deng, Q.; Yang, C.; Wang, D.; Jiang, G.; Yao, X.; He, X.; Ding, J.; Qiang, J.; et al. TEM8 Marks Neovasculogenic Tumor-Initiating Cells in Triple-Negative Breast Cancer. Nat. Commun. 2021, 12, 4413. [Google Scholar] [CrossRef]
- Kundu, P.; Jain, R.; Kanuri, N.N.; Arivazhagan, A.; Santosh, V.; Kondaiah, P. Differential DNA Methylation Patterns in Primary and Recurrent Glioblastoma: A Protumorigenic Role for the TEM8 Gene. Ph.D. Thesis, Indian Institute of Sciences, Bengaluru, India, 2022. [Google Scholar]
- Verma, K.; Gu, J.; Werner, E. Tumor Endothelial Marker 8 Amplifies Canonical Wnt Signaling in Blood Vessels. PLoS ONE 2011, 6, e22334. [Google Scholar] [CrossRef]
- Chen, D.; Bhat-Nakshatri, P.; Goswami, C.; Badve, S.; Nakshatri, H. ANTXR1, a Stem Cell-Enriched Functional Biomarker, Connects Collagen Signaling to Cancer Stem-like Cells and Metastasis in Breast Cancer. Cancer Res. 2013, 73, 5821–5833. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, J.; Zheng, Y. ANTXR1 Is a Prognostic Biomarker and Correlates with Stromal and Immune Cell Infiltration in Gastric Cancer. Front. Mol. Biosci. 2020, 7, 598221. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.-R.; Lv, H.-F.; Chen, B.-B.; Nie, C.-Y.; Zhao, J.; Chen, X.-B. Latest Therapeutic Target for Gastric Cancer: Anthrax Toxin Receptor 1. World J. Gastrointest. Oncol. 2021, 13, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Qin, X.; Yoshida, C.A.; Komori, H.; Yamana, K.; Ohba, S.; Hojo, H.; Croix, B.S.; Kawata-Matsuura, V.K.S.; Komori, T. Antxr1, Which Is a Target of Runx2, Regulates Chondrocyte Proliferation and Apoptosis. Int. J. Mol. Sci. 2020, 21, 2425. [Google Scholar] [CrossRef]
- Besschetnova, T.Y.; Ichimura, T.; Katebi, N.; St Croix, B.; Bonventre, J.V.; Olsen, B.R. Regulatory Mechanisms of Anthrax Toxin Receptor 1-Dependent Vascular and Connective Tissue Homeostasis. Matrix Biol. J. Int. Soc. Matrix Biol. 2015, 42, 56–73. [Google Scholar] [CrossRef]
- De Martino, D.; Bravo-Cordero, J.J. Collagens in Cancer: Structural Regulators and Guardians of Cancer Progression. Cancer Res. 2023, 83, 1386–1392. [Google Scholar] [CrossRef]
- Mu, H.; Mu, P.; Zhu, W.; Huang, B.; Li, H.; Yuan, L.; Deng, Y. Low Doses of Deoxynivalenol Inhibit the Cell Migration Mediated by H3K27me3-Targeted Downregulation of TEM8 Expression. Biochem. Pharmacol. 2020, 175, 113897. [Google Scholar] [CrossRef]
- Cullen, M.; Seaman, S.; Chaudhary, A.; Yang, M.Y.; Hilton, M.B.; Logsdon, D.; Haines, D.C.; Tessarollo, L.; St Croix, B. Host-Derived Tumor Endothelial Marker 8 Promotes the Growth of Melanoma. Cancer Res. 2009, 69, 6021–6026. [Google Scholar] [CrossRef]
- Szot, C.; Saha, S.; Zhang, X.M.; Zhu, Z.; Hilton, M.B.; Morris, K.; Seaman, S.; Dunleavey, J.M.; Hsu, K.-S.; Yu, G.-J.; et al. Tumor Stroma-Targeted Antibody-Drug Conjugate Triggers Localized Anticancer Drug Release. J. Clin. Investig. 2018, 128, 2927–2943. [Google Scholar] [CrossRef]
- Gong, Q.; Liu, C.; Wang, C.; Zhuang, L.; Zhang, L.; Wang, X. Effect of Silencing TEM8 Gene on Proliferation, Apoptosis, Migration and Invasion of XWLC-05 Lung Cancer Cells. Mol. Med. Rep. 2018, 17, 911–917. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Zhang, L.; Zhou, C.; Fu, C.; Wang, X.; Zhuang, L. Targeted Silencing of TEM8 Suppresses Non-small Cell Lung Cancer Tumor Growth via the ERK/Bcl-2 Signaling Pathway. Mol. Med. Rep. 2021, 24, 595. [Google Scholar] [CrossRef] [PubMed]
- Felicetti, P.; Mennecozzi, M.; Barucca, A.; Montgomery, S.; Orlandi, F.; Manova, K.; Houghton, A.N.; Gregor, P.D.; Concetti, A.; Venanzi, F.M. Tumor Endothelial Marker 8 Enhances Tumor Immunity in Conjunction with Immunization against Differentiation Ag. Cytotherapy 2007, 9, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, H.; Hu, Z. Dendritic Cells Transduced with TEM8 Recombinant Adenovirus Prevents Hepatocellular Carcinoma Angiogenesis and Inhibits Cells Growth. Vaccine 2010, 28, 7130–7135. [Google Scholar] [CrossRef] [PubMed]
- Hallenbeck, P.L.; Chada, S. Abstract 6218: Oncolytic Seneca Valley Virus (SVV-001) Overcomes Checkpoint Inhibitor Resistance and Demonstrates a Systemic Anti-Tumor Immune Response in a Syngeneic Pancreatic Cancer Murine Model. Cancer Res. 2022, 82, 6218. [Google Scholar] [CrossRef]
- Hallenbeck, P.L.; Chada, S.; Sankar, N.; Chauhan, A. Oncolytic Seneca Valley Virus (SVV-001) Overcomes Checkpoint Inhibitor Resistance and Demonstrates a Systemic Anti-Tumor Response in a Syngeneic Tumor Model. Endocr. Abstr. 2023, 89, B5. [Google Scholar] [CrossRef]
- Jia, M.; Sun, M.; Tang, Y.-D.; Zhang, Y.-Y.; Wang, H.; Cai, X.; Meng, F. Senecavirus A Entry into Host Cells Is Dependent on the Cholesterol-Mediated Endocytic Pathway. Front. Vet. Sci. 2022, 9, 840655. [Google Scholar] [CrossRef]
- Dang, W.; Li, T.; Xu, F.; Wang, Y.; Yang, F.; Zheng, H. Modeling Senecavirus a Replication in Immortalized Porcine Alveolar Macrophages Triggers a Robust Interferon-Mediated Immune Response That Conversely Constrains Viral Replication. Virology 2023, 578, 141–153. [Google Scholar] [CrossRef]
- Yang, M.Y.; Chaudhary, A.; Seaman, S.; Dunty, J.; Stevens, J.; Elzarrad, M.K.; Frankel, A.E.; St Croix, B. The Cell Surface Structure of Tumor Endothelial Marker 8 (TEM8) Is Regulated by the Actin Cytoskeleton. Biochim. Biophys. Acta 2011, 1813, 39–49. [Google Scholar] [CrossRef]
- Kaminski, M.F.; Bendzick, L.; Hopps, R.; Kauffman, M.; Kodal, B.; Soignier, Y.; Hinderlie, P.; Walker, J.T.; Lenvik, T.R.; Geller, M.A.; et al. TEM8 Tri-Specific Killer Engager Binds Both Tumor and Tumor Stroma to Specifically Engage Natural Killer Cell Anti-Tumor Activity. J. Immunother. Cancer 2022, 10, e004725. [Google Scholar] [CrossRef]
- Kuo, F.; Histed, S.; Xu, B.; Bhadrasetty, V.; Szajek, L.P.; Williams, M.R.; Wong, K.; Wu, H.; Lane, K.; Coble, V.; et al. Immuno-PET Imaging of Tumor Endothelial Marker 8 (TEM8). Mol. Pharm. 2014, 11, 3996–4006. [Google Scholar] [CrossRef]
- Byrd, T.T.; Fousek, K.; Pignata, A.; Szot, C.; Samaha, H.; Seaman, S.; Dobrolecki, L.; Salsman, V.S.; Oo, H.Z.; Bielamowicz, K.; et al. TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 489–500. [Google Scholar] [CrossRef]
- Petrovic, K.; Robinson, J.; Whitworth, K.; Jinks, E.; Shaaban, A.; Lee, S.P. TEM8/ANTXR1-Specific CAR T Cells Mediate Toxicity In Vivo. PLoS ONE 2019, 14, e0224015. [Google Scholar] [CrossRef]
- Davies, G.; Cunnick, G.H.; Mansel, R.E.; Mason, M.D.; Jiang, W.G. Levels of Expression of Endothelial Markers Specific to Tumour-Associated Endothelial Cells and Their Correlation with Prognosis in Patients with Breast Cancer. Clin. Exp. Metastasis 2004, 21, 31–37. [Google Scholar] [CrossRef]
- Li, M.; Fang, L.; Kwantwi, L.B.; He, G.; Luo, W.; Yang, L.; Huang, Y.; Yin, S.; Cai, Y.; Ma, W.; et al. N-Myc Promotes Angiogenesis and Therapeutic Resistance of Prostate Cancer by TEM8. Med. Oncol. Northwood Lond. Engl. 2021, 38, 127. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, S.; Martinelli, P.; Hermann, P.C.; Heeschen, C.; Sainz, B. The Anthrax Toxin Receptor 1 (ANTXR1) Is Enriched in Pancreatic Cancer Stem Cells Derived from Primary Tumor Cultures. Stem Cells Int. 2019, 2019, 1378639. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, Ł.; Korolczuk, A.; Matysek, M.; Arciszewski, M.B.; Torres, K. Clinical Value of Detecting Tumor Endothelial Marker 8 (ANTXR1) as a Biomarker in the Diagnosis and Prognosis of Colorectal Cancer. Cancer Manag. Res. 2021, 13, 3113–3122. [Google Scholar] [CrossRef]
- Kusaba, Y.; Kajihara, I.; Sakamoto, R.; Maeda-Otsuka, S.; Yamada-Kanazawa, S.; Sawamura, S.; Makino, K.; Aoi, J.; Masuguchi, S.; Fukushima, S. Overexpression of Tumor Endothelial Marker 8 Protein Predicts Poor Prognosis in Angiosarcoma. J. Dermatol. 2021, 48, E514–E516. [Google Scholar] [CrossRef] [PubMed]
- Si, T.; Ning, X.; Chen, H.; Hu, Z.; Dun, L.; Zheng, N.; Huang, P.; Yang, L.; Yi, P. ANTXR1 as a Potential Prognostic Biomarker for Hepatitis B Virus-Related Hepatocellular Carcinoma Identified by a Weighted Gene Correlation Network Analysis. J. Gastrointest. Oncol. 2021, 12, 3079–3092. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Mou, C.; Chen, M.; Chen, Z. Infectious Recombinant Senecavirus A Expressing Novel Reporter Proteins. Appl. Microbiol. Biotechnol. 2021, 105, 2385–2397. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, R.; Liu, T.; Sun, Z.; Hu, M.; Sun, Y.; Cheng, L.; Guo, Y.; Fu, S.; Hu, J.; et al. Seneca Valley Virus Attachment and Uncoating Mediated by Its Receptor Anthrax Toxin Receptor 1. Proc. Natl. Acad. Sci. USA 2018, 115, 13087–13092. [Google Scholar] [CrossRef]
- Schenk, E.L.; Mandrekar, S.J.; Dy, G.K.; Aubry, M.C.; Tan, A.D.; Dakhil, S.R.; Sachs, B.A.; Nieva, J.J.; Bertino, E.; Lee Hann, C.; et al. A Randomized Double-Blind Phase II Study of the Seneca Valley Virus (NTX-010) versus Placebo for Patients with Extensive-Stage SCLC (ES SCLC) Who Were Stable or Responding after at Least Four Cycles of Platinum-Based Chemotherapy: North Central Cancer Treatment Group (Alliance) N0923 Study. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2020, 15, 110–119. [Google Scholar] [CrossRef]
- Burke, M.J.; Ahern, C.; Weigel, B.J.; Poirier, J.T.; Rudin, C.M.; Chen, Y.; Cripe, T.P.; Bernhardt, M.B.; Blaney, S.M. Phase I Trial of Seneca Valley Virus (NTX-010) in Children with Relapsed/Refractory Solid Tumors: A Report of the Children’s Oncology Group. Pediatr. Blood Cancer 2015, 62, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Poirier, J.T.; Senzer, N.N.; Stephenson, J.; Loesch, D.; Burroughs, K.D.; Reddy, P.S.; Hann, C.L.; Hallenbeck, P.L. Phase I Clinical Study of Seneca Valley Virus (SVV-001), a Replication-Competent Picornavirus, in Advanced Solid Tumors with Neuroendocrine Features. Clin. Cancer Res. 2011, 17, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Payne, S. Immunity and Resistance to Viruses. In Viruses; Elsevier: Amsterdam, The Netherlands, 2017; pp. 61–71. ISBN 978-0-12-803109-4. [Google Scholar]
- Diaz-Cano, S.J. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design. Int. J. Mol. Sci. 2012, 13, 1951–2011. [Google Scholar] [CrossRef]
- Kieffer, Y.; Hocine, H.R.; Gentric, G.; Pelon, F.; Bernard, C.; Bourachot, B.; Lameiras, S.; Albergante, L.; Bonneau, C.; Guyard, A.; et al. Single-Cell Analysis Reveals Fibroblast Clusters Linked to Immunotherapy Resistance in Cancer. Cancer Discov. 2020, 10, 1330–1351. [Google Scholar] [CrossRef]
- Dudnik, E.; Kareff, S.; Moskovitz, M.; Kim, C.; Liu, S.V.; Lobachov, A.; Gottfried, T.; Urban, D.; Zer, A.; Rotem, O.; et al. Real-World Survival Outcomes with Immune Checkpoint Inhibitors in Large-Cell Neuroendocrine Tumors of Lung. J. Immunother. Cancer 2021, 9, e001999. [Google Scholar] [CrossRef]
Study Lead Author (Year) | Study Title | Study Conclusion |
---|---|---|
Sun et al., (2021) [24] | The relationship between TEM8/ANTXR1 and early diagnosis and prognosis of lung cancer | High vs. Low TEM8/ANTXR1 expression led to 58.29% vs. 68.69% 3-year overall survival, with a worse prognosis overall. |
Kusaba et al., (2021) [48] | Overexpression of tumor endothelial marker 8 protein predicts poor prognosis in angiosarcoma | High vs. Low TEM8 expression led to 14 vs. 22 days median overall survival. |
Pietrzyk et al., (2021) [47] | Clinical Value of Detecting Tumor Endothelial Marker 8 (ANTXR1) as a Biomarker in the Diagnosis and Prognosis of Colorectal Cancer | High vs. Low TEM8/ANTXR1 expression led to a median overall survival of 27 months vs. estimate not reached. |
Si et al., (2021) [49] | ANTXR1 as a potential prognostic biomarker for hepatitis B virus-related hepatocellular carcinoma identified by a weighted gene correlation network analysis | High vs. Low ANTXR1 expression led to a median overall survival of 2540 days vs. 555 days. |
Huang et al., (2020) [23] | ANTXR1 is a Prognostic Biomarker and Correlates with Stromal and Immune Cell Infiltration in Gastric Cancer | Cohort 1 (TCGA): High vs. Low ANTXR1 expression resulted in 25 vs. 55 months overall survival.Cohort 2 (ACRG): High vs. Low ANTXR1 expression led to 31 months vs. estimate not reached. |
Ding et al., (2021) [18] | Tumor Endothelial Marker 8 Promotes Proliferation and Metastasis via the Wnt/β-Catenin Signaling Pathway in Lung Adenocarcinoma | High vs. Low TEM8 expression led to 33 vs. 49 months of overall survival. |
Li et al., (2021) [45] | N-Myc promotes angiogenesis and therapeutic resistance of prostate cancer by TEM8 | High vs. Low TEM8 expression led to 115 vs. 174 months overall survival. |
Wang et al., (2020) [15] | Overexpression of TEM8 promotes ovarian cancer progression via Rac1/Cdc42/JNK and MEK/ERK/STAT3 signaling pathways | High vs. Low TEM8 expression led to 71 months vs. estimate not reached. |
Trial Name (NCT) | TEM8/ANTXR1 Involvement | Predicted or Reported Outcomes |
---|---|---|
Vaccination with Autologous Dendritic Cells Loaded with Autologous Tumor Lysate or Homogenate Combined with Immunomodulated Radiotherapy and/or Preleukapheresis IFN-alfa in Patients with Metastatic Melanoma: a Randomized “Proof-of-principle” Phase II Study (NCT019733322) | Measuring levels of TEM8/ANTXR1 upregulation | The investigators plan to report the biological effects of preleukapheresis IFN-alfa on TEM8/ANTXR1 upregulation at the mRNA level upon dendritic cells’ maturation by flow cytometry and real-time PCR. |
Seneca Valley Virus-001 After Chemotherapy in Treating Patients with Extensive-Stage Small Cell Lung Cancer (NCT01017601) | Virus (NTX-010) uses TEM8 to enter the cell. | Schenk et al. (2020) [52] reported no change in the primary endpoint, PFS, for all patients treated after platinum doublet chemotherapy. |
Seneca Valley Virus-001 and Cyclophosphamide in Treating Young Patients with Relapsed or Refractory Neuroblastoma, Rhabdomyosarcoma, or Rare Tumors with Neuroendocrine Features (NCT01048892) | Virus (NTX-010) uses TEM8 to enter the cell. | Burke et al. (2014) [53] reported that NTX-010 was feasible and tolerable at three dose levels alone and in combination with cyclophosphamide. However, neutralizing antibodies developed in the majority of patients. |
Safety Study of Seneca Valley Virus in Patients with Solid Tumors with Neuroendocrine Features (NCT00314925) | Virus (SVV-001) uses TEM8 to enter the cell. | Rudin et al. (2011) [54] reported no dose-limiting toxicities for the desired dose as well as response in small-cell lung cancer. Neutralizing antibodies developed in all patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kareff, S.A.; Corbett, V.; Hallenbeck, P.; Chauhan, A. TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale. Cells 2023, 12, 2623. https://doi.org/10.3390/cells12222623
Kareff SA, Corbett V, Hallenbeck P, Chauhan A. TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale. Cells. 2023; 12(22):2623. https://doi.org/10.3390/cells12222623
Chicago/Turabian StyleKareff, Samuel A., Virginia Corbett, Paul Hallenbeck, and Aman Chauhan. 2023. "TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale" Cells 12, no. 22: 2623. https://doi.org/10.3390/cells12222623
APA StyleKareff, S. A., Corbett, V., Hallenbeck, P., & Chauhan, A. (2023). TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale. Cells, 12(22), 2623. https://doi.org/10.3390/cells12222623