AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors
Abstract
:1. Introduction
2. Lipid Metabolism
3. Xenobiotic Receptors
4. Xenobiotic Receptors in Lipid Metabolism
4.1. Role of AhR in Lipid Metabolism
4.2. Role of PXR in Lipid Metabolism
4.3. Role of CAR in Lipid Metabolism
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABCA1 | ATP-binding cassette transporter A1 |
ACC-1 | Acetyl-CoA carboxylase-1 |
AhR | Aryl hydrocarbon receptor |
AHRR | Aryl hydrocarbon receptor repressor |
AIP | AhR interacting protein |
ALT | Alanine aminotransferase |
ApoA-I | Apolipoprotein A-I |
ApoB-100 | Apolipoprotein B-100 |
ARNT | AhR nuclear translocator |
CAR | Constitutive androstane receptor |
CCRP | CAR cytoplasmic retention protein |
CD36 | Cluster of differentiation 36 |
CE | Cholesterol esters |
CETP | Cholesteryl ester transfer protein |
CMD | Cardiometabolic disease |
CPT1a | Carnitine palmitoyltransferase 1 |
CTE | Cytosolic acyl-CoA thioesterase |
CTP1α | Carnitine palmitoyltransferase 1 α |
CXCR2 | C-X-C motif chemokine receptor 2 |
CYP | Cytochrome P450 |
CYP1A1 | Cytochrome P450 family 1 subfamily A member 1 |
CYP1B1 | Cytochrome P450 family 1 subfamily B member 1 |
DCHP | Dicyclohexyl phthalate |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
eNOS | Endothelial nitric oxide synthase |
ERK | Extracellular-signal-regulated kinase |
FASN | Fatty acid synthase |
FoxA2 | Forkhead box A2 |
GRIP1 | Glucocorticoid receptor interacting protein 1 |
HDL | High-density lipoprotein |
HMGCS2 | 3-hydroxy-3-methylglutarate-CoA synthase |
Hsp90 | Heat shock protein 90 |
IDL | Intermediate-density lipoprotein |
LCAT | Lecithin cholesterol acyl transferase |
LDL | Low-density lipoprotein |
LDLR | LDL receptor |
LPL | Lipoprotein lipase |
LXR | Liver X receptor |
MCD | Methionine- and choline-deficient diet |
MEK | Mitogen-activated protein kinase kinase |
MMP-12 | Matrix metalloproteinase 12 |
MRP | Multidrug-resistance-associated protein |
NADPH | Nicotinamide adenine dinucleotide phosphate hydrogen |
NAFLD | Non-alcoholic fatty liver disease |
NASH | Non-alcoholic steatohepatitis |
NcoR1 | Nuclear receptor corepressor 1 |
NO | Nitric oxide |
Nrf2 | Nuclear factor erythroid 2 related factor 2 |
p-ERK | Phosphorylated extracellular signal-regulated kinase |
p-RACK | Phosphorylated receptor for activated C kinase 1 |
PAH | Polycyclic aromatic hydrocarbon |
PAS | Per-Arnt-Sim |
PBREM | Phenobarbital-responsive enhancer module |
PCN | Pregnenolone 16α-carbonitrile |
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
Pdgfrα | Platelet-derived growth factor receptor-alpha |
PP2A | Protein phosphatase 2A |
PPAR-α | Peroxisome proliferator-activated receptor-α |
PXR | Pregnane X receptor |
PXRE | PXR-responsive element |
RACK-1 | Receptor for activated C kinase 1 |
ROS | Reactive oxygen species |
RXR | Retinoid X receptor |
S14 | Spot 14 protein |
SCD-1 | Stearyol-CoA desaturaturase-1 |
SLC13A5 | Solute carrier family 13 member 5 |
SMRT | Silencing mediator of retinoid and thyroid receptors |
Socs3 | Suppressor of cytokine signal |
SOD2 | Superoxide dismutase 2 |
SR-BI | Scavenger receptor B-I |
SRC1 | Steroid receptor coactivator-1 |
SREBP | Sterol regulatory element binding protein |
SULT | Sulfotransferase |
TCDD | 2,3,7,8-tetrachlorodibenzo-p-dioxin |
TG | Triglyceride |
UGT | UDP-glucuronosyltransferase |
VLDL | Very-low-density lipoprotein |
XRE | Xenobiotic response element |
References
- Ferdinand, K.C. Global Perspectives on Cardiometabolic Risk and Cardiovascular Disease: From Basic Science to Bedside. Ann. Transl. Med. 2018, 6, 290. [Google Scholar] [CrossRef]
- Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; et al. Dyslipidemia and Cardiovascular Disease Risk among the MASHAD Study Population. Lipids Health Dis. 2020, 19, 42. [Google Scholar] [CrossRef]
- Stahel, P.; Xiao, C.; Hegele, R.A.; Lewis, G.F. The Atherogenic Dyslipidemia Complex and Novel Approaches to Cardiovascular Disease Prevention in Diabetes. Can. J. Cardiol. 2018, 34, 595–604. [Google Scholar] [CrossRef]
- Wang, J.; Lu, P.; Xie, W. Atypical Functions of Xenobiotic Receptors in Lipid and Glucose Metabolism. Med. Rev. 2022, 2, 611–624. [Google Scholar] [CrossRef]
- Enjoji, M.; Kohjima, M.; Nakamuta, M. Lipid Metabolism and the Liver. In The Liver in Systemic Diseases; Ohira, H., Ed.; Springer: Tokyo, Japan, 2016; pp. 105–122. ISBN 978-4-431-55789-0. [Google Scholar]
- Zhang, S.; Hong, F.; Ma, C.; Yang, S. Hepatic Lipid Metabolism Disorder and Atherosclerosis. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 590–600. [Google Scholar] [CrossRef]
- Hurtubise, J.; McLellan, K.; Durr, K.; Onasanya, O.; Nwabuko, D.; Ndisang, J.F. The Different Facets of Dyslipidemia and Hypertension in Atherosclerosis. Curr. Atheroscler. Rep. 2016, 18, 82. [Google Scholar] [CrossRef]
- Duan, H.; Song, P.; Li, R.; Su, H.; He, L. Attenuating Lipid Metabolism in Atherosclerosis: The Potential Role of Anti-Oxidative Effects on Low-Density Lipoprotein of Herbal Medicines. Front. Pharmacol. 2023, 14, 1161657. [Google Scholar] [CrossRef]
- Afonso, C.B.; Spickett, C.M. Lipoproteins as Targets and Markers of Lipoxidation. Redox Biol. 2019, 23, 101066. [Google Scholar] [CrossRef]
- Cox, R.A.; García-Palmieri, M.R. Cholesterol, Triglycerides, and Associated Lipoproteins. In Clinical Methods: The History, Physical, and Laboratory Examinations; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; ISBN 978-0-409-90077-4. [Google Scholar]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Lent-Schochet, D.; Jialal, I. Biochemistry, Lipoprotein Metabolism. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Li, H.; Wang, H. Activation of Xenobiotic Receptors: Driving into the Nucleus. Expert. Opin. Drug Metab. Toxicol. 2010, 6, 409–426. [Google Scholar] [CrossRef]
- Patterson, A.D.; Gonzalez, F.J.; Idle, J.R. Xenobiotic Metabolism: A View through the Metabolometer. Chem. Res. Toxicol. 2010, 23, 851–860. [Google Scholar] [CrossRef]
- Sonoda, J.; Pei, L.; Evans, R.M. Nuclear Receptors: Decoding Metabolic Disease. FEBS Lett. 2008, 582, 2–9. [Google Scholar] [CrossRef]
- Wang, H.; LeCluyse, E.L. Role of Orphan Nuclear Receptors in the Regulation of Drug-Metabolising Enzymes. Clin. Pharmacokinet. 2003, 42, 1331–1357. [Google Scholar] [CrossRef]
- Tolson, A.H.; Wang, H. Regulation of Drug-Metabolizing Enzymes by Xenobiotic Receptors: PXR and CAR. Adv. Drug Deliv. Rev. 2010, 62, 1238–1249. [Google Scholar] [CrossRef]
- Nebert, D.W. Proposed Role of Drug-Metabolizing Enzymes: Regulation of Steady State Levels of the Ligands That Effect Growth, Homeostasis, Differentiation, and Neuroendocrine Functions. Mol. Endocrinol. 1991, 5, 1203–1214. [Google Scholar] [CrossRef]
- Pandey, A.V.; Flück, C.E. NADPH P450 Oxidoreductase: Structure, Function, and Pathology of Diseases. Pharmacol. Ther. 2013, 138, 229–254. [Google Scholar] [CrossRef]
- McCarver, D.G.; Hines, R.N. The Ontogeny of Human Drug-Metabolizing Enzymes: Phase II Conjugation Enzymes and Regulatory Mechanisms: Table 1. J. Pharmacol. Exp. Ther. 2002, 300, 361–366. [Google Scholar] [CrossRef]
- Ayrton, A.; Morgan, P. Role of Transport Proteins in Drug Discovery and Development: A Pharmaceutical Perspective. Xenobiotica 2008, 38, 676–708. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Z.; Luo, X. Roles of Xenobiotic Receptors in Vascular Pathophysiology. Circ. J. 2014, 78, 1520–1530. [Google Scholar] [CrossRef]
- Rothhammer, V.; Quintana, F.J. The Aryl Hydrocarbon Receptor: An Environmental Sensor Integrating Immune Responses in Health and Disease. Nat. Rev. Immunol. 2019, 19, 184–197. [Google Scholar] [CrossRef]
- Casado, F.L.; Singh, K.P.; Gasiewicz, T.A. The Aryl Hydrocarbon Receptor: Regulation of Hematopoiesis and Involvement in the Progression of Blood Diseases. Blood Cells Mol. Dis. 2010, 44, 199–206. [Google Scholar] [CrossRef]
- Go, R.-E.; Hwang, K.-A.; Choi, K.-C. Cytochrome P450 1 Family and Cancers. J. Steroid Biochem. Mol. Biol. 2015, 147, 24–30. [Google Scholar] [CrossRef]
- Stevens, E.A.; Mezrich, J.D.; Bradfield, C.A. The Aryl Hydrocarbon Receptor: A Perspective on Potential Roles in the Immune System. Immunology 2009, 127, 299–311. [Google Scholar] [CrossRef]
- Mimura, J.; Fujii-Kuriyama, Y. Functional Role of AhR in the Expression of Toxic Effects by TCDD. Biochim. Biophys. Acta General. Subj. 2003, 1619, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Albro, P.W.; Corbett, J.T.; Harris, M.; Lawson, L.D. Effects of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Lipid Profiles in Tissue of the Fischer Rat. Chem.-Biol. Interact. 1978, 23, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Kohli, K.K.; Gupta, B.N.; Albro, P.W.; Mukhtar, H.; McKinney, J.D. Biochemical Effects of Pure Isomers of Hexachlorobiphenyl: Fatty Livers and Cell Structure. Chem.-Biol. Interact. 1979, 25, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Greig, J.B. Pathological Changes in the Liver of Mice given 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Experientia 1975, 31, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Yao, Y.-J.; Chen, H.-L.; Guo, Y.-L.; Su, H.-J. Fatty Liver and Hepatic Function for Residents with Markedly High Serum PCDD/Fs Levels in Taiwan. J. Toxicol. Environ. Health Part A 2006, 69, 367–380. [Google Scholar] [CrossRef]
- Gorski, J.R.; Weber, L.W.D.; Rozman, K. Tissue-Specific Alterations of de Novo Fatty Acid Synthesis in 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)-Treated Rats. Arch. Toxicol. 1988, 62, 146–151. [Google Scholar] [CrossRef]
- Lakshman, M.R.; Ghosh, P.; Chirtel, S.J. Mechanism of Action of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Intermediary Metabolism in the Rat. J. Pharmacol. Exp. Ther. 1991, 258, 317–319. [Google Scholar]
- Hinton, D.E.; Glaumann, H.; Trump, B.F. Studies on the Cellular Toxicity of Polychlorinated Biphenyls (PCBs): I. Effect of PCBs on Microsomal Enzymes and on Synthesis and Turnover of Microsomal and Cytoplasmic Lipids of Rat Liver—A Morphological and Biochemical Study. Virchows Arch. B Cell Pathol. 1978, 27, 279–306. [Google Scholar] [CrossRef]
- Ambolet-Camoit, A.; Ottolenghi, C.; Leblanc, A.; Kim, M.J.; Letourneur, F.; Jacques, S.; Cagnard, N.; Guguen-Guillouzo, C.; Barouki, R.; Aggerbeck, M. Two Persistent Organic Pollutants Which Act through Different Xenosensors (Alpha-Endosulfan and 2,3,7,8 Tetrachlorodibenzo-p-Dioxin) Interact in a Mixture and Downregulate Multiple Genes Involved in Human Hepatocyte Lipid and Glucose Metabolism. Biochimie 2015, 116, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Tanos, R.; Murray, I.A.; Smith, P.B.; Patterson, A.; Perdew, G.H. Role of the Ah Receptor in Homeostatic Control of Fatty Acid Synthesis in the Liver. Toxicol. Sci. 2012, 129, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, M.R.; Campbell, B.S.; Chirtel, S.J.; Ekarohita, N. Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on de Novo Fatty Acid and Cholesterol Synthesis in the Rat. Lipids 1988, 23, 904–906. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, N.; Wahlström, D.; Lundberg, R.; Nilsson, C.B.; Nilsson, K.C.; Stockling, K.; Hellmold, H.; Håkansson, H. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) Alters the mRNA Expression of Critical Genes Associated with Cholesterol Metabolism, Bile Acid Biosynthesis, and Bile Transport in Rat Liver: A Microarray Study. Toxicol. Appl. Pharmacol. 2005, 207, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Tanos, R.; Patel, R.D.; Murray, I.A.; Smith, P.B.; Patterson, A.D.; Perdew, G.H. Aryl Hydrocarbon Receptor Regulates the Cholesterol Biosynthetic Pathway in a Dioxin Response Element-Independent Manner. Hepatology 2012, 55, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Wada, T.; Febbraio, M.; He, J.; Matsubara, T.; Lee, M.J.; Gonzalez, F.J.; Xie, W. A Novel Role for the Dioxin Receptor in Fatty Acid Metabolism and Hepatic Steatosis. Gastroenterology 2010, 139, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-X.; Wang, C.; Zhang, Z.-M.; Jaeger, C.D.; Krager, S.L.; Bottum, K.M.; Liu, J.; Liao, D.-F.; Tischkau, S.A. Aryl Hydrocarbon Receptor Deficiency Protects Mice from Diet-Induced Adiposity and Metabolic Disorders through Increased Energy Expenditure. Int. J. Obes. 2015, 39, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Gourronc, F.A.; Markan, K.R.; Kulhankova, K.; Zhu, Z.; Sheehy, R.; Quelle, D.E.; Zingman, L.V.; Kurago, Z.B.; Ankrum, J.A.; Klingelhutz, A.J. Pdgfrα-Cre Mediated Knockout of the Aryl Hydrocarbon Receptor Protects Mice from High-Fat Diet Induced Obesity and Hepatic Steatosis. PLoS ONE 2020, 15, e0236741. [Google Scholar] [CrossRef]
- Wada, T.; Sunaga, H.; Miyata, K.; Shirasaki, H.; Uchiyama, Y.; Shimba, S. Aryl Hydrocarbon Receptor Plays Protective Roles against High Fat Diet (HFD)-Induced Hepatic Steatosis and the Subsequent Lipotoxicity via Direct Transcriptional Regulation of Socs3 Gene Expression. J. Biol. Chem. 2016, 291, 7004–7016. [Google Scholar] [CrossRef]
- He, J.; Hu, B.; Shi, X.; Weidert, E.R.; Lu, P.; Xu, M.; Huang, M.; Kelley, E.E.; Xie, W. Activation of the Aryl Hydrocarbon Receptor Sensitizes Mice to Nonalcoholic Steatohepatitis by Deactivating Mitochondrial Sirtuin Deacetylase Sirt3. Mol. Cell. Biol. 2013, 33, 2047–2055. [Google Scholar] [CrossRef]
- Lu, H.; Cui, W.; Klaassen, C.D. Nrf2 Protects against 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)-Induced Oxidative Injury and Steatohepatitis. Toxicol. Appl. Pharmacol. 2011, 256, 122–135. [Google Scholar] [CrossRef]
- Nebert, D.W.; Roe, A.L.; Dieter, M.Z.; Solis, W.A.; Yang, Y.; Dalton, T.P. Role of the Aromatic Hydrocarbon Receptor and [Ah] Gene Battery in the Oxidative Stress Response, Cell Cycle Control, and Apoptosis. Biochem. Pharmacol. 2000, 59, 65–85. [Google Scholar] [CrossRef]
- Pelclová, D.; Fenclová, Z.; Preiss, J.; Procházka, B.; Spácil, J.; Dubská, Z.; Okrouhlík, B.; Lukás, E.; Urban, P. Lipid Metabolism and Neuropsychological Follow-up Study of Workers Exposed to 2,3,7,8- Tetrachlordibenzo- p -Dioxin. Int. Arch. Occup. Environ. Health 2002, 75, 60–66. [Google Scholar] [CrossRef]
- Wu, D.; Nishimura, N.; Kuo, V.; Fiehn, O.; Shahbaz, S.; Van Winkle, L.; Matsumura, F.; Vogel, C.F.A. Activation of Aryl Hydrocarbon Receptor Induces Vascular Inflammation and Promotes Atherosclerosis in Apolipoprotein E−/− Mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1260–1267. [Google Scholar] [CrossRef]
- Brewster, D.W.; Bombick, D.W.; Matsumura, F. Rabbit Serum Hypertriglyceridemia after Administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J. Toxicol. Environ. Health 1988, 25, 495–507. [Google Scholar] [CrossRef]
- Swift, L.L.; Gasiewicz, T.A.; Dunn, G.D.; Soulé, P.D.; Neal, R.A. Characterization of the Hyperlipidemia in Guinea Pigs Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Toxicol. Appl. Pharmacol. 1981, 59, 489–499. [Google Scholar] [CrossRef]
- Brewster, D.W.; Matsumura, F. TCDD (2,3,7,8-Tetrachlorodibenzo-p-Dioxin) Reduces Lipoprotein Lipase Activity in the Adipose Tissue of the Guinea Pig. Biochem. Biophys. Res. Commun. 1984, 122, 810–817. [Google Scholar] [CrossRef]
- Kern, P.A.; Dicker-Brown, A.; Said, S.T.; Kennedy, R.; Fonseca, V.A. The Stimulation of Tumor Necrosis Factor and Inhibition of Glucose Transport and Lipoprotein Lipase in Adipose Cells by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Metab.-Clin. Exp. 2002, 51, 65–68. [Google Scholar] [CrossRef]
- Da Silva, J.F.; Bolsoni, J.A.; Da Costa, R.M.; Alves, J.V.; Bressan, A.F.M.; Silva, L.E.V.; Costa, T.J.; Oliveira, A.E.R.; Manzato, C.P.; Aguiar, C.A.; et al. Aryl Hydrocarbon Receptor (AhR) Activation Contributes to High-fat Diet-induced Vascular Dysfunction. Br. J. Pharmacol. 2022, 179, 2938–2952. [Google Scholar] [CrossRef]
- Bertilsson, G.; Heidrich, J.; Svensson, K.; Asman, M.; Jendeberg, L.; Sydow-Bäckman, M.; Ohlsson, R.; Postlind, H.; Blomquist, P.; Berkenstam, A. Identification of a Human Nuclear Receptor Defines a New Signaling Pathway for CYP3A Induction. Proc. Natl. Acad. Sci. USA 1998, 95, 12208–12213. [Google Scholar] [CrossRef]
- Blumberg, B.; Sabbagh, W.; Juguilon, H.; Bolado, J.; van Meter, C.M.; Ong, E.S.; Evans, R.M. SXR, a Novel Steroid and Xenobiotic-Sensing Nuclear Receptor. Genes. Dev. 1998, 12, 3195–3205. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, S.A.; Moore, J.T.; Wade, L.; Staudinger, J.L.; Watson, M.A.; Jones, S.A.; McKee, D.D.; Oliver, B.B.; Willson, T.M.; Zetterström, R.H.; et al. An Orphan Nuclear Receptor Activated by Pregnanes Defines a Novel Steroid Signaling Pathway. Cell 1998, 92, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, S.A.; Goodwin, B.; Willson, T.M. The Nuclear Pregnane X Receptor: A Key Regulator of Xenobiotic Metabolism. Endocr. Rev. 2002, 23, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Verma, S.; Blumberg, B. The Steroid and Xenobiotic Receptor (SXR), beyond Xenobiotic Metabolism. Nucl. Recept. Signal. 2009, 7, e001. [Google Scholar] [CrossRef] [PubMed]
- Squires, E.J.; Sueyoshi, T.; Negishi, M. Cytoplasmic Localization of Pregnane X Receptor and Ligand-Dependent Nuclear Translocation in Mouse Liver. J. Biol. Chem. 2004, 279, 49307–49314. [Google Scholar] [CrossRef] [PubMed]
- van de Winkel, A.; Menke, V.; Capello, A.; Moons, L.M.G.; Pot, R.G.J.; van Dekken, H.; Siersema, P.D.; Kusters, J.G.; van der Laan, L.J.W.; Kuipers, E.J. Expression, Localization and Polymorphisms of the Nuclear Receptor PXR in Barrett’s Esophagus and Esophageal Adenocarcinoma. BMC Gastroenterol. 2011, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Kawana, K.; Ikuta, T.; Kobayashi, Y.; Gotoh, O.; Takeda, K.; Kawajiri, K. Molecular Mechanism of Nuclear Translocation of an Orphan Nuclear Receptor, SXR. Mol. Pharmacol. 2003, 63, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Koyano, S.; Kurose, K.; Saito, Y.; Ozawa, S.; Hasegawa, R.; Komamura, K.; Ueno, K.; Kamakura, S.; Kitakaze, M.; Nakajima, T.; et al. Functional Characterization of Four Naturally Occurring Variants of Human Pregnane X Receptor (PXR): One Variant Causes Dramatic Loss of Both DNA Binding Activity and the Transactivation of the CYP3A4 Promoter/Enhancer Region. Drug Metab. Dispos. 2004, 32, 149–154. [Google Scholar] [CrossRef]
- Mackowiak, B.; Wang, H. Mechanisms of Xenobiotic Receptor Activation: Direct vs. Indirect. Biochim. Biophys. Acta Gene Regul. Mech. 2016, 1859, 1130–1140. [Google Scholar] [CrossRef]
- Timsit, Y.E.; Negishi, M. CAR and PXR: The Xenobiotic-Sensing Receptors. Steroids 2007, 72, 231–246. [Google Scholar] [CrossRef]
- Karpale, M.; Hukkanen, J.; Hakkola, J. Nuclear Receptor PXR in Drug-Induced Hypercholesterolemia. Cells 2022, 11, 313. [Google Scholar] [CrossRef]
- Oladimeji, P.O.; Chen, T. PXR: More Than Just a Master Xenobiotic Receptor. Mol. Pharmacol. 2018, 93, 119–127. [Google Scholar] [CrossRef]
- Lv, Y.; Luo, Y.-Y.; Ren, H.-W.; Li, C.-J.; Xiang, Z.-X.; Luan, Z.-L. The Role of Pregnane X Receptor (PXR) in Substance Metabolism. Front. Endocrinol. 2022, 13, 959902. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z.; Klaunig, J.E. Modulation of Xenobiotic Nuclear Receptors in High-Fat Diet Induced Non-Alcoholic Fatty Liver Disease. Toxicology 2018, 410, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhai, Y.; Mu, Y.; Gong, H.; Uppal, H.; Toma, D.; Ren, S.; Evans, R.M.; Xie, W. A Novel Pregnane X Receptor-Mediated and Sterol Regulatory Element-Binding Protein-Independent Lipogenic Pathway. J. Biol. Chem. 2006, 281, 15013–15020. [Google Scholar] [CrossRef]
- Cheng, J.; Krausz, K.W.; Tanaka, N.; Gonzalez, F.J. Chronic Exposure to Rifaximin Causes Hepatic Steatosis in Pregnane X Receptor-Humanized Mice. Toxicol. Sci. 2012, 129, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; He, L.; Bu, P.; Wan, Y.-J.Y. Pregnane X Receptor Is Essential for Normal Progression of Liver Regeneration. Hepatology 2008, 47, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Moore, R.; Negishi, M.; Sueyoshi, T. Nuclear Pregnane X Receptor Cross-Talk with FoxA2 to Mediate Drug-Induced Regulation of Lipid Metabolism in Fasting Mouse Liver. J. Biol. Chem. 2007, 282, 9768–9776. [Google Scholar] [CrossRef]
- Yokobori, K.; Gruzdev, A.; Negishi, M. Mice Blocking Ser347 Phosphorylation of Pregnane x Receptor Develop Hepatic Fasting-Induced Steatosis and Hypertriglyceridemia. Biochem. Biophys. Res. Commun. 2022, 615, 75–80. [Google Scholar] [CrossRef]
- Moya, M.; Gómez-Lechón, M.J.; Castell, J.V.; Jover, R. Enhanced Steatosis by Nuclear Receptor Ligands: A Study in Cultured Human Hepatocytes and Hepatoma Cells with a Characterized Nuclear Receptor Expression Profile. Chem.-Biol. Interact. 2010, 184, 376–387. [Google Scholar] [CrossRef]
- Bitter, A.; Rümmele, P.; Klein, K.; Kandel, B.A.; Rieger, J.K.; Nüssler, A.K.; Zanger, U.M.; Trauner, M.; Schwab, M.; Burk, O. Pregnane X Receptor Activation and Silencing Promote Steatosis of Human Hepatic Cells by Distinct Lipogenic Mechanisms. Arch. Toxicol. 2015, 89, 2089–2103. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.; Castaño, G.O.; Burgueño, A.L.; Gianotti, T.F.; Rosselli, M.S.; Pirola, C.J. The Nuclear Receptor PXR Gene Variants Are Associated with Liver Injury in Nonalcoholic Fatty Liver Disease. Pharmacogenet. Genom. 2010, 20, 1–8. [Google Scholar] [CrossRef]
- Käräjämäki, A.J.; Hukkanen, J.; Ukkola, O. Pregnane X Receptor Gene Variant Rs7643645 and Total Mortality in Subjects with Nonalcoholic Fatty Liver Disease. Pharmacogenet. Genom. 2023, 33, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Febbraio, M.; Wada, T.; Zhai, Y.; Kuruba, R.; He, J.; Lee, J.H.; Khadem, S.; Ren, S.; Li, S.; et al. Hepatic Fatty Acid Transporter Cd36 Is a Common Target of LXR, PXR, and PPARgamma in Promoting Steatosis. Gastroenterology 2008, 134, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; King, N.; Chen, K.Y.; Breslow, J.L. Activation of PXR Induces Hypercholesterolemia in Wild-Type and Accelerates Atherosclerosis in apoE Deficient Mice. J. Lipid Res. 2009, 50, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Moreau, A.; Téruel, C.; Beylot, M.; Albalea, V.; Tamasi, V.; Umbdenstock, T.; Parmentier, Y.; Sa-Cunha, A.; Suc, B.; Fabre, J.-M.; et al. A Novel Pregnane X Receptor and S14-Mediated Lipogenic Pathway in Human Hepatocyte. Hepatology 2009, 49, 2068–2079. [Google Scholar] [CrossRef]
- He, J.; Gao, J.; Xu, M.; Ren, S.; Stefanovic-Racic, M.; O’Doherty, R.M.; Xie, W. PXR Ablation Alleviates Diet-Induced and Genetic Obesity and Insulin Resistance in Mice. Diabetes 2013, 62, 1876–1887. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Garzel, B.; Yang, H.; Sueyoshi, T.; Li, Q.; Shu, Y.; Zhang, J.; Hu, B.; Heyward, S.; et al. SLC13A5 Is a Novel Transcriptional Target of the Pregnane X Receptor and Sensitizes Drug-Induced Steatosis in Human Liver. Mol. Pharmacol. 2015, 87, 674–682. [Google Scholar] [CrossRef]
- Hoekstra, M.; Lammers, B.; Out, R.; Li, Z.; Van Eck, M.; Van Berkel, T.J.C. Activation of the Nuclear Receptor PXR Decreases Plasma LDL-Cholesterol Levels and Induces Hepatic Steatosis in LDL Receptor Knockout Mice. Mol. Pharm. 2009, 6, 182–189. [Google Scholar] [CrossRef]
- de Haan, W.; de Vries-van der Weij, J.; Mol, I.M.; Hoekstra, M.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Princen, H.M.G.; Rensen, P.C.N. PXR Agonism Decreases Plasma HDL Levels in ApoE3-Leiden.CETP Mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2009, 1791, 191–197. [Google Scholar] [CrossRef]
- Sporstøl, M.; Tapia, G.; Malerød, L.; Mousavi, S.A.; Berg, T. Pregnane X Receptor-Agonists down-Regulate Hepatic ATP-Binding Cassette Transporter A1 and Scavenger Receptor Class B Type I. Biochem. Biophys. Res. Commun. 2005, 331, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, K.; Patel, H.; Batayneh, Z.; Slama, J.; White, D.; Posey, J.; Ekins, S.; Gold, D.; Sambucetti, L. PXR and the Regulation of apoA1 and HDL-Cholesterol in Rodents. Pharmacol. Res. 2004, 50, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Masson, D.; Lagrost, L.; Athias, A.; Gambert, P.; Brimer-Cline, C.; Lan, L.; Schuetz, J.D.; Schuetz, E.G.; Assem, M. Expression of the Pregnane X Receptor in Mice Antagonizes the Cholic Acid-Mediated Changes in Plasma Lipoprotein Profile. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2164–2169. [Google Scholar] [CrossRef] [PubMed]
- Karpale, M.; Käräjämäki, A.J.; Kummu, O.; Gylling, H.; Hyötyläinen, T.; Orešič, M.; Tolonen, A.; Hautajärvi, H.; Savolainen, M.J.; Ala-Korpela, M.; et al. Activation of Pregnane X Receptor Induces Atherogenic Lipids and PCSK9 by a SREBP2-Mediated Mechanism. Br. J. Pharmacol. 2021, 178, 2461–2481. [Google Scholar] [CrossRef]
- Itkonen, A.; Hakkola, J.; Rysä, J. Adverse Outcome Pathway for Pregnane X Receptor-Induced Hypercholesterolemia. Arch. Toxicol. 2023, 97, 2861–2877. [Google Scholar] [CrossRef]
- Liu, J.; Hernandez, R.; Li, X.; Meng, Z.; Chen, H.; Zhou, C. Pregnane X Receptor Mediates Atherosclerosis Induced by Dicyclohexyl Phthalate in LDL Receptor-Deficient Mice. Cells 2022, 11, 1125. [Google Scholar] [CrossRef]
- Sui, Y.; Meng, Z.; Park, S.-H.; Lu, W.; Livelo, C.; Chen, Q.; Zhou, T.; Zhou, C. Myeloid-Specific Deficiency of Pregnane X Receptor Decreases Atherosclerosis in LDL Receptor-Deficient Mice. J. Lipid Res. 2020, 61, 696–706. [Google Scholar] [CrossRef]
- Poulton, E.J.; Levy, L.; Lampe, J.W.; Shen, D.D.; Tracy, J.; Shuhart, M.C.; Thummel, K.E.; Eaton, D.L. Sulforaphane Is Not an Effective Antagonist of the Human Pregnane X-Receptor in Vivo. Toxicol. Appl. Pharmacol. 2013, 266, 122–131. [Google Scholar] [CrossRef]
- Hukkanen, J.; Rysa, J.; Makela, K.A.; Herzig, K.-H.; Hakkola, J.; Savolainen, M.J. The Effect of Pregnane X Receptor Agonists on Postprandial Incretin Hormone Secretion in Rats and Humans. J. Physiol. Pharmacol. 2015, 66, 831–839. [Google Scholar]
- Hassani-Nezhad-Gashti, F.; Salonurmi, T.; Hautajärvi, H.; Rysä, J.; Hakkola, J.; Hukkanen, J. Pregnane X Receptor Activator Rifampin Increases Blood Pressure and Stimulates Plasma Renin Activity. Clin. Pharmacol. Ther. 2020, 108, 856–865. [Google Scholar] [CrossRef]
- Bae, S.D.W.; Nguyen, R.; Qiao, L.; George, J. Role of the Constitutive Androstane Receptor (CAR) in Human Liver Cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188516. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhai, Y.; Wang, J. The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int. J. Mol. Sci. 2018, 19, 1260. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, L.; Pellitteri, R.; Balazy, M.; Cardile, V. Induction of Nuclear Receptors and Drug Resistance in the Brain Microvascular Endothelial Cells Treated with Antiepileptic Drugs. Curr. Neurovascular Res. 2008, 5, 82–92. [Google Scholar] [CrossRef]
- Lin, W.; Bwayi, M.; Wu, J.; Li, Y.; Chai, S.C.; Huber, A.D.; Chen, T. CITCO Directly Binds to and Activates Human Pregnane X Receptor. Mol. Pharmacol. 2020, 97, 180–190. [Google Scholar] [CrossRef]
- Jackson, J.P.; Ferguson, S.S.; Moore, R.; Negishi, M.; Goldstein, J.A. The Constitutive Active/Androstane Receptor Regulates Phenytoin Induction of Cyp2c29. Mol. Pharmacol. 2004, 65, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, B.; Lu, J.; Xie, W. Deciphering the Roles of the Constitutive Androstane Receptor in Energy Metabolism. Acta Pharmacol. Sin. 2015, 36, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Zhang, J.; Egan-Hafley, M.; Liang, S.; Moore, D.D. The Nuclear Receptor CAR Mediates Specific Xenobiotic Induction of Drug Metabolism. Nature 2000, 407, 920–923. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Evans, R.M. Orphan Nuclear Receptors: The Exotics of Xenobiotics. J. Biol. Chem. 2001, 276, 37739–37742. [Google Scholar] [CrossRef]
- Zhou, C. Novel Functions of PXR in Cardiometabolic Disease. Biochim. Biophys. Acta Gene Regul. Mech. 2016, 1859, 1112–1120. [Google Scholar] [CrossRef]
- Cheng, X.; Maher, J.; Dieter, M.Z.; Klaassen, C.D. Regulation of Mouse Organic Anion-Transporting Polypeptides (Oatps) in Liver by Prototypical Microsomal Enzyme Inducers That Activate Distinct Transcription Factor Pathways. Drug Metab. Dispos. 2005, 33, 1276–1282. [Google Scholar] [CrossRef]
- Maher, J.M.; Cheng, X.; Slitt, A.L.; Dieter, M.Z.; Klaassen, C.D. Induction of the Multidrug Resistance-Associated Protein Family of Transporters by Chemical Activators of Receptor-Mediated Pathways in Mouse Liver. Drug Metab. Dispos. 2005, 33, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.S.; Klaassen, C.D. Importance of Hepatic Induction of Constitutive Androstane Receptor and Other Transcription Factors That Regulate Xenobiotic Metabolism and Transport. Drug Metab. Dispos. 2007, 35, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F.; Borgstroem, B. The Intraluminal Phase of Fat Digestion in Man: The Lipid Content of the Micellar and Oil Phases of Intestinal Content Obtained during Fat Digestion and Absorption. J. Clin. Investig. 1964, 43, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, Y.; Suzuki, H.; Hirohashi, T.; Tyson, C.A.; Sugiyama, Y. cDNA Cloning and Inducible Expression of Human Multidrug Resistance Associated Protein 3 (MRP3). FEBS Lett. 1998, 433, 149–152. [Google Scholar] [CrossRef]
- Jigorel, E.; Le Vee, M.; Boursier-Neyret, C.; Parmentier, Y.; Fardel, O. Differential Regulation of Sinusoidal and Canalicular Hepatic Drug Transporter Expression by Xenobiotics Activating Drug-Sensing Receptors in Primary Human Hepatocytes. Drug Metab. Dispos. 2006, 34, 1756–1763. [Google Scholar] [CrossRef]
- Olinga, P.; Elferink, M.G.L.; Draaisma, A.L.; Merema, M.T.; Castell, J.V.; Pérez, G.; Groothuis, G.M.M. Coordinated Induction of Drug Transporters and Phase I and II Metabolism in Human Liver Slices. Eur. J. Pharm. Sci. 2008, 33, 380–389. [Google Scholar] [CrossRef]
- Richert, L.; Tuschl, G.; Abadie, C.; Blanchard, N.; Pekthong, D.; Mantion, G.; Weber, J.-C.; Mueller, S.O. Use of mRNA Expression to Detect the Induction of Drug Metabolising Enzymes in Rat and Human Hepatocytes. Toxicol. Appl. Pharmacol. 2009, 235, 86–96. [Google Scholar] [CrossRef]
- Ji, B.-L.; Li, R.; Zhang, S.-H.; Gong, L.-L.; Wang, Z.-H.; Ren, W.; Li, Q.-F. The Lipid Accumulation Product Is Highly Related to Serum Alanine Aminotransferase Level in Male Adults. Nutr. Res. 2012, 32, 581–587. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Qatanani, M.; Evans, R.M.; Moore, D.D. The Constitutive Androstane Receptor and Pregnane X Receptor Function Coordinately to Prevent Bile Acid-Induced Hepatotoxicity. J. Biol. Chem. 2004, 279, 49517–49522. [Google Scholar] [CrossRef]
- Baskin-Bey, E.S.; Huang, W.; Ishimura, N.; Isomoto, H.; Bronk, S.F.; Braley, K.; Craig, R.W.; Moore, D.D.; Gores, G.J. Constitutive Androstane Receptor (CAR) Ligand, TCPOBOP, Attenuates Fas-Induced Murine Liver Injury by Altering Bcl-2 Proteins. Hepatology 2006, 44, 252–262. [Google Scholar] [CrossRef]
- Skoda, J.; Dohnalova, K.; Chalupsky, K.; Stahl, A.; Templin, M.; Maixnerova, J.; Micuda, S.; Grøntved, L.; Braeuning, A.; Pavek, P. Off-Target Lipid Metabolism Disruption by the Mouse Constitutive Androstane Receptor Ligand TCPOBOP in Humanized Mice. Biochem. Pharmacol. 2022, 197, 114905. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Kakizaki, S.; Horiguchi, N.; Sohara, N.; Sato, K.; Takagi, H.; Mori, M.; Negishi, M. The Role of the Nuclear Receptor Constitutive Androstane Receptor in the Pathogenesis of Non-Alcoholic Steatohepatitis. Gut 2007, 56, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Peet, D.J.; Turley, S.D.; Ma, W.; Janowski, B.A.; Lobaccaro, J.-M.; Hammer, R.E.; Mangelsdorf, D.J. Cholesterol and Bile Acid Metabolism Are Impaired in Mice Lacking the Nuclear Oxysterol Receptor LXRα. Cell 1998, 93, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Wada, T.; Zhang, B.; Khadem, S.; Ren, S.; Kuruba, R.; Li, S.; Xie, W. A Functional Cross-Talk between Liver X Receptor-α and Constitutive Androstane Receptor Links Lipogenesis and Xenobiotic Responses. Mol. Pharmacol. 2010, 78, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Saha, P.K.; Huang, W.; Chen, W.; Abu-Elheiga, L.A.; Wakil, S.J.; Stevens, R.D.; Ilkayeva, O.; Newgard, C.B.; Chan, L.; et al. Activation of Nuclear Receptor CAR Ameliorates Diabetes and Fatty Liver Disease. Proc. Natl. Acad. Sci. USA 2009, 106, 18831–18836. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; He, J.; Zhai, Y.; Wada, T.; Xie, W. The Constitutive Androstane Receptor Is an Anti-Obesity Nuclear Receptor That Improves Insulin Sensitivity. J. Biol. Chem. 2009, 284, 25984–25992. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.; Looser, R.; Kaufmann, M.; Blättler, S.M.; Rencurel, F.; Huang, W.; Moore, D.D.; Meyer, U.A. Regulatory Cross-Talk between Drug Metabolism and Lipid Homeostasis: Constitutive Androstane Receptor and Pregnane X Receptor Increase Insig-1 Expression. Mol. Pharmacol. 2008, 73, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Rezen, T.; Tamasi, V.; Lövgren-Sandblom, A.; Björkhem, I.; Meyer, U.A.; Rozman, D. Effect of CAR Activation on Selected Metabolic Pathways in Normal and Hyperlipidemic Mouse Livers. BMC Genom. 2009, 10, 384. [Google Scholar] [CrossRef]
- Maglich, J.M.; Lobe, D.C.; Moore, J.T. The Nuclear Receptor CAR (NR1I3) Regulates Serum Triglyceride Levels under Conditions of Metabolic Stress. J. Lipid Res. 2009, 50, 439–445. [Google Scholar] [CrossRef]
- Sberna, A.-L.; Assem, M.; Xiao, R.; Ayers, S.; Gautier, T.; Guiu, B.; Deckert, V.; Chevriaux, A.; Grober, J.; Le Guern, N.; et al. Constitutive Androstane Receptor Activation Decreases Plasma Apolipoprotein B-Containing Lipoproteins and Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2232–2239. [Google Scholar] [CrossRef]
- Sberna, A.L.; Assem, M.; Gautier, T.; Grober, J.; Guiu, B.; Jeannin, A.; de Barros, J.-P.P.; Athias, A.; Lagrost, L.; Masson, D. Constitutive Androstane Receptor Activation Stimulates Faecal Bile Acid Excretion and Reverse Cholesterol Transport in Mice. J. Hepatol. 2011, 55, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Masson, D.; Qatanani, M.; Sberna, A.L.; Xiao, R.; de Barros, J.-P.P.; Grober, J.; Deckert, V.; Athias, A.; Gambert, P.; Lagrost, L.; et al. Activation of the Constitutive Androstane Receptor Decreases HDL in Wild-Type and Human apoA-I Transgenic Mice. J. Lipid Res. 2008, 49, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Müjgan Aynaci, F.; Orhan, F.; Orem, A.; Yildirmis, S.; Gedik, Y. Effect of Antiepileptic Drugs on Plasma Lipoprotein (a) and Other Lipid Levels in Childhood. J. Child. Neurol. 2001, 16, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Faucette, S.; Moore, R.; Sueyoshi, T.; Negishi, M.; LeCluyse, E. Human Constitutive Androstane Receptor Mediates Induction of CYP2B6 Gene Expression by Phenytoin. J. Biol. Chem. 2004, 279, 29295–29301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-M.; Chai, S.C.; Brewer, C.T.; Chen, T. Pregnane X Receptor and Drug-Induced Liver Injury. Expert. Opin. Drug Metab. Toxicol. 2014, 10, 1521–1532. [Google Scholar] [CrossRef]
- Miller, M.; Burgan, R.G.; Osterlund, L.; Segrest, J.P.; Garber, D.W. A Prospective, Randomized Trial of Phenytoin in Nonepileptic Subjects with Reduced HDL Cholesterol. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 2151–2156. [Google Scholar] [CrossRef]
- Goerdt, C.; Keith, M.; Rubins, H.B. Effects of Phenytoin on Plasma High-Density Lipoprotein Cholesterol Levels in Men with Low Levels of High-Density Lipoprotein Cholesterol. J. Clin. Pharmacol. 1995, 35, 767–775. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakateli, L.; Huchzermeier, R.; van der Vorst, E.P.C. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells 2023, 12, 2752. https://doi.org/10.3390/cells12232752
Rakateli L, Huchzermeier R, van der Vorst EPC. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells. 2023; 12(23):2752. https://doi.org/10.3390/cells12232752
Chicago/Turabian StyleRakateli, Leonida, Rosanna Huchzermeier, and Emiel P. C. van der Vorst. 2023. "AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors" Cells 12, no. 23: 2752. https://doi.org/10.3390/cells12232752
APA StyleRakateli, L., Huchzermeier, R., & van der Vorst, E. P. C. (2023). AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells, 12(23), 2752. https://doi.org/10.3390/cells12232752