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Abstract: Migraine is a neurovascular disorder that can be debilitating for individuals and society.
Current research focuses on finding effective analgesics and management strategies for migraines by
targeting specific receptors and neuropeptides. Nonetheless, newly approved calcitonin gene-related
peptide (CGRP) monoclonal antibodies (mAbs) have a 50% responder rate ranging from 27 to 71.0%,
whereas CGRP receptor inhibitors have a 50% responder rate ranging from 56 to 71%. To address the
need for novel therapeutic targets, researchers are exploring the potential of another secretin family
peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), as a ground-breaking treatment
avenue for migraine. Preclinical models have revealed how PACAP affects the trigeminal system,
which is implicated in headache disorders. Clinical studies have demonstrated the significance
of PACAP in migraine pathophysiology; however, a few clinical trials remain inconclusive: the
pituitary adenylate cyclase-activating peptide 1 receptor mAb, AMG 301 showed no benefit for
migraine prevention, while the PACAP ligand mAb, Lu AG09222 significantly reduced the number
of monthly migraine days over placebo in a phase 2 clinical trial. Meanwhile, another secretin
family peptide vasoactive intestinal peptide (VIP) is gaining interest as a potential new target. In
light of recent advances in PACAP research, we emphasize the potential of PACAP as a promising
target for migraine treatment, highlighting the significance of exploring PACAP as a member of the
antimigraine armamentarium, especially for patients who do not respond to or contraindicated to
anti-CGRP therapies. By updating our knowledge of PACAP and its unique contribution to migraine
pathophysiology, we can pave the way for reinforcing PACAP and other secretin peptides, including
VIP, as a novel treatment option for migraines.

Keywords: migraine disorders; headache disorders; nociceptive pain; analgesics; calcitonin gene-
related peptide; pituitary adenylate cyclase-activating polypeptide (PACAP); vasoactive intestinal
peptide; adrenomedullin; neuropeptides; drug development

1. Introduction

Migraines are neurological disorders causing recurrent, severe headaches and other
symptoms like sensitivity to light, sound, smell, or touch, and nausea or vomiting [1]. Their
cause is unclear but involves genetic, environmental, and lifestyle factors [2–5]. Triggers
vary among individuals and include stress, hormonal changes, certain diets, and sleep
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disturbances [6–9]. Identifying and managing triggers can be crucial in preventing the onset
of migraine attacks and reducing their frequency, duration, and severity [10]. Migraines
are complex neurological disorders that can significantly impact individuals’ quality of
life [11,12]. Comprehending the distinct stages, symptoms, triggers, and treatment options
is fundamental for healthcare professionals and researchers, as it facilitates enhanced
management and support for individuals affected by migraines [10].

Neuropeptides like calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-
activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), islet amyloid
polypeptide (IAPP)/amylin, substance P, and adrenomedullin (ADM) [13–18]. The secretin
family of peptides, including CGRP, PACAP, ADM, and amylin, control G protein-coupled
receptors (GPCR) activity. They share homology, receptor cross-reactivity, and similar
biological actions, suggesting they belong to this family (Figure 1) [19]. These neuropep-
tides play diverse roles in migraine pathogenesis, contributing to our understanding of the
disorder’s mechanisms [20,21].
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CGRP and PACAP, two neuropeptides, are released during migraine and cluster
headache attacks, acting as potent vasodilators that trigger migraine-like symptoms [22–24].
Their expression increases when the trigeminovascular system is activated, contributing to
pain signal transmission and the development of mechanical hyperalgesia [25–28]. Despite
their similar functions, PACAP and CGRP likely have distinct roles in causing migraine-like
symptoms. In rodent models, their pathways seem to operate independently; therefore,
elevated levels of these substances in peripheral blood during migraine attacks may serve
as prospective biomarkers [29–33]. Different PACAP variants also contribute uniquely
to migraine development [34–37]. The neuropeptide VIP, found in the trigeminal nerve,
plays a key role in the progression of migraines development. It dilates blood vessels
during attacks, influences neurotransmitter release, regulates inflammation and immune
responses, and may affect migraine intensity and frequency by modulating pain signal
sensitivity [38–42].

New drugs targeting the CGRP signaling pathway have been developed for migraine
treatment and prevention. These include monoclonal antibodies (mAbs) directed at either
CGRP ligand or receptor and CGRP receptor inhibitors [43–47]. While promising, these
treatments have some downsides [48,49]. They have been shown to reduce the frequency
of migraine attacks: according to reports from double-blind placebo-controlled clinical
trials and open-label trials, the ≥50% responder rate for CGRP mAbs ranges from 27
to 62%, or 44.5 to 71.0%, respectively [50,51]. For CGRP receptor inhibitors, the ≥50%
responder rate ranges from 56 to 61%, or 44.5 to 71.0%, in double-blind placebo-controlled
clinical trials and open-label trials, respectively [52,53]. The relatively higher effective
rates of open-label trials compared to double-blind placebo-controlled clinical trials could
be attributed to the possibility that placebo plays a role in real life. Nevertheless, the
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responder rate varies depending on the type of and the duration of treatment, the response
criteria, and the patient characteristics. Additionally, these drugs can be costly with
limited insurance coverage [54]. While generally well-tolerated, CGRP-targeting mAbs can
cause gastrointestinal disorders like constipation, and gepants can cause fatigue, nausea,
dizziness, tiredness, and dry mouth [55].

Humans typically experience migraines, but preclinical research using animal models
reveals the interaction of genetic and environmental factors contributing to neurological
disorders like migraines [56–67]. These models simulate disease conditions, aiding in
identifying pathogenic processes, evaluating symptoms and comorbidities, and discovering
interventions [68–74]. The integration of preclinical and clinical research contributes to
innovative therapeutics and personalized medicine [75–78]. This review discusses the
pathogenesis of migraines and the need for new treatment targets. It highlights the potential
of secretin family peptides’ ligands and receptors as novel targets. The importance of further
research into the roles of PACAP and VIP in migraine pathophysiology is emphasized,
along with the development of targeted therapies. The review also considers the pituitary
adenylate cyclase-activating peptide 1 receptor and other emerging therapeutic targets,
such as PACAP1–38. It explores the similarities between PACAP and VIP, which are
involved in sleep regulation and circadian rhythm, suggesting their key roles in migraines.

2. Pituitary Adenylate Cyclase-Activating Peptide and Vasoactive Intestinal Peptide

PACAP is a multi-functional peptide that has therapeutic potential in a variety of
pathophysiological conditions and represents a promising avenue for intervention. PACAP
is a neuropeptide that plays a crucial role in both neural and endocrine functions [78]. This
peptide is widely distributed throughout the body and is involved in diverse physiological
processes, including circadian rhythm and immune system regulations, modulation of
pain perception, and stress response [79]. PACAP also has neuroprotective effects and
has been shown to support nerve cell survival and regeneration in various neurological
disorders [80]. GPCRs control the signaling pathways and cause the activation of adenylate
cyclase (AC), the release of cyclic AMP, and the activation of protein kinase A (PKA)
and calcium channels [81,82]. PACAP is a multi-functional peptide that has therapeutic
potential in a variety of pathophysiological conditions and represents a promising avenue
for therapeutic intervention [83].

2.1. Background

PACAP was found in ovine hypothalamic extracts in 1989. It is a 38-amino acid
peptide hormone that stimulates AC activity in the pituitary gland [84]. Subsequently,
it was found to be widely distributed in the central and peripheral nervous systems, as
well as in non-neural tissues, including the adrenal gland, pancreas, gut, and reproductive
system [85]. PACAP exists in three biologically active forms: PACAP1–38, 6–38-amino acid
form of PACAP (PACAP6–38), and PACAP1–27 [86]. PACAP-related peptide (PRP) is also
a member of the PACAP family [87]. Radioimmunoassay demonstrated that PACAP1–38
levels were approximately 60 times greater than PACAP1–27 levels and 10 times greater
than PRP levels [88].

Since its discovery, PACAP has been extensively studied for its potent neuroprotective
effects against a diverse range of neurological disorders, including stroke, traumatic brain
injury, Parkinson’s disease, and Alzheimer’s disease [89,90]. Recent findings suggest that
PACAP may also play a key role in the regulation of immune cell function and cytokine
production, highlighting its potential as a therapeutic target for immune-mediated diseases
such as rheumatoid arthritis, multiple sclerosis, and asthma [91]. Furthermore, PACAP has
been implicated in the regulation of energy metabolism, making it a promising therapeutic
agent for the treatment of metabolic disorders such as obesity and diabetes [92]. Overall,
the growing body of evidence on the multifunctional properties of PACAP highlights its
potential as a novel therapeutic target for a wide range of diseases.
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VIP is a 28-amino acid polypeptide that was first characterized in 1970. It is secreted
by cells throughout the intestinal tract and is widespread in many internal organs and
systems [93]. VIP plays important roles in many biological functions, such as stimulation
of contractility in the heart, vasodilation, promoting neuroendocrine–immune communi-
cation, lowering arterial blood pressure, and anti-inflammatory and immune-modulatory
activity [94]. VIP stimulates the secretion of electrolytes and water by the intestinal mucosa
and acts as a neurotransmitter, inducing a relaxation effect in some tissues [95]. VIP is
also involved in the pathophysiology of various diseases, including osteoarthritis, cancer,
and autoimmune disorders [94]. Furthermore, VIP is implicated in the physiological and
pathophysiological roles of migraine [96]. In this context, VIP has been studied for its
potential therapeutic applications.

2.2. Receptor and Signaling Mechanisms of PACAP and VIP

PACAP plays an important role in a wide range of biological processes such as feeding
behavior, stress response, neuroprotection, and regulation of neurotransmitter release. It
activates three different GPCRs named PAC1, vasoactive intestinal peptide receptor (VPAC)
1, and VPAC2; these receptors are widely expressed in the central and peripheral nervous
systems, endocrine systems, and immune systems [97]. The binding of PACAP to these
receptors leads to the activation of multiple signaling mechanisms (Table 1) [98].

Table 1. The secretin family peptides, their receptors, and their binding affinity.

Peptides Receptors

CGRP CLR
PACAP1–38 >>PAC1, <VPAC1, <VPAC2
PACAP6–38 ?
PACAP1–27 >PAC1, <VPAC1, <VPAC2

PRP ?
VIP >VPAC1, >VPAC2, <PAC1

CGRP: calcitonin gene-related peptide; PACAP: pituitary adenylate cyclase-activating polypeptide: PRP: PACAP-
related peptide; VIP: vasoactive intestinal peptide; CLR: calcitonin receptor-like receptor; PAC1: pituitary
adenylate cyclase-activating polypeptide type I; VPAC: vasoactive intestinal peptide receptor; ?: unknown; >>:
much higher; >: higher; <: lower.

Activation of the PAC1 receptor by PACAP leads to the activation of the adenylyl
cyclase enzyme, which in turn leads to the production of cyclic adenosine monophosphate
(cAMP) and the activation of PKA [99]. It also triggers the activation of phospholipase C,
which leads to the breakdown of phosphatidyl inositol 4,5-bisphosphate (PIP2) into inositol
triphosphate and diacylglycerol (DAG), which activates protein kinase C (PKC) [100]. On
the other hand, VPAC1 and VPAC2 receptor activation leads to AC enzyme activation,
which leads to the generation of cAMP and the activation of PKA [101]. Also, PACAP
signaling turns on calcium signaling, which causes intracellular calcium to be released and
calcium/calmodulin-dependent kinase II to be activated [102]. PACAP signaling also acti-
vates the mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase
(ERK), and jun N-terminal kinase signaling pathways [103]. These signaling mechanisms
contribute to the diverse biological effects of PACAP on cellular functions. The regulation
of PACAP gene expression is presented in Figure 2.

PACAP and VIP are neuropeptides that interact specifically with three receptors
(VPAC1, VPAC2, and PAC1) from the class II B GPCR family [104]. The similarities between
PACAP and VIP in receptor and signaling mechanisms include the following: PACAP and
VIP share nearly 70% amino acid sequence identity; PACAP binds with high affinity to all
three receptors, while VIP binds with high affinity to VPAC1 and VPAC2 receptors and has
a thousand fold lower affinity for the PAC1 receptor compared to PACAP; both PACAP and
VIP receptors are preferentially coupled to Gαs, leading to activation of AC, subsequent
cAMP production, and activation of PKA; and PKA may in turn activate ERKs, PACAP
and VIP receptor-mediated signaling pathways [105–108]. Due to the wide distribution
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of VIP and PACAP receptors in the body, potential therapeutic applications of drugs
targeting these receptors, as well as expected unwanted side effects, are numerous [109].
Designing selective therapeutics targeting these receptors remains challenging due to their
structural similarities.
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monophosphate; cAMP: cyclic adenosine monophosphate; DAG: diacylglycerol; ERK, extracellular
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2.3. Role of PACAP and VIP in Migraine

PACAP has been strongly associated with the pathophysiology of migraine. PACAP
is found in high levels in the trigeminal nerve, which is known to play a critical role
in this condition. PACAP is known to increase the sensitivity of the trigeminal nerve,
cause dilation of blood vessels in the brain, and trigger inflammation. All these biological
effects have been implicated in the development of migraine attacks [110]. Several studies
have been conducted to investigate the role of PACAP in migraine. One study showed
that PACAP levels in the blood are significantly higher in migraine patients during an
attack compared to headache-free controls [111]. This study suggests that PACAP could be
used as a potential biomarker for migraine. Another study demonstrated that the venous
infusion of PACAP into migraine patients resulted in the development of migraine-like
attacks [112]. This finding strongly supports the hypothesis that PACAP plays a crucial role
in the pathophysiology of migraine and suggests that blocking PACAP could be a potential
therapeutic target for the treatment of migraines. The role of PACAP in migraine pathology
is well established, and there is strong evidence that this neuropeptide plays a crucial role
in the development of migraine attacks. Further research is needed to better understand
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the mechanism of action of PACAP and to develop new pharmacological agents that target
PACAP for the treatment of migraines.

Both CGRP and PACAP are multifunctional peptides with many roles in the nervous,
cardiovascular, respiratory, gastrointestinal, and reproductive systems. They play a role in
vasodilation, neurogenic inflammation, and nociception. While CGRP plays an integral
role in migraine, PACAP is likely to play a similar but distinct role as CGRP based on
similarities and differences observed in both clinical and preclinical studies [113]. In rodent
models, the PACAP pathway appears to be independent of the CGRP pathway, suggesting
that CGRP and PACAP act in parallel ways that cause a migraine-like symptom [114]. In
migraine without aura, the first double-blinded placebo-controlled study reported that
33% of the patients developed delayed migraine attacks after CGRP administration [115].
The studies have identified the involvement of two endogenous neuropeptides, CGRP and
PACAP, in the pathogenesis of migraines [116].

VIP has also been implicated in the pathophysiology of migraine [117]. The similarities
between PACAP and VIP in their roles in pathogenesis include the following: PACAP
and VIP are released in conjunction with migraine and cluster headache attacks [118];
PACAP and VIP are potent vasodilators and can cause migraine-like attacks when in-
fused into people [119]; a 2-h infusion of VIP caused migraine attacks, indicating that VIP
plays a significant role in pathophysiology and intravenous administration of PACAP-38
caused headaches in all healthy subjects and migraine-like attacks in 58% of patients with
a history of migraine without aura [15,35]; PACAP and VIP receptors are preferentially
coupled to Gαs, leading to activation of AC, subsequent cAMP production, and activation
of PKA [120]; PKA may in turn activate ERKs [121]; PACAP and VIP receptor-mediated
signaling pathways are shown to share activities, including vasodilation, neurogenic in-
flammation, and nociception in rodents [122]; PACAP and VIP receptors provide a rich
set of targets to complement and augment the current CGRP-based migraine therapeu-
tics; VPAC1 receptors play a dominant role in PACAP-induced vasorelaxation in female
mice [123]. Also, PG 99-465, a selective VPAC2 receptor antagonist that has been used in a
number of physiological studies, has been shown to have significant activity at VPAC1 and
PAC1 receptors [124].

2.4. Preclinical Studies

In addition to in vitro systems, a variety of organisms are used in experimental
medicine [125–127]. Understanding the effects of endogenous neuropeptides, neurohor-
mones, and metabolites has advanced significantly thanks to the information gathered
using laboratory animals [128–133]. Animal models are a crucial tool for bridging the
knowledge gap between data- and hypothesis-driven benchwork and its application to
clinical bedside management. PACAP has been extensively studied as a neuromodulator
in the trigeminal nociceptive pathway [134]. Preclinical studies have shown that PACAP
is involved in the transmission of pain signals from the periphery to the central nervous
system and is therefore a potential target for the treatment of migraine and other headache
disorders [135,136].

In animal models, PACAP has been shown to play a role in trigeminal sensitization,
which is the process by which nociceptive signals become amplified and persistent, leading
to chronic pain [137]. Studies have also found that PACAP is involved in the activation of
inflammatory pathways in the trigeminal nerve, further contributing to pain and inflam-
mation [138]. In addition, PACAP has been implicated in the regulation of blood flow to
the brain, which may also play a role in headache pathophysiology [139] and other neuro-
logical [26] or neuropsychological conditions [88]. In an experimental model of migraine,
intraperitoneal administration of nitroglycerol caused marked photophobia and meningeal
vasodilatation, and increased the number of c-fos-positive activated neurons in the TNC in
wild-type mice but not in PACAP1–38-deficient mice [140]. In line with this, an increased
concentration of PACAP1–38 was detected in the TNC after the activation of the TS in
different animal models [141,142].
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PAC1 receptor antagonists include PACAP6–38, N-stearyl-[Nle17] neurotensin-(6-
11)/VIP-(7-28), deletion mutants of maxadilan, M65, and Max.d.4, and synthesized small-
molecule acyl hydrazides, including PG 97-269 [143]. PACAP6–38 has been used as a
PAC1 receptor antagonist in many studies, but it has an affinity for VPAC2 receptors [144].
N-stearyl-[Nle17] neurotensin-(6-11)/VIP-(7-28) (SNV) is a chimeric peptide analog that
antagonizes the VIP2/PACAP receptor subclass. SNV is a better mitogen for the ker-
atinocytic cell line and can increase AC activity in rat brain membranes 100 times more than
VIP1-28 [145,146]. No migraine-related studies have been documented. The maxadilan is
a vasodilator peptide derived from the salivary glands of sandflies. Its deletion mutants,
M65 and Max.d.4, have been reported to be selective PAC1 receptor antagonists but have
not been extensively used due to problems of availability [147,148]. PG 97-269 is a selective
VPAC1 receptor antagonist with negligible affinity for the PACAP1 receptor. It did not
stimulate AC activity but inhibited competitively the effect of VIP on AC activity in cells
expressing the VIP1 receptor [146]. VIP and PACAP-induced vasodilation were partially
blocked by PG 97-269, indicating that PACAP and VIP may play a role in migraine patho-
physiology and that PG 97-269 may have therapeutic potential for migraine [149] (Table 2).
Thus, preclinical studies suggest that concentrating on the PACAP signaling pathways
in the trigeminal nociceptive system could be an effective strategy for discovering novel
treatments for headache disorders. However, more research is needed to fully understand
the mechanisms underlying PACAPs’ role in headache pathophysiology and to develop
effective and safe PACAP-targeted therapies.

Table 2. Preclinical findings of PACAP receptor antagonists.

Antagonists Characteristics Ref.

PACAP6–38 PAC1 receptor antagonist, affinity for
VPAC2 receptors [144]

N-stearyl-[Nle17] neurotensin-
(6–11)/VIP-(7–28)

VIP2/PACAP receptor antagonist, mitogen for
the keratinocytic cell line and can increase
AC activity

[145,146]

Maxadilan mutants PAC1 receptor antagonists, increased AC activity [147,148]
PG 97-269 selective PAC1 receptor antagonists [146]

VIP plays a key role in sensory processing and the modulation of pain pathways in
the trigeminal system. In preclinical studies, VIP has been shown to change the activity of
nociceptive neurons in the trigeminal ganglion and make the TNC more sensitive, which
can cause chronic pain or migraines [150]. In response to noxious stimuli, the trigeminal
sensory neurons release VIP. This can activate VIP receptors on nearby neurons and cause
the release of a number of signaling molecules involved in pain amplification [151]. VIP-
mediated sensitization of trigeminal neurons can lead to hyperexcitability and increased
responsiveness to noxious stimuli, which may contribute to the development and mainte-
nance of chronic pain or migraine [152]. Targeting VIP signaling pathways may therefore
represent a promising approach for the development of novel therapies for chronic pain
or migraine.

2.5. Clinical Studies

A growing body of clinical research suggests that PACAP plays an important role
in migraine pathophysiology. Patients with migraines exhibit higher levels of PACAP
compared to control groups [153]. PACAP is a neuropeptide recognized for its involvement
in the activation of nociceptive pathways, contributing to the development of migraines.
The high levels of PACAP in migraineurs have been associated with increased headache
severity and frequency, and this has led to the exploration of PACAP as a therapeutic
target for treatment [154]. In migraineurs without aura, the development of PACAP1–38-
evoked migraine-like attacks was independent of the severity of family load [35,155]. In the
same study, 90 min after the injection, the levels of numerous migraine-related molecular
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markers were increased in the plasma of patients [156]. Magnetic resonance imaging
angiography examinations revealed that PACAP1–38-induced headache was associated
with prolonged vasodilatation of the middle meningeal artery (MMA) but not the middle
cerebral artery (MCA). Sumatriptan, an antimigraine medication, was able to alleviate the
headache, which mirrored the contraction of the MMA but not the MCA, indicating that
PACAP1–38-induced headaches may originate from extracerebral arteries [157].

An increasing number of clinical studies have shown that targeting PACAP signaling
may be a promising therapeutic strategy for migraine treatment. In terms of safety, PACAP
has been generally well tolerated in clinical trials [158]. One study found that PACAP
induces headaches via sustained vasodilation and that targeting the PACAP pathway may
be a promising approach for treatment [159]. AMG 301, a mAb that targets the PAC1
receptor, was administered to patients with episodic or chronic migraines in a randomized,
double-blind, placebo-controlled phase 2 study. There was no significant difference between
the AMG 301 group and the placebo group, suggesting that AMG 301 was ineffective for
prevention [160,161]. On the other hand, the PACAP ligand mAb, Lu AG09222, was shown
to reduce the number of monthly migraine days from baseline to weeks 1–4 of treatment
statistically significantly more than placebo [162,163]. Additionally, the mAb targeting
the PAC1 receptor, LY3451838, is currently undergoing phase 2 clinical trials for adults
with treatment-resistant migraine. This trial is in progress, and the results are not yet
available [164] (Table 3). Overall, the efficacy and safety of PACAP as a migraine treatment
in clinical studies suggest that it is a promising option for patients with this debilitating
condition. Further research is needed to fully understand the potential of PACAP as a
treatment for migraines, but the current evidence is encouraging.

Table 3. Pituitary adenylate cyclase-activating polypeptide (PACAP) monoclonal antibodies under
clinical trials.

ClinicalTrials.gov Identifier Monoclonal Antibody Target Status Ref.

NCT03238781 AMG 301 receptor No benefit over placebo for
migraine prevention [160,161]

NCT05133323 Lu AG09222 ligand

No results posted; the press
release announced a decrease
in the number of migraine
days per month

[162,163]

NCT04498910 LY3451838 receptor No results posted [164]

VIP infusion has been studied in the context of migraines, with a particular focus
on its potential to provoke migraine attacks and its role in pathophysiology. A phase 2
clinical trial investigated the effects of a long-lasting infusion of VIP on headaches, cranial
hemodynamics, and autonomic symptoms in episodic migraine patients without aura [165].
The study found that a 2-h infusion of VIP promoted long-lasting cranial vasodilation and
delayed headaches in healthy volunteers, resembling the effect of prophylaxis. However,
other studies have suggested that VIP infusions may actually provoke migraine attacks.
For example, a randomized clinical trial found that a 2-h infusion of VIP caused migraine
episodes, suggesting an important role of VIP in migraine pathophysiology [15]. It remains
unclear whether the lack of migraine induction can be attributed to the only transient
vasodilatory response after a 20-min infusion of VIP. Overall, the search results suggest that
VIP infusion may have a role in migraine pathophysiology, but further research is needed
to fully understand its effects and potential therapeutic applications.

3. Discussion

This review paper aims to provide insights into the roles of PACAP in migraine by
comparing its actions with those of VIP. By analyzing existing studies, this paper hopes to
shed light on the pathophysiology of migraines and pave the way towards more effective
treatments. The ultimate goal of this review is to explore the potential of developing
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antimigraine drugs that target the PACAP pathways. Identifying and producing new
ways to target the PACAP system may provide an alternative therapeutic option for
migraineurs. The authors aim to consolidate the current evidence on the PACAP system’s
role in migraines and evaluate potential drug targets within the pathway, hoping to pave
the way for more extensive research to develop new and effective antimigraine drugs that
target the PACAP pathways.

The PACAP system presents a significant challenge when it comes to targeted therapies
due to its pleiotropic roles in the body, both physiologically and pathologically [78–82].
PACAP plays crucial roles in various aspects of the body, such as neural development,
pain regulation, immune functions, and stress responses. These diverse roles make the
PACAP system difficult to target effectively without affecting other physiological functions.
Furthermore, PACAP signaling is often dysregulated in pathological conditions such as
inflammatory disorders, neurodegenerative diseases, and cancers [91,92]. Conversely,
PACAP has been shown to have protective effects in certain diseases, such as ischemic
stroke and Alzheimer’s disease [89,90]. Thus, finding a balance between targeting the
PACAP system to treat diseases while preserving its physiological functions remains a
significant challenge in the field of medicine.

The PACAP system has emerged as a potential target for the treatment of migraines,
especially after the discovery of the role of CGRP and its receptors in pathophysiol-
ogy [110–112]. PACAP is a peptide that belongs to the family of CGRP peptides and is highly
expressed in the TS. The TS is the neural network that causes migraine pain [137,141,142].
PACAP receptors have been found to be co-localized with CGRP receptors in the TS, sug-
gesting that the two systems could be acting in a synergistic manner to induce migraine
pain [113–115]. Therefore, targeting the PACAP system could provide an additional thera-
peutic approach for the treatment of migraine, and several drugs that inhibit PACAP or its
receptors are currently under development.

The present review holds notable significance in shedding light on the critical role
of PACAP in comparison with other neuropeptides like CGRP and VIP, which have been
extensively studied as potential therapeutic targets for various neurological disorders. The
differences in symptomatic manifestation observed in preclinical studies of CGRP, PACAP,
and VIP are most likely due to their distinct roles in migraine physiology and pathophysi-
ology [105–109,113–115]. Thus, elucidating the mechanisms of those neuropeptides may
not only lead to a better understanding of the etiology of migraine but may also provide a
variety of therapeutic targets, potentially supplying a more diverse palette of antimigraine
regimens [150]. By thoroughly analyzing the preclinical studies, the review highlights the
promising findings that suggest the potential translation of PACAP’s therapeutic benefits
from laboratory settings to clinical practice. The authors’ critical evaluation and systematic
compilation of the latest research on PACAP is bound to have a relevant impact on the
scientific community and serve as a foundation for further clinical research. Ultimately,
the knowledge and insights gained from this review will be instrumental in developing
advanced treatments for a range of debilitating neurological conditions.

The difference between those two clinical outcomes of PACAP mAbs could be ex-
plained by the fact that mAbs are designed to target specific receptors or ligands with high
selectivity. The difference in how mAbs target receptors or ligands can result in different
outcomes due to a variety of factors. Initially, mAbs can bind to various receptors or ligands
in a variety of ways, which can alter their efficacy and the biological effects that follow [166].
Secondly, mAbs can have a variety of mechanisms of action when interacting with their
targets, such as inhibiting cell surface receptors or promoting target cell death [167]. Thirdly,
biological and clinical activities can vary greatly depending on the target and antibody
design. This includes differences in the efficacy of the treatment, the occurrence of adverse
effects, and the overall health of the patient [166]. Fourthly, mAbs exhibit exceptional
target selectivity, with the choice of target influencing the antibody’s specificity and safety
profile. When mAbs interact with their targets, they can perform a variety of actions, such
as inhibiting the action of other molecules, killing cells, or altering the immune system’s
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function [166,167]. The choice of target and antibody design is crucial in determining the
therapeutic effectiveness of mAbs.

The review also highlights limitations and challenges in PACAP research, such as
the complexity of its signaling mechanism, variations in its effects on different cell types,
and the limited availability of specific antibodies against PACAP and its receptors. The
high cost of producing PACAP analogs and the lack of standardized protocols for their
synthesis and purification are also limitations. The scarcity of studies on PACAP and VIP
is also a major challenge for this field. It is difficult to establish a general agreement on
the preclinical results and their relevance for human trials. Meta-analyses could be helpful
in this regard, but they require more studies to be published. Therefore, more clinical
investigations are necessary to gather evidence and, hopefully, derive conclusions from the
clinical research. These challenges and limitations make it difficult to fully understand the
mechanisms of PACAP action and to develop effective therapeutic interventions.

The development of PACAP-based therapeutics for migraines will focus on two main
approaches: targeting PACAP ligands and receptors. Studies using animal models of
migraines have demonstrated that blocking the PACAP receptor reduces symptoms while
inhibiting PACAP signaling reduces pain sensitivity. Currently, clinical trials are underway
to assess the safety and effectiveness of various PACAP-based drugs for migraines in
humans. PACAP-based therapies may offer an alternative to current treatments by targeting
the underlying mechanisms of the disorder and reducing the risk of side effects. In addition,
the role of additional secretin family peptides, ADM, and amylin in the pathogenesis
of migraine remains to be investigated. Further research in this area could lead to the
development of better treatments for migraines.

The future direction of migraine research holds great promise for advancing our
understanding of this complex neurological disorder. The combination of preclinical and
clinical data, along with computational tools, has provided invaluable insights into various
aspects of diseases, including neurological and psychiatric disorders [168–189]. The use
of preclinical models and clinical studies has shed light on the underlying mechanisms of
migraine. These studies have contributed to the identification of structural and functional
changes in the brain that occur in neurological and psychiatric disorders, such as migraine
attacks, as well as conditions like depression and other mental health problems [190–206].
Understanding these changes is crucial for identifying biomarkers, developing targeted
treatments, and improving diagnosis [207–209].

Migraine is not just a pain disorder, but it is also interrelated to emotional and cognitive
domains [210]. This condition is commonly linked with a broad range of psychiatric
comorbidities, especially among subjects with migraine with aura or chronic migraine [211].
The comorbidity between neurological and psychiatric disorders likely suggests multiple
causes, such as unidirectional causal explanations or shared environmental and/or genetic
risk factors, communication with other parts of the body, and their interaction on multiple
levels [212–226]. Emotional distress is commonly recognized as a migraine trigger, and
being affected by psychiatric disorders is considered an independent modifiable factor of
progression toward chronification of migraine and a tendency to overuse medication [227].
Therefore, revealing the mechanisms of comorbidity between migraine and psychiatric
disorders may lead to a clue to prevention and management. Many biological and neural
aspects of the comorbidity need to be clarified in order to better understand the true nature
of the migraine–psychiatric disorder association.

The integration of computational tools in migraine research has allowed for the testing
and evaluation of potential treatments. These tools enable researchers to simulate the
effects of different interventions, including brain stimulation, and assess their therapeutic
efficacy [228–232]. This approach holds promise for the development of novel and more
effective treatments. Advanced imaging techniques have played a crucial role in migraine
research. Neuroimaging studies have revealed structural and functional brain changes
associated with migraine [233–240]. These imaging techniques provide valuable insights
into the pathophysiology of the disorder and can help identify unique clinical cases. The
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use of human brain organoids in migraine research is an emerging area of study. Brain
organoids are three-dimensional models that mimic the structure and function of the human
brain. They can be used to investigate altered neuronal pathways, protein expression, and
metabolic pathways associated with migraines [241–244]. This approach offers a unique
opportunity to study the disease in a more physiologically relevant system.

4. Conclusions

PACAP is a neuropeptide that has been linked to the pathophysiology of primary
headaches such as migraine. The release of PACAP is associated with this condition and
cluster headache attacks, and it has been shown to be a potent vasodilator that dilates cranial
arteries and causes migraines when infused into patients. Like CGRP, PACAP is located
near sensory nerve fibers and has nociceptive functions. Both peptides are promising targets
for migraine therapeutics, and growing evidence supports the involvement of PACAP-
related mechanisms in migraines. While CGRP and PACAP share similar functions, the
PACAP pathway appears to be independent of the CGRP pathway, suggesting that they act
in parallel ways to cause a migraine-like symptom. Therefore, a better understanding of the
role of PACAP and other secretin family peptides, including VIP, in migraine pathogenesis
could lead to new treatment options for this debilitating condition.
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ERK extracellular signal-regulated kinase
GPCR G protein-coupled receptors
IAPP islet amyloid polypeptide/amylin
mAbs monoclonal antibodies
MAPK mitogen-activated protein kinase
MCA middle cerebral artery
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MEK: mitogen-activated protein kinase kinase
PACAP pituitary adenylate cyclase-activating polypeptide
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PACAP1–27 27-amino acid form of PACAP
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PKA protein kinase A
PKC activates protein kinase C
PRP PACAP-related peptide
SNV N-stearyl-[Nle17] neurotensin-(6–11)/VIP-(7–28)
TNC trigeminal nucleus caudalis
TS trigeminovascular system
VPAC vasoactive intestinal peptide receptor
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