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Abstract: Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain
dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson’s disease (PD) patients.
Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkin-
sonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed
dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These
neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic
resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity
(MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density
changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate
grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologi-
cally. After grafting, animals showed signs of partially improved motor behavior in some of the
HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases
in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA.
We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with
grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution
or amphetamine were present in grafted animals after ten months, which has not been previously
reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the
putamen long-term, without developing tumors, in immunosuppressed animals. Although these
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results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and
imaging findings support the integration and survival of human DANs in this pre-clinical PD model.

Keywords: brain grafting; cell therapy; depolarization-induced dopamine release; PET; MRI

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative and progressive disorder caused by
alterations in the basal ganglia circuitry after the degeneration of dopaminergic neurons
(DANs) in the substantia nigra pars compacta, leading to a reduction of dopamine (DA)
levels in the striatum. Clinically, PD is characterized by resting tremor, rigidity, and
bradykinesia [1,2]. The brains of non-human primates (NHPs) are anatomically and
physiologically like the human brain. The mitochondrial complex I inhibitor 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin employed to develop NHP PD
models because it reproduces some histological and motor alterations [3–5].

To provide therapeutic strategies, human pluripotent cells, such as embryonic stem
cells (hESCs) and induced pluripotent stem cells, are used to generate DANs in vitro [6–9]
by exposing them to molecules that stimulate signaling pathways found in ventral mid-
brain development. Mouse and human pluripotent stem cell-derived DANs, grafted into
the striatum of 6-hydroxy-dopamine-lesioned rodents, exhibit long-term survival and
improvements in rotation behavior and akinesia [10–13].

A protocol for the differentiation of human pluripotent stem cells that produces ho-
mogeneous cultures of floor-plate-derived mesencephalic DANs was used to graft MPTP-
treated monkeys, and these neurons survived for a month without tumor formation [12].
This method, and others, have been used to promote the differentiation of induced pluripo-
tent stem cells to DANs which, after grafting, improved the behavioral alterations present
in parkinsonian NHPs [14–17] and stabilized symptoms in one PD patient [18]. Although
behavioral recovery has been observed post-grafting in parkinsonian NHPs, there are no
reports of DA release in the brains of transplanted animals.

Currently, imaging studies such as magnetic resonance imaging (MRI) and positron
emission tomography (PET) assess structural and functional changes in the brain. A long-
lasting recovery of dopaminergic sites detected by PET has been reported after grafting
DANs in the brain of NHPs [14,16], but changes detected in MRI post-grafting have not
been analyzed. Here we assessed the therapeutic viability of differentiated DANs to recover
the alterations present in parkinsonian NHPs. We used molecular, behavioral, biochemical,
and imaging techniques to comprehensively study the impact of the graft and found
significant improvements associated with the presence of DANs in the putamen after ten
months. Importantly, the brains of grafted NHPs presented MRI changes correlated with
behavior; higher DA release was also detected in vivo. This study reinforced the notion
that cell replacement therapy might effectively treat PD.

2. Results
2.1. Dopaminergic Neuron Differentiation

Enhanced Green fluorescent protein (EGFP) expressing hESCs were employed [19].
We first corroborated the expression of pluripotency markers in H9 wild-type hESCS by
detecting OCT4, SOX2, NANOG, and SSEA4 (Figure S1A). Subsequently, the H9-EGFP
cell line was also confirmed to express SOX2, OCT4, and KLF4 (Figure S1B), to present
a euploid karyotype (Figure S1C), and to produce teratomas after inoculation in nu/nu
immunodeficient mice (Figure S1D). Differentiation to midbrain floor-plate-derived DANs
was induced, as reported [12] in H9-EGFP cells. We confirmed the expression of relevant
ventral midbrain (FOXA2) and dopaminergic (LMX1A) markers in agreement with a
previous study [12], suggesting that our differentiation was successful. LMX1A and FOXA2
were present from day 7 of differentiation and significantly increased on days 21–38, and
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the expression of Tyrosine Hydroxylase (TH) was detected from day 21 and significantly
elevated on days 31–38 (Figure 1A). RNA-Seq at different differentiation times revealed that
pluripotency genes were down-regulated as cell commitment proceeded with concomitant
induction of DAN genes. These DA-related markers included, among others: DDC, FOXA1,
TH, LMX1A, HES6, PAX6, NR4A2, DCX, SYT4, NEUROG2, ASCL1, and GLI3 (Figure 1B,
green arrows) at days 14 and 28. The expression of FOXA2 at day 0 of the differentiation
protocol was undetected (0 FPKM), increased at day 14 (26.5 ± 9 FPKM), and decreased at
day 28 (6.5 ± 2.5 FPKM) of the protocol. A similar expression pattern is observed in 2D
platforms during the transition of mature DANs [20]. FOXA1, another ventral midbrain
marker was increased through the protocol differentiation, as expected. Both factors are
involved in the development, specification, and maturation of the physiological functions
of DANs [21]. On the other hand, the pluripotency markers NANOG, LIN28A, LIN28B, and
POU5F1 (Figure 1B, red arrows) notably reduced their expression on these days compared
to day 0. A comparison of the microarray data presented by Kriks and colleagues [12] with
selected transcripts from our RNA-Seq results is presented in Figure S2. The full analysis of
the sequencing data is presented elsewhere [22].

2.2. Differentiated Dopaminergic Neurons Have a Mature Phenotype In Vitro

The expression of the neural precursor marker NESTIN was confirmed during the
differentiation protocol on day 14 (Figure 1C). On day 35, the expression of the ventral
midbrain DAN marker (FOXA2), DAN marker (TH), and neuronal marker (βIII-TUBULIN)
were detected (Figure 1D,E). Quantitative co-expression analysis for FOXA2/βIII-tubulin
and TH/βIII-tubulin showed progressive and significant increases in double-positive cells,
reaching 86% and 76% at day 42, respectively (Figure 1F), similar to previous work [12]. To
analyze if mature neurons expressing MAP2 were also positive for FOXA2, immunolabel-
ing with these markers showed that 72.2% were double-positive at day 38 (Figure S3D).
To further characterize cell phenotypes present in differentiating cultures at day 21, we
found that 16% of the total cells expressed GFAP (astrocytic marker) and the remaining
EGFP cells were positive to βIII-TUBULIN (Figure S3A); apart from DANs, we found other
neuronal populations that expressed GAD65/67 (GABAergic marker, 11.4%) and Serotonin
(2.4%) (Figure S3B,C). These results indicate that the predominant phenotype is DANs
with appropriate midbrain identity. Electrophysiological recordings of differentiated cells
between days 50 and 62 showed spontaneous single spike and bursting activity (6/10 neu-
rons; Figure 1G; top 2 rows) characteristic of DAN identity. Furthermore, all cells (n = 10)
elicited action potentials induced by current pulses (Figure 1G, third and fourth rows). The
neurons also showed rebound spikes in response to hyperpolarizing current pulses (n = 6),
rectification currents (n = 8), and spontaneous synaptic activity (n = 6). The shape and dura-
tion of an action potential are presented in Figure 1G. It is worth mentioning that recorded
neurons showed both mature and immature electrophysiological features of DANs. The
mature signs were depolarization block at high stimulus intensities, autonomous firing at
low frequencies (1 to 3 Hz), a firing threshold of −43 ± 3 mV, a membrane potential at zero
current of −54 ± 4 mV, and an action potential amplitude of 57 ± 1.7 mV (n = 5). However,
immature characteristics persist after 55–65 days of differentiation, including spontaneous
action potentials with a duration of 3.7 ± 0.22 ms measured at half-width, compared with
2.3 ± 0.1 ms in more mature DANs from rats [23]. However, after hyperpolarizing (AHPs),
the potentials were not fully developed, perhaps because K+ currents are not completely
expressed [24]. Finally, a strong inward rectification due to HCN channel current, com-
monly seen as a “sag” during evoked hyperpolarization, was not observed. On day 70,
the cultures released DA, measured by HPLC, when stimulated with a high potassium
medium (Figure 1H). Thus, this differentiation procedure generated mature DANs.
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Figure 1. Dopaminergic differentiation of hESCs produced cells with a transcriptional profile and
electrophysiological properties characteristic of mature DANs and released DA. (A) Gene expression
analysis, by RT-qPCR, of dopaminergic markers (LMX1A, FOXA2, and TH) on different days of
differentiation, normalized to GAPDH. Mean ± SEM; One-way ANOVA followed by Tukey’s test.
* p < 0.05, ** p < 0.01, *** p < 0.001, n = 5 independent experiments. (B) Heatmap from RNA-Seq data
showing differential expression of genes at days 0, 14, and 28 of differentiation. Green arrows indicate
significant upregulation of relevant DAN markers; red arrows point to significant downregulation
of pluripotency markers. (C) Immunocytochemistry at day 14 for expression of NESTIN and EGFP.
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(D) Co-expression at day 35 for FOXA2 with βIII-TUBULIN (βIII-TUB). (E) Co-expression at day 35
for TH with βIII-TUB. Scale bars for C, B, and D, 200 µm. (F) Quantitative co-expression analysis
for FOXA2/βIII-TUBULIN (left panel) and TH/βIII-TUBULIN (right panel) at different days of
differentiation. Mean ± SEM; One-way ANOVA followed by Tukey’s test. * p < 0.05, ** p < 0.01, n = 5
independent experiments. (G) Electrophysiological recordings at day 60 show the spontaneous firing
of action potentials and membrane potential oscillations at zero currents (−54 mV of membrane
potential), characteristic of DA neuron identity (1.5 Hz) (upper panel). Voltage responses to depo-
larizing and hyperpolarizing current injections (bottom panel) show evoked action potentials and
depolarization block (middle panel) at high stimulus intensities. A spontaneous action potential
waveform is presented with its duration at half-width indicated; the phase contrast image of a
patched neuron is shown on the right panel. Scale bar, 50 µm. (H) DA levels, measured by HPLC,
in neurons at day 70 of differentiation in basal (B) solution and after chemical depolarization with
isosmotic high-potassium (HK) medium. Mean ± SEM; One-way ANOVA followed by Tukey’s test.
** p < 0.01, n = 5 independent experiments.

2.3. hESC-Derived Dopaminergic Neurons Promote Behavioral Recovery in MPTP-Treated NHPs

Immature DANs differentiated from hESCs for 22 days were grafted into parkinso-
nian NHPs, treated with MPTP administered through multiple intramuscular injections
(0.5 mg/kg to reach 2–2.5 mg/kg divided into 4 or 5 daily), which developed motor al-
terations similar to those seen in patients [25]. We performed imaging, behavioral, and
biochemical analyses (Figure 2A). Animals were trained to perform the HALLWAY task be-
fore intoxication with MPTP, and the effects of grafting hESC-derived DANs were analyzed
for 10 months, as previously described [4,5]. To assess ambulatory and fine motor behavior,
three successive behaviors, previously validated to be significantly modified after MPTP
administration [4], were evaluated: displacement, reaching, and ingestion (Figure 2B). The
coordinates for grafting were obtained by MRI for each subject 3 months after MPTP admin-
istration to cover the entire putamen (Figure 2C). Before grafting, MPTP administration in-
creased the times that animals used to complete the tasks, with significant increases at least
in one test, compared to the basal condition of NHPs (Supplemental Videos and Figure 2D).
After 10 months, sham grafting in one NHP did not induce overt behavioral improvement,
supporting the notion that the lesion was permanent.

In contrast, Grafted 1 exhibited significantly decreased performance times lasting
10 months. Grafted 2 showed significant improvements compared to MPTP during the first
4 months, with variable recovery afterward (Figure 2D). Consistent with these differences,
Grafted 1 showed a significant decrease in the number of ingested rewards after MPTP,
especially on shelf 4 and the well, which was recovered after grafting. A similar decline
after MPTP and recovery post-grafting in hallway crossings was observed for Grafted 1
(mean ± SEM): pre-MPTP, 14.4 ± 0.7; MPTP, 3.8 ± 0.6; 10-months average post-grafting,
12.5 ± 0.3, indicating that this NHP was the most affected in its motor activity after MPTP
and that grafting of DANs partially recovered in the HALLWAY motor tasks. The total
performance time for the complete hallway test did not present significant differences
among subjects. We performed a single-case design analysis, consisting of comparing the
10-month average times in relation to MPTP time (Figure S4), for each behavioral task.
We observed that the Sham NHP marginally decreased the average time for reaching and
ingestion in the 10 months after surgery when compared to MPTP. Grafted 1 showed
improved average times in all behavioral tasks, while Grafted 2 showed decreased times
in reaching and ingestion in the 10 months post-grafting. Statistical analysis showed that
Sham and Grafted 2 were significantly different from Grafted 1 in displacement. For
reaching, the three NHPs were significantly different from each other. Ingestion showed a
significant recovery of both grafted NHPs when compared to the sham (Figure 2D, bottom
part). These data suggest that bilateral DAN transplantation induces behavioral recovery,
especially in ingestion in both grafted NHPs.
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Figure 2. MPTP injection caused behavioral alterations in NHPs that were diminished after DAN
transplantation. (A) Timeline showing the experimental sequence for NHPs, including behavioral
assessment, MPTP administration, DAN grafting, PET, and MRI scans, microdialysis, and euthanasia.
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(B) The panels show the design of the HALLWAY task and representative images of the assessed
motor behaviors: displacement, reaching, and ingestion of the reward. The lower images show a
lateral and frontal view of the hallway. The animal started the test on the left side of the lateral view.
In the frontal image, the 4 shelves are presented. (C) MRI images depict the bilateral grafting sites for
DANs into the putamen. The 3 injection sites were designated anterior (A), medial, and posterior (P).
For these 3 sites, a first injection was made in the inferior (I) part, a second in the medial, and the last
in the superior (S) site. The right (R) and left (L) sides are indicated. The box in the middle top part
represents the 9 cell deposits in each putamen. (D) Graphs show the average time used by each NHP
to perform the motor tasks. The bars represent the average times of five consecutive days for each
task. Mean ± SEM; One-way ANOVA followed by Tukey’s test. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 relative to the MPTP stage. The bottom part shows the single-case analysis that was
used to compare the POp months with MPTP (Figure S4). Mean ± SD; One-way ANOVA followed
by Tukey’s test. *** p < 0.001. B, basal; MPTP, lesioned; 1–10 Post-operative (POp) month; N.D.,
Not determined.

2.4. Diffusion Tensor Imaging

We performed fractional anisotropy (FA) and mean diffusivity (MD) analyses to assess
cellular and axonal density changes by MRI. Before grafting, we analyzed the overall
changes in the left and right putamen of three healthy NHPs, different from those used for
sham/grafting surgery, and the MPTP-injected NHPs studied post-surgically, as described
in Figure S5A. FA decreased in MPTP-treated NHPs compared to the healthy group,
showing reductions of 6.6% in the right putamen and 5.4% in the left putamen (Figure S5B).
The MD comparison between healthy and MPTP-treated NHPs showed an increase of
11.4% in the right putamen and 5.8% in the left (Figure S5B). It is important to remark that
these changes in a t-test do not meet the threshold for statistical confidence, regarding the
decreased FA and the increased MD after MPTP administration.

We then compared FA and MD measured after MPTP treatment with the post-operative
(POp) condition (Sham or Grafted) after 6 months. The striatum is a heterogeneous
structure that includes anatomic/functional subdivisions and several models have been
proposed [26,27]. We decided to use the anatomy-functional subdivisions that designate
the anterior or limbic putamen, involved in motivation, the medial or associative putamen
related to cognition, and the sensorimotor or posterior putamen, linked to locomotion [28],
and defined these three regions for further analysis at 6 months post-surgery (Figure 3A).

In the Sham NHP, FA measures decreased after sham surgery in the whole putamina.
In sharp contrast, FA increased bilaterally in Grafted 1 and Grafted 2 animals, compared
to their previous MPTP condition; Sham showed a decrease and Grafted NHPs showed
an increase post-operatively in FA, illustrated by the black lines (Figure 3B). On the other
hand, MD values in Sham NHP had discrete changes after surgery, suggesting that there
was no effect. Interestingly, Grafted 1 increased in all the analyzed regions, and Grafted 2
showed a consistent bilateral reduction post-grafting (Figure 3C).

A Pearson correlation analysis was performed to correlate behavioral changes with
DTI measures in all NHPs in MPTP and POp conditions (Figure 3D). The resulting matrix
showed a positive and significant correlation between reaching with displacement and
ingestion (0.86 to 0.99). Also, measures of FA in both hemispheres presented a positive
correlation of 0.59. For MD, the correlation between the left and right sides was positive
and highly significant (0.94). When comparing behavioral tests with FA, values were
between −0.72 and −0.38, showing a negative correlation with displacement, reaching,
and ingestion, which indicated increased values of FA and decreased times to perform
motor tasks.
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Figure 3. FA and MD measurements in MPTP-treated NHPs after sham surgery or DAN transplanta-
tion. (A) MRI template and ROI of putamen. (B) FA and (C) MD quantification in Sham and Grafted
NHPs in bilateral putamen in MPTP condition and post-operative (POp), respectively. Reference
dotted lines represent the average FA and MD of whole putamen in the healthy group. The black
lines represent the average FA and MD of the anterior, medial, and posterior putamen of each subject.
(D) Pearson’s correlation matrix between the unilateral FA and MD of the whole putamen with
the behavioral scores (displacement, reaching, and ingestion) of all NHPs in both MPTP and POp
(average values from months 1 to 6) conditions. * p < 0.05, *** p < 0.001. FA-R, Fractional anisotropy
right; FA-L, Fractional anisotropy left; MD-R, Mean diffusivity right; MD-L, Mean diffusivity left.

In contrast, the correlation of both putamina MD values with displacement and
reaching were close to zero and reached a positive non-significant correlation with ingestion.
As expected, the correlation between FA and MD was negative, with values from −0.66 to
−0.52. Thus, behavioral tests showed a consistent negative correlation with FA and found
a negative relationship between FA and MD.

2.5. PET Qualitative Analysis

We performed 11C-DTBZ PET scanning to assess the presence of DA nerve terminals
due to an incomplete lesion or to detect somata of grafted DANs in the putamen. The
11C-DTBZ PPOR was lower in Sham than in Control, and its binding in Grafted 1 and
Grafted 2 was greater than in Sham (Figure 4). These data revealed that Grafted NHPs, at
9 months post-surgery, had increased 11C-DTBZ binding in both putamina, indicative of
functional DANs at the transplanted site, similar to changes in clinical trials using DANs
from induced pluripotent stem cells [18].

2.6. Transplanted Neurons Release Dopamine

Before euthanasia, microdialysis was used to quantify the extracellular DA released
in the putamen after chemical stimulation in vivo. Probes were inserted simultaneously
into both hemispheres of anesthetized NHPs at 10 months POp. The Sham NHP had low
basal DA levels and did not present a clear response after high potassium or amphetamine
stimulation was administered through the dialysis membrane. In both Grafted NHPs,
baseline DA concentrations were elevated compared to Sham. Notably, extracellular DA
concentrations sharply increased on both transplanted sides after both stimuli (Figure 5,
upper panels, Grafted 1 and 2). The metabolite DOPAC decreased when administering the
solution with high potassium and amphetamine in Grafted NHPs (Figure 5 bottom panels,
Grafted 1 and 2), consistent with previous data [29]. These results demonstrate that DA
was released in both grafted NHPs.
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Figure 5. Dopamine was released in the putamen, after chemical stimulation, in Grafted NHPs 10
months post-surgery. Time-course of DA and DOPAC concentrations measured by microdialysis in
each putamen after stimulation with 100 mM KCl isosmotic medium (HK) or 30 µM amphetamine
(AMP) in Sham, Grafted 1 and Grafted 2 NHPs. Each fraction was collected for 12:30 min. DOPAC,
3,4-dihydroxyphenylacetic acid.

2.7. Dopamine Neurons Survive for Ten Months in the Putamen of MPTP-Treated NHPs

After fixation, the brain slices were analyzed for grafted GFP+ neurons in each puta-
men (Figure 6A), confirming that each individual’s stereotactic coordinates obtained after
an MRI were correct. These DANs were TH+, GIRK2+, and MAP2+ (Figure 6B,D). Notably,
the grafted animals did not develop tumors and apparently did not elicit an innate or
adaptive immune response (Figure 6E), since hematoxylin and eosin staining have been
used to identify lymphocytic aggregates [30], or reactive microglia [31], which were not
observed in any of the animals. TH counting showed 2.5 × 105 and 2 × 105 cells per hemi-
sphere in Grafted 1 and 2, respectively (Figure 6C). Of note, MPTP injection did not cause a
complete loss of DAN cells in the substantia nigra since all animals had 5 × 104 TH+ cells
per hemisphere (Figure 6C). It should be noted that glial cells, GABAergic, and serotonergic
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neurons were also found at lower numbers than DANs in the transplant sites (Figure S6).
The low proportion of surviving serotoninergic neurons is consistent with the fact that no
dyskinesias were observed in the grafted NHPs.
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section of the brain (Grafted 1) showing the caudate nucleus (CN) and the putamen(P) (dotted lines).
Black arrows indicate the sites of microdialysis probes at each putamen (left panel). Confocal



Cells 2023, 12, 2738 11 of 25

reconstruction of a coronal section is presented on the right panel after nuclear staining (blue) to show
the localization of GFP+ transplant sites at each putamen (dotted lines) in Grafted 1. Scale bar, 1 cm.
(B) Surviving cells in the substantia nigra (Sn) and co-expression of TH (red), MAP2 (cyan), and EGFP
(green) by grafted DAN in the putamen (P) after ten months. (C) Quantitative analysis for endogenous
TH+ (Sn) and TH+/EGFP+ (P) cells after grafting. Mean ± SEM. No significant differences were
found. (D) Co-expression for GIRK2 (red), MAP2 (cyan), and EGFP (green). (E) Hematoxylin and
eosin staining at the POp site. Scale bar 200 (left) and 100 µm (right). Dotted lines: site of injection
(Sham) or area of grafting (Grafted 1 and 2). White square: area of magnification. Scale bar for B and
D, 50 µm. Mean ± SEM. No significant differences were found.

3. Discussion

Human DANs transplanted in the putamen of parkinsonian NHPs improved some of
the analyzed motor behaviors, increased 11C-DTBZ binding, and survived for 10 months
without tumors. Importantly, grafted human neurons released DA in the brain after depo-
larization and amphetamine application through the microdialysis probe, and generated
changes in FA and MD, which can be correlated with behavioral performance. However,
caution is appropriate since there was a different response of each NHP to intoxication with
MPTP, and the number of grafted animals is limited in this work.

The derivation of midbrain DANs from hESCs was efficient due to the neural-inducing
properties of specific small molecules and supported with 76–86% of DANs that co-
expressed FOXA2/βIII-tubulin and TH/βIII-tubulin at day 42 of differentiation. Other
data that corroborated the identity of these neurons were obtained by RNA-Seq and RT-
qPCR, showing the expression of relevant specific markers (FOXA1, FOXA2, TH, LMX1A,
SYT4, DDC, PAX6, DCX, NEUROG2, and ASCL1). Additionally, CORIN, an early DAN
progenitor marker, EN1, CNPY1, PAX8, and HOXA2, markers for rostrocaudal ventral
midbrain patterning are predictive of successful graft outcome [32] and increased during
protocol differentiation [20]. Signs of electrophysiological maturation of these neurons
were observed at 60 days of culture, including an adaptation in depolarization-induced
and spontaneous action potentials; however, other properties of DANs have not been fully
developed at this time, specifically K+ currents involved in repolarization and the absence
of sag. However, we have unpublished indirect evidence that neurons kept maturing
when placed in an appropriate environment; action potential duration became briefer, and
sag was observed after placing DANs onto rat organotypic cultures (Urrieta-Chávez, in
preparation). Transplantation of DANs in the brain of NHPs might favor this maturation
process. Furthermore, we observed the release of DA into the medium, an additional
characteristic of mature neurons, as described in previous reports [12,15,33,34].

Previous reports of grafting DANs differentiated from human stem cells showed that
cell therapy induces improvements in parkinsonian NHPs regarding motor behavior and
DA uptake sites assessed by PET [16,17,35]. It remains difficult to have a behavioral test
with low variability [36], so we decided to associate the motor improvement over a period
of 10 months with DA release and imaging analyses. Although the Sham NHP had some
months in which the displacement and ingestion were significantly lower than MPTP, this
might be due to the plasticity of the MPTP-treated brain [37]. Additionally, in this animal,
reaching was more consistent, presenting times that were higher than the basal condition,
before MPTP injection. The behavioral effect of MPTP on the Sham NHP was subtle, like
that in Grafted 2; the motor changes of Grafted 1 after MPTP were more pronounced. The
motor recovery of Grafted 1 was noticeably clear and stable, whereas Grafted 2 presented
a more variable response after grafting, but there was an overall significant difference
with Sham when the decreased times were compared to the POp months, in relation to
the MPTP condition (Figure 2D). The Sham animal showed decreased times to perform
the reaching and ingestion tests, an effect that can be related to the use of cyclosporine, as
previously reported [38].
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Nonetheless, the recovery observed in both Grafted NHPs was correlated with changes
in imaging (FA and PET) and in situ DA release. Even though the number of studied
animals here was low, we found changes in grafted NHPs with the different approaches.
Remarkably, in motor behavioral assessment, graft-induced dyskinesias were not observed,
which are related to serotonergic neurons of the graft [39]; their absence may be due to
the high percentage of dopaminergic neurons, at least counted in vitro. However, it is
essential to note that some authors point out that dyskinesias are probably due to an
inflammatory response [40].

The anisotropy of water diffusion in brain tissue was modified by development or
disease and was evaluated by FA and MD derived from DTI. In PD, there is a reduction of
FA in basal ganglia nuclei [41], like our observations in the putamen of all NHPs after MPTP
administration, suggesting microstructural damage to tissue integrity [42–44] reflected
by FA decrease. MD increases are also related to tissue loss and edema, which we also
detected after MPTP administration. The decreased FA and the increased MD might be due
to the loss of dopaminergic terminals into the putamen nuclei and the retraction of striatal
medium spiny neurons after MPTP denervation [45–47]. Interestingly, these changes in FA
and MD have been reported for PD patients [48].

For the FA and MD studies, it is worth noting that the values were slightly different
between the Sham and Grafted NHPs, with changes measured and compared to the starting
values for each NHP. An effect of cell transplantation in both grafted NHPs was suggested
by higher FA values in our longitudinal comparison along the putamen. Interestingly,
FA values gradually increased, and MD values gradually decreased due to the axonal
growth, ion flux across axons, gliosis, and glial scar formation after spinal cord injury in
rats [49,50]. Although both Grafted NHPs showed an increase of FA in our study, Grafted 1
showed an increment of MD, whereas Grafted 2 showed a reduction of MD. The increase
in FA after grafting can be due to the neuronal processes developed by the transplanted
neurons. The fact that Grafted 1 and 2 presented changes in opposite directions can be due
to changes in cellularity, with MD increases suggesting edema or cell death [48]; however,
the number of surviving DANs was similar in both grafted NHPs. Further, the traumatic
brain injury, generated by the needle, can generate changes per se in MD [51]. The changes
in the opposite direction of MD have been observed in the phase 1 clinical trial for the
severe demyelinating condition, Pelizaeus-Merbacher disease. Two patients of similar
age received neural stem cell grafts, showing an increase of FA, but MD increased in one
person and decreased in the second [52]; the variable direction change in MD remains to be
established but might relate to individual variation. Our correlation analysis of DTI results
revealed a negative correlation between FA and behavioral performance and between FA
and MD. Such changes, especially increased FA, should be useful to monitor the survival
and functioning of DANs in vivo with a non-invasive, non-radioactive technique. The
negative correlation between FA and behavior is clear, but the variability in the three
putaminal regions and/or the small number of NHPs studied here might have precluded
its statistical significance. Notably, the findings in FA changes support the use of DTI as a
biomarker for the quantitative analysis of neuronal damage in PD in clinical trials, since its
reduction is associated with a lower number of NDA in the substantia nigra [53] of these
patients and could have efficiency in diagnosis and prognosis.

Microdialysis had not been used to measure DA levels in grafted NHPs directly. Ten
months after grafting, and before euthanasia, grafted neurons released DA with specific
stimuli in vivo, like findings reported in rodent PD models [29,54]. Both Grafted NHPs
showed higher DA levels than Sham, consistent with previous work reporting sustained
behavioral recovery when DA is released by optogenetic stimulation of transplanted
DANs [55,56]. Although the concentrations of high-potassium-induced DA release, or
the accumulation caused by amphetamine, were lower than those found in non-lesioned
brains, the kinetics and the correlation of DOPAC changes associated with the stimuli
were consistent with the release of DA by the grafted DANs [29]. Our results cannot rule
out an indirect effect of the grafted neurons on the remaining dopaminergic innervation
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or host-mediated recovery of the endogenous dopamine system. Further studies must
establish whether postsynaptic DA receptors do not present supersensitivity after grafting
NHPs, a phenomenon reported after DAN transplantation in hemiparkinsonian rats [29].

PET analysis showed that grafted DANs were functional in vivo, suggesting the pres-
ence of DANs in the brain [57], which may be associated with favorable changes in behavior.
MPTP administration to NHPs reduces the binding of dopaminergic PET probes [36,58].
In line with our results, DAN grafting to parkinsonian NHPs consistently increased PET
signals, which has been correlated to behavioral improvement [16,59]. Although the ac-
quisition of PET images before MPTP, after injection of this neurotoxin, and the following
grafting is ideal for follow-up, we could not have PET scans pre-lesion and after MPTP
administration; however, the acquisition of PET with dopaminergic probes is routinely
made in presumptive PD patients. Interestingly, 11C-DTBZ uptake in Sham was like the
grade 2 “egg shape” pattern reported for PD patients, consisting of bilateral loss of the
putamina tracer, with almost normal uptake in the caudate in PET images [60]. In both
grafted animals, the pattern of tracer uptake was enhanced in the medial and posterior
regions, which is consistent with transplantation sites. These results suggest that the tracer
uptake distribution might be important when analyzing grafted and sham primates, in
addition to the binding. Another interesting aspect is that Grafted 2 showed variable
behavioral recovery and lower PET signal, compared to the stable improvement and higher
PET binding observed in Grafted 1. Even though the number of experimental subjects
was low in our study, qualitative differences were found between sham and grafted an-
imals, although, no statistically significant differences were found between Grafted and
Sham NHP.

A recent clinical trial used imaging and behavioral assessments as biomarkers after
the grafting of NDA and showed poor survival and modest clinical recovery [18]. The
microdialysis assay could be an approach but has a great risk of infection as a result of the
procedure. However, this release assay could serve as a biomarker for future pre-clinical
studies, as it provides additional data on the regulation of DA levels in the grafted brain.

A concern about hESC-based therapies is the development of tumors, considering that
few pluripotent cells can remain undifferentiated [61]. Ten months after cell transplantation,
NHPs did not show any tumors. Additionally, RNA-seq showed that the pluripotency
genes, as well as the cell proliferation gene TTK, decreased upon differentiation, which
might partially explain the lack of tumors in Grafted NHPs [62]. Three percent of the
total grafted cells were found long-term as DANs. We grafted more cells by hemisphere
compared to other studies that employed NHPs (2–3.75 × 106) [12,16,17] or rodent models
(3–5 × 105) [11,12,29]. In these reports, 3 ± 1.4% of DANs survived, similar to our results.
Despite this, surviving DANs could form new tracts and generate behavioral improvements.
These neurons still expressed TH and partially compensated for the loss of DA. According
to the development of human pluripotent stem cell-derived DAN replacement therapy in
PD, the survival of a minimal number of grafted DANs and enough reinnervation in the
putamen are necessary to improve symptoms [13]. These data suggest that motor function
improves when a proper number of grafted DANs survive and are functional.

4. Conclusions

The findings of this study show that DANs survive in the putamen and this is associ-
ated with a significant improvement in some behavioral tasks, compared with data in the
same animals before transplantation, and with DA release in the brain. The imaging studies
are suggestive of positive changes, although we did not observe consistent significance
differences between the Sham and the Grafted NHP. Importantly, to confirm the beneficial
structural and behavioral changes following DAN transplantation, more studies with larger
groups of NHPs need to be conducted.
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5. Methods
5.1. Dopaminergic Differentiation of hESCs

A human embryonic stem cell line H9(WA09)-GFP, which constitutively expressed
enhanced Green Fluorescent Protein (EGPF), was used for all experiments [19]. Before
differentiation, cells were expanded in a supplemented Knock Out (Gibco®, Eugene, OR,
USA) medium, conditioned by mitotically inactivated mouse embryonic fibroblasts (MEFs),
with fresh FGF-2 (10 ng/mL; Sigma-Aldrich, Saint-Louis, MO, USA), over a Matrigel
(BD®, Billerica, MA, USA) matrix until they reached 75% confluency. The floor-plate
dopaminergic differentiation protocol [12] was performed with minor modifications [9].
Pluripotent hESCs were incubated with small molecules to start the dual SMAD inhibition.
BMP and TGF-b receptors were pharmacologically blocked with 100 nM of LDN193189
(Stemgent, Beltsville, USA) and 10 mM of SB431542 (Tocris, Bristol, UK), respectively.
The Wnt canonical pathway was stimulated by inhibiting the kinase GSK-3b with 3 mM
of CHIR99021 (Stemgent). Shh signaling was stimulated by 1 mM of SAG (Sigma) and
2 mM of Purmorphamine (Stemgent). Recombinant human FGF-8 was added at 100 ng/mL
(Peprotech, Rocky Hill, NJ, USA) until day 7. On day 14, cells were cultured in a Neurobasal
medium with a B27 supplement, and the morphological changes were evident; cells were
positive in a high proportion to NESTIN, indicating that neural progenitors were present at
this stage. Neuronal differentiation and survival were promoted by 20 ng/mL of BDNF
(Peprotech), 0.2 mM of ascorbic acid (Sigma-Aldrich), 20 ng/mL of GDNF (Peprotech),
1 ng/mL of TGF-β3 (Peprotech), 0.5 mM of dibutyryl cAMP (Sigma-Aldrich), and the
Notch inhibitor DAPT at 10 mM (Sigma-Aldrich) in the culture medium (NMM). On day
22, cells were dissociated using TrypLE Express (Life Technologies, Carlsbad, California,
USA) and either seeded onto poly-l-ornithine, Fibronectin- and Laminin-treated plates or
used for grafting. For electrophysiological and high-performance liquid chromatography
(HPLC) assays, cultures were grown over 50 days of differentiation in NMM.

5.2. RT-qPCR

RNA was isolated using TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA,
USA). Complementary DNA (cDNA) was synthesized by SuperScript III Reverse Transcrip-
tase (Thermo Fisher Scientific) and used for RT-PCR amplification (Taq DNA Polymerase,
Thermo Fisher Scientific). Amplification of 50 ng of cDNA was performed with the Quan-
tiFast SYBR Green PCR Master Mix (Qiagen, Germantown, MD, USA) with a StepOnePlus
RealTime PCR System (Applied Biosystems, Waltham, MA, USA) with the following
primers (Table 1).

Table 1. Sequence of primers and targets for RT-qPCR.

Target Forward (5′–3′) Reverse (5′–3′)

LMX1A GAGACCACCTGCTTCTACCG GCCCGCATAACAAACTCATT
FOXA2 ATTGCTGGTCGTTTGTTGTG TGTACGTGTTCATGCCGTTC

TH GAGTACACCGCCGAGGAGATTG GCGGATATACTGGGTGCACTGG
SOX2 TCAGGAGTTGTCAAGGCAGAGAAG CTCAGTCCTAGTCTTAAAGAGGCAGC
OCT4 AGTGAGAGGCAACCTGGAGA ACACTCGGACCACATCCTTC
KLF4 GAACTGACCAGGCACTACCG TTCTGGCAGTGTGGGTCATA

GAPDH ATGACATCAAGAAGGTGGTG CATACCAGGAAATGAGCTTG

5.3. Immunocytochemistry

Cells were fixed with 4% paraformaldehyde (PFA), permeabilized and blocked with
0.3% TritonX-100 and 10% normal goat serum in PBS, and incubated overnight with the
primary antibodies in PBS plus 10% normal serum (Table 2).
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Table 2. List of antibodies employed for immunocytochemistry with dilutions, brand, and catalog
number.

Antibody Host Dilution Brand Catalog Number

OCT4 Mouse 1:250 BD Biosciences (Franklin Lakes, NJ, USA) 611202
SOX2 Rabbit 1:500 Abcam (Cambridge, UK) AB97959

NANOG Rabbit 1:1000 Peprotech (Rocky Hill, NJ, USA) 500-P236
SSEA4 Mouse 1:400 Abcam AB16287

NESTIN Rabbit 1:500 Covance (Daytona Beach, FL, USA) 839801

TH Rabbit 1:1000 IC
1:500 IH Pel-Freez Biologicals (Rogers, AR, USA) P40101

βIII-TUBULIN Mouse 1:3000 Covance MMS435P
FOXA2 Rabbit 1:500 Millipore (Burlington, MA, USA) 07633
MAP2 Mouse 1:500 Sigma-Aldrich (Saint-Louis, MO, USA) M4403
GIRK2 Rabbit 1:1000 Millipore AB5200
GFAP Mouse 1:500 Sigma-Aldrich G3893

GAD 65/67R Rabbit 1:200 Millipore AB1511
Serotonin Rabbit 1:5000 Sigma-Aldrich S5545

Alexa Fluor 350 Anti-Mouse IgG Goat 1:1000 Thermo Fisher Scientific A21049
Alexa Fluor 488 Anti-Mouse IgG Goat 1:1000 Thermo Fisher Scientific A11029
Alexa Fluor 568 Anti-Rabbit IgG Goat 1:1000 Thermo Fisher Scientific A11036

Negative controls without primary antibodies were included and showed no unspe-
cific staining. A Nikon Eclipse TE2000-U microscope was used for image acquisition and
the Image-Pro Plus program Version 4.5 (MediaCybernetics, Bethesda, MD, USA) was
employed for epifluorescence image analysis.

5.4. Karyotype Analysis

Chromosomal analysis was performed by GTG-banding analysis at Reproducción y
Genética AGN, Hospital Ángeles del Pedregal, México. Briefly, cells were incubated with
colcemid (2 h), harvested by trypsinization, processed with hypotonic solution, and fixed
with methanol: acetic acid (3:1). Metaphases were spread on slides, and chromosomes were
counted and classified using the G banding technique.

5.5. Teratoma Formation Assay

All mouse procedures were performed in accordance with current Mexican legislation
(NOM-062-ZOO-1999, SAGARPA, Ciudad de México, Mexico), the Guide for the Care
and Use of Laboratory Animals of the National Institutes of Health (NIH) and approved
by the Institutional Animal Care and Use Committee of IFC-UNAM. The hESCs were
grown on Matrigel (BD Biosciences, Franklin Lakes, NJ, USA), harvested by trypsinization,
washed in PBS, and re-suspended in KSR medium with 30% of Matrigel. Cells from a
T-25 flask at 80% confluence containing approximately 3–5 × 106 were subcutaneously
inoculated into the dorsal flank of each 6–8-week-old nude (nu/nu) mouse. For the
presence of cells from the three embryonic germ layers, euthanasia was performed (sodium
thiopental, 21 mg/kg, i.p.) and mice were infused intracardially with PFA when tumors
reached 4–5 mm. Teratomas were dissected and 20 µm slices were obtained, some were
stained with hematoxylin and eosin and other adjacent slices were observed under the
fluorescence microscope.

5.6. RNA-Seq

Massive next-generation sequencing was performed on MiSeq equipment from Il-
lumina by paired-end reads (2 × 75) using TruSeq RNA Stranded mRNA Library Prep
following the provider protocol. About 50.4 million pass-filter reads were obtained. On
average, 10.98% reads per sample were obtained (SD = 1.95%). Of these, 3 replicates rep-
resented day 0 (11.81%, 13.30%, and 11.62%), four represented day 14 (10.48%, 11.24%,
10.99%, and 12.65%), and two represented day 28 (6.45% and 10.30%) of differentiation.
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We found similar gene expression patterns when comparing our results with the gene
expression levels previously reported by microarrays [12]. The standardized Z-Score was
used to illustrate the expression patterns.

5.7. Gene Expression Analysis

We removed adaptor sequences using cutadapt [63] and trimmomatic [64] and ob-
tained 36–76 bp paired-end reads for each sample. The quality of raw sequenced reads was
verified using FASTQC [65] (Table 3). Subsequently, we used a previously reported pipeline
for read mapping, transcript assembly, and expression estimation [66], and mapped se-
quenced reads to the human reference genome hg38 (https://www.gencodegenes.org/,
accessed on 10 November 2021) by using TopHat v2.1.1 [67] with default parameters. The
reads were assembled and mapped using Cufflinks v2.2.1 [68] and calculated the values of
Fragments Per Kilobase of transcript per million mapped reads (FPKM) for all annotated
genes and transcripts.

Table 3. Detailed information about the total amount of RNA-Seq reads obtained for each sample
and the quality controls used to filter the reads. Reads PF: Reads proofread. Trimmomatic was
used to remove adaptors from the read sequences. RNA STAR (Spliced Transcripts Alignment to a
Reference) allows spliced RNA-seq reads to be mapped into the reference genome. RmDup allows
to identify and remove duplicated reads. Day 0, 14, and 28 of the differentiation protocol. r1-r4,
replicate number.

Sample Reads PF

Paired
Reads

(Trimmo-
matic)

% Trim RNA
STAR

%
STAR RmDup RmDup

Aprox

RNA STAR
Count

Unmapped

RNA
STAR
Count

Mapped

RNA
STAR

Count %

RNA
STAR
Count
ALL %

Day0-r1 2,975,881 2,828,933 95.0% 2,510,778 88.7% 92.5% 2,322,470 557,997 1,952,781 77.78% 65.6%
Day0-r2 3,349,069 3,199,515 95.5% 2,847,575 89.0% 92.3% 2,628,312 637,844 2,209,731 77.60% 65.9%
Day0-r3 2,927,902 2,799,662 95.6% 2,471,487 88.2% 92.6% 2,288,597 552,669 1,918,818 77.64% 65.5%
Day14-r1 2,639,118 2,506,396 94.9% 2,212,330 88.2% 92.5% 2,046,405 474,216 1,738,114 78.56% 65.8%
Day14-r2 2,831,743 2,700,318 95.3% 2,401,428 88.9% 92.4% 2,218,919 498,600 1,902,828 79.24% 67.2%
Day14-r3 2,768,272 2,639,168 95.3% 2,348,184 88.9% 92.5% 2,172,070 497,287 1,850,897 78.82% 66.8%
Day14-r4 3,185,871 3,035,967 95.2% 2,709,484 89.2% 91.7% 2,484,597 569,966 2,139,518 78.96% 67.1%
Day28-r1 1,624,658 1,549,005 95.3% 1,393,858 89.9% 96.1% 1,339,498 255,928 1,137,930 81.64% 70.0%
Day28-r2 2,593,374 2,461,511 94.9% 2,214,291 89.9% 94.7% 2,096,934 412,712 1,801,579 81.36% 69.4%

The gene annotation was obtained from GENCODE v29 (https://www.gencodegenes.
org/, accessed on 10 November 2021) and used HTSeq [69] to calculate read counts for
annotated genes. Next, we performed a pairwise comparison of read counts implementing
DESeq2 [70]. Genes were labeled as differentially expressed (DEG) if at least one of
the replicates in the comparison had FPKM ≥ 1, and normalized count FC > 4 with an
FDR < 0.05.

We obtained temporal gene expression profiles of DEGs using hierarchical clustering.
In this unsupervised clustering method, we implemented Ward’s linkage algorithm using
the Euclidean distance matrix of log2-transformed FPKM values of DEGs.

5.8. Electrophysiological Analysis

Whole-cell patch-clamp recordings were performed on 50- to 65-day-old cultures of
hESCs differentiated into DANs. Neurons were transferred to a recording chamber and
continuously superperfused with an oxygenated saline solution (4–5 mL/min) at room
temperature (~25 ◦C). Micropipettes were pulled (Sutter Instrument, Novato, CA) from
borosilicate glass tubes (WPI, Sarasota, FL, USA) to an outer diameter of 1.5 mm for a final
DC resistance of 4–6 MΩ when filled with internal saline containing (in mM): 120 KSO3CH4,
10 NaCl, 10 EGTA, 10 HEPES, 0.5 CaCl2, 2 MgCl2, 2 ATP-Mg, and 0.3 GTP-Na (pH = 7.3,
290 mOsm/L). Neurons were visualized with infrared differential interference video mi-
croscopy and epifluorescent illumination with a 40X immersion objective (0.8 NA; Nikon
Instruments, Melville, NY, USA) and a CCD camera (Cool Snap ES2, Photometrics, Tucson,
AZ, USA). Recordings were made with an Axopatch 200A amplifier (Axon Instruments,
Foster City, CA, USA) and data were acquired with Im-Patch©, CODE VERSION 1.0,

https://www.gencodegenes.org/
https://www.gencodegenes.org/
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open-source software designed in the LabView environment (National Instruments, Mexico
City, Mexico; available at www.im-patch.com, accessed on 17 June 2021. The giga-seal
resistances were in the range of 10–20 GΩ. The current signals from the amplifier were
filtered at 5 kHz through a four-pole low-pass filter.

5.9. Lesion of Non-Human Primates with MPTP

Experiments were performed on three adult Vervet monkeys (Chlorocebus aethiops),
2 females and 1 male, aged 17–21 years and weighing 4.2–4.5 kg. NHPs were housed in
individual cages with 12 h light/dark cycle, room temperature at 23 ± 1 ◦C, 50 ± 10% of
relative humidity, and were fed twice daily with a diet of High protein monkeys LabDiet
5038 biscuits (High Protein Monkey Chow of Lab Chows, Purina® (Ciudad de México,
Mexico) water ad libitum, and fresh fruits and vegetables. All procedures were performed
in accordance with current Mexican legislation NOM-062-ZOO-1999 (SAGARPA), the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health
(NIH) and approved by the Animal Care and Use Committees of Instituto Nacional de
Neurología y Neurocirugía (20/13) and Universidad Nacional Autónoma de México. An
additional group of three healthy adult NHPs, 2 females and 1 male, with similar weights,
were imaged with MRI to study the effect of MPTP.

Bilateral Parkinsonism was induced in the three NHPs by intramuscular MPTP hy-
drochloride (Sigma-Aldrich, St. Louis, MO, USA) administration, dissolved in saline at
0.5 mg/kg to reach 2–2.5 mg/kg divided into 4 or 5 daily injections until they developed
a clinically evaluated extra-pyramidal syndrome [4,5]. Only one round of injections was
needed. MPTP administration was made without anesthesia in a designated special room
with the necessary safety measures for the animals and the personnel, following security
protocols [71]. After MPTP administration, acute responses included disorientation, mydri-
asis, and hypersalivation. The developed signs included rigidity and bradykinesia. NHPs
were closely monitored by a veterinarian and were provided with water, food pellets, and
fresh fruits to maintain their corporal weight and general well-being.

5.10. Motor Behavioral Assessment

Parkinsonian motor symptoms were rated using the HALLWAY task previously re-
ported to evaluate the free movements of NHPs [4,5]. Sessions were video recorded daily
for five consecutive days. For each monkey, two observers blind to treatment scored motor
performance independently. An evaluation session consists of placing two rewards on the
lowest shelf just in front of the two holes in the acrylic wall at the end of the hallway; the
NHP had to walk through the entire hall to take the reward from this shelf. The NHP was
conditioned to return to the beginning of the hallway, and then two additional rewards were
placed on the second shelf, repeated for the third and fourth shelves. The second round of
the task consists of placing the rewards displaced to the middle of the shelf, forcing the
monkeys to use each hand independently to take the reward. In the first round, the primate
must return to the beginning of the hallway after taking the rewards from the lowest shelf
to place the second, third, and fourth shelves rewards, respectively. Finally, the third round
consists of placing four more rewards, one by one, in a well located on the right side of
the second shelf to force primates to use a fine grip to take the rewards. Therefore, NHPs
had to cross 12 times to take 20 rewards for a successful task. After training, the baseline
was recorded for 5 days once the subjects performed more than 95% of the task in less
than 10 min. After MPTP intoxication, NHPs had a one-month parkinsonism stabilization
period since it is reported that after one month, there is no behavioral improvement even in
extended periods, up to 2 years [3,14,16,35,59]. Then, we evaluated the behavioral task for
five days. From this point onwards, each session of the hallway task ends when the primate
takes all the rewards or after 10 min. After sham or grafting surgery, the animals were
evaluated for 5 days monthly, over 300 days (Supplementary Videos). The analysis of the
videos consisted of frame-by-frame quantifications of three motor behavioral parameters:

www.im-patch.com
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(1) Displacement: time to cross the second third of the hallway (1.15 m), (2) Reaching: time
to take the rewards, and (3) Ingestion: time to bring the reward to the mouth.

5.11. Magnetic Resonance Imaging

MRI images were acquired in a GE Discovery MR750 (General Electric Healthcare,
Milwaukee, WI, USA) scanner of 3T and a commercial 32-channel head coil array at the
Instituto de Neurobiología of Universidad Nacional Autónoma de México. The animals
were anesthetized with Tiletamine/Zolazepam (2 mg/kg, i.m.) and fixed in a supine
position. T1-weighted images were acquired by Fast Spoiled Gradient Echo sequence using
the following parameters: TR/TE = 8.5/3.2 ms; FOV = 256 × 256 mm2; reconstruction
matrix = 256 × 256; final resolution = 1 × 1 × 0.5 mm3. The diffusion-weighted imaging
(DWI) was acquired by Single Shot Echo Planar Imaging sequence with the following
values: TR/TE = 6500/99 ms; FOV = 256 × 256 mm2; reconstruction matrix = 256 × 256;
final resolution = 1 × 1 × 2 mm; 35 slices; slice thickness = 2 mm; volumes = 65; no
diffusion sensitization images with b = 0 s/mm2 and 60 DWI of independent directions
with b = 2000 s/mm2.

5.12. Surgical Procedure and DAN Transplantation

The surgical procedure was performed 6 months after MPTP administration. Lesioned
NHPs underwent stereotactic surgery. The surgical coordinates were calculated for each
subject from T1 images obtained by MRI (Table S1). The stereotaxic zero was placed
in the middle line at auditory canal levels and we calculated the distance to the target
area. Animals were classified by age since sex does not alter this model [3,4] and two
monkeys received DAN, designated Grafted 1 (female, 21 years, 4.5 kg) and Grafted 2
(male, 17 years, 4.3 kg), and one monkey received culture medium (Sham; female, 18 years,
4.2 kg). All animals were fasted overnight before surgery and grafted the same day.
The induction of anesthesia was performed with Tiletamine/Zolazepam as above. Then,
NHPs were intubated and anesthetized with isoflurane (1–2%, O2 flow rate of 2 L/min)
to maintain a proper anesthetic state. The NHP’s body temperature was maintained by a
heating blanket and their head was placed onto the stereotaxic frame in a prone position.
Target areas were shaved, and sterilized, and bilateral incisions were made on the scalp
to expose the cranial surface. The skull was drilled, making vertical holes to inject the
cells into each putamen. Cultures of 22 days were dissociated using TrypLE Express, cell
viability was evaluated with trypan blue, and cells were re-suspended at 8.8 × 105 cells/µL.
Grafts of DANs were distributed in nine deposits at three different anteroposterior sites
totaling 8 × 106 cells per hemisphere. Cells were delivered slowly to three locations on the
dorsoventral axis at each injection site. After injection, the burr-hole was sealed with bone
wax, and the fascia, muscle, and skin were sutured. Post-operative care started at the end of
the surgery and was followed by 1-week with an analgesic (tramadol: 1.4 mg/kg, i.m.) and
antibiotic (cephalexin: 25 mg/kg orally). All NHPs received immunosuppression by oral
cyclosporine A (15 mg/kg/day; Gel-Pharma, Zapopan, Mexico) treatment which started
the day following surgery until euthanasia. The same cell suspension used for grafting
was replated on culture plates, fixed, and stained with anti-TH antibodies, confirming the
presence of dopamine neurons.

5.13. Diffusion Tensor Imaging

DWI scans were preprocessed using the FSL Diffusion Toolbox [72] of FSL 5.0.11
software. Each image was corrected for eddy current distortions and head motion by
affine registration to the average b0 image. A binary brain mask was obtained to remove
non-brain tissue. The diffusion tensor model was adjusted to generate the FA and MD
maps for all NHPs. Each FA and MD map was registered non-linear to the macaque Rhesus
template INIA19 [73]. Regions of interest (ROI) of bilateral anterior, medial, and posterior
putamen were drawn from the MRI template, and the average of FA and MD for each NHP
were computed to the corresponding ROI.
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5.14. PET Acquisition and Imaging Analysis

PET probes for vesicular monoamine transporter 2 to analyze the functional imaging
outcome of cell transplantation were performed 9 months post-surgery. The (+)-α-11C-
dihydro tetrabenazine (11C-DTBZ) was synthesized at the Unidad Radiofarmacia-Ciclotrón
of Universidad Nacional Autónoma de México in the Tracerlab FXC-Pro synthesis module
(GE Healthcare, Uppsala, Sweden) following published procedures [74]. For each animal,
initial anesthesia was induced with Tiletamine/Zolazepam (125/125 mg) at 2 mg/kg (i.m.).
All animals were fasted overnight before the PET scan. Anesthesia was maintained during
the scans with isoflurane (1–2%, O2 flow rate of 2 L/min). PET imaging was performed on a
Siemens Biograph 64 mCT scanner (Siemens Medical Solutions, Grünwald, Germany) at the
Instituto Nacional de Neurología y Neurocirugía. All animals were fixed in the stereotaxic
frame in a supine position with the head centered in the FOV and 11C-DTBZ was injected
intravenously (74± 18.5 Mbq). Transversal PET slices were reconstructed with CT-based at-
tenuation correction using an iterative algorithm (ordered subset expectation maximization
(OSEM) + time-of-flight + point spread function), full width at half-maximum (FWHM)
kernel of 5 mm, and 5 iterations (21 subsets). Dead time, decay, attenuation, random, and
scattering corrections were applied. Spatial normalization by automatic procedures to a
common space was applied to reduce intra- and inter-operator variability. First, all images
were reoriented parallel to the orbitomeatal axis and unnecessary background data was re-
moved by reducing the matrix size while keeping the voxel size (3D Slicer software, version
5.6.0, www.slicer.org, accessed on 13 January 2021) [75]. Eight 3D T1-weighted MRI images
were selected to create a unique template normalized to the Montreal Neurological Institute
(MNI) space (McGill, Montreal, QC, Canada), using a rigid 6-parameter registration and
normalized correlation as cost function (FSL software) [76,77]. Each PET scan was then
registered to a reference 11C-DTBZ non-human primate template previously validated [78]
using a non-affine 9-parameter registration and mutual information as to cost function
(FSL software). Stereotactically normalized images were smoothed by convolution with an
isotropic 3-dimensional Gaussian kernel. Intensity scaling was applied after smoothing.
Once a common standard stereotaxic space was established as a reference for the three-
dimensional localization, a monkey brain atlas was bilaterally applied to compute the mean
intensity within the posterior putamen, cerebellum, and occipital cortex [79,80]. The mean
intensity within the cerebellum mask was used as a reference value for scaling, i.e., each
voxel value was divided by the reference value. Finally, the posterior-putamen-to-occipital
ratio (PPOR) was computed for each subject by dividing the mean intensity within the
posterior putamen by the mean intensity within the occipital cortex [81,82].

5.15. Microdialysis Experiments and HPLC Analysis

Ten months after grafting, 28-mm long microdialysis probes were manufactured us ac-
cording to published methods [83]. Animals were anesthetized with Tiletamine/Zolazepam
(2 mg/kg, i.m.), maintained by isoflurane through an endotracheal cannula (1–2%, O2 flow
rate of 2 L/min) and fixed in the stereotaxic frame in a prone position. Using the stereotaxic
coordinates, we shaved the target areas, sterilized them, and bilateral incisions were made
on the scalp to expose the cranial surface; then, we took out the bone wax to expose the dura.
One probe was introduced in each putamen to measure extracellular DA concentrations
simultaneously. The active part of the dialysis probe was a polyacrylonitrile membrane
(molar weight cutoff, 40 kDa) and its inlet was connected to a syringe mounted on a mi-
croperfusion pump. In experiments for in vitro recovery with dialysis, membranes had
15–25% values for DA and 3,4-dihydroxyphenylacetic acid (DOPAC).

Tissue disruption of the probe caused altered neurotransmitter levels, but after 10 min,
the values returned to normal, even in human patients [84]. Microdialysis probes were
perfused with artificial cerebrospinal fluid at 2 µL per minute for 1 h for tissue stabilization
as reported [29,84–86] and fractions were collected every 12 min. Monoamines were
stabilized by adding 0.1 N of perchloric acid, 0.02% EDTA, and 1% ethanol. Extracellular DA
increases were obtained after three basal fractions through bilateral chemical depolarization
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(isosmotic solution containing 100 mM of KCl, fraction 4) or 30 µM of amphetamine
(fraction 8) and quantified for monoamine content by HPLC. No recovery correction was
performed. After histological analysis, we found that all microdialysis probes were in the
putamina, close to the grafting sites (Figure 6A, left panel).

Twenty µL of dialysate samples were injected into the solvent stream of an HPLC
system using a reversed-phase column (C18, 3 µm; 2.1 × 50 mm) coupled to a pre-column
(Atlantis, Waters®, Milford, MA, USA) with a mobile phase solution containing sodium
acetate 25 mM, EDTA 0.01 mM; citric acid 25 mM and 1-octanesulfonic acid 1 mM dissolved
in milli-Q water and mixed with acetonitrile in a proportion of 95:5, respectively (pH of
3.35 ± 0.05 at a flow rate of 0.35 mL/min). DA and DOPAC detections were performed
by a single-channel electrochemical detector (Waters® model 2465, USA) at 450 mV at
a temperature of 30 ◦C and quantified by peak height measurements against standard
solutions. For cultures, samples were collected on day 60 of differentiation [87].

5.16. Immunohistochemistry and Postmortem Cell Count

NHPs were perfused via the right carotid with ice-cold saline, followed by PFA. The
brain was post-fixed overnight by immersion in PFA and equilibrated in increasing sucrose
solutions (10%, 20%, and 30%) at 4 ◦C. The tissue was sectioned on a cryostat in 20 µm slices
and serially recovered on individual slides and some were separated to be stained with
hematoxylin and eosin. For immunohistochemical analyses, sections were permeabilized
and blocked for 1 h with 0.3% Triton X-100 and 10% normal goat serum in PBS. Samples
were incubated overnight at 4 ◦C with primary antibodies diluted in PBS containing 10%
normal goat serum. Alexa-Fluor secondary antibodies were diluted in PBS/10% normal
goat serum for 1 h. Nuclei were stained with Hoechst 33258. Immuno-reactive tissue was
visualized using an epifluorescence microscope (Nikon Eclipse TE2000-U) or a confocal
laser microscope (Carl Zeiss LSM710). Negative controls without primary antibodies were
included to confirm the specificity of detection. The number of TH+ in the substantia nigra
and TH+/EGFP+ (in both putamen) neurons were quantified in Sham and Grafted NHPs.
Twenty-four successive coronal sections throughout the grafts were photographed and the
number of cells was calculated at 20×magnification.

5.17. Statistical Analysis

For cell cultures and behavioral assessment, we used unifactorial analysis of vari-
ance (One-way ANOVA) followed by Tukey’s post hoc analysis and n values are from
independent experiments (independent differentiations). The DTI results were plotted
using the software GraphPad Prism program version 6. Pearson’s correlation matrix be-
tween DTI measures and the behavioral outcome (average values from months 1 to 6)
was computed in the R 3.3.3 version. The actual p-values are in Table S2 and p < 0.05 was
considered significant.

5.18. Single-Case Experimental Design

For each behavior and NHP, the times before the MPTP administration (baseline,
B) and the times after the MPTP lesion (M) were measured. As a treatment, the 5 times
per corresponding month were considered. Subsequently, the means that resulted from
subtracting the MPTP times and the 10-month average times were compared using One-
way ANOVA and Tukey’s post hoc analysis [88,89].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12232738/s1. Figure S1: Pluripotency of cell lines H9 and
H9-EGFP; Figure S2: Comparison of expression data at similar time points from previous work
with our RNA-Seq results; Figure S3: Cell phenotypes obtained through the differentiation protocol;
Figure S4: Single-case design for each task and every NHP; Figure S5: MPTP intoxication of three
NHPs diminishes Fractional Anisotropy (FA) and increases Mean Diffusivity (MD) in the putamen
compared to healthy subjects; Figure S6: Cell phenotypes found in the grafts; Table S1: Surgical
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coordinates; Video S1: Motor behavioral assessment (SHAM); Video S2: Motor behavioral assessment
(Grafted 1); Video S3: Motor behavioral assessment (Grafted 2).
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