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Abstract: The interplay between immune activation and immune regulation is a fundamental aspect
of the functional harmony of the immune system. This delicate balance is essential to triggering
correct and effective immune responses against pathogens while preventing excessive inflammation
and the immunopathogenic mechanisms of autoimmunity. The knowledge of all the mechanisms
involved in immune regulation is not yet definitive, and, probably, the overall picture is much broader
than what has been described in the scientific literature so far. Given the plasticity of the immune
system and the diversity of organisms, it is highly probable that numerous other cells and molecules
are still to be ascribed to the immune regulation process. Here, we report a general overview of
how immune activation and regulation interact, based on the involvement of molecules and cells
specifically dedicated to these processes. In addition, we discuss the role of TR3-56 lymphocytes as
a new cellular candidate in the immune regulation landscape.
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1. Introduction

The immune system protects the body from infections and maintains overall health [1–3].
This protection occurs through the activation of the immune system, which represents
a complex process by which the immune response is stimulated in response to the presence
of pathogens (such as viruses, bacteria, fungi, etc.), foreign substances, or abnormal cells
(e.g., cancer cells) in the body [1–4]. This process is usually called “immune activation” and
can involve various cells and immune molecules harmonically acting to create a defense
against these threats [1–5].

Immune activation processes are expressed by the innate and adaptive immune re-
sponses of the immune system, each with distinct roles and mechanisms to defend the
body against infections and other threats [1–5].

The innate immune response is rapidly acting and represents the first line of defense,
thus providing immediate but relatively non-specific protection [1–6]. In fact, the innate
response does not discriminate among specific pathogens but recognizes common char-
acteristics shared by many pathogens, such as certain molecules on the surface of the
pathogen [7–11].

Components of the innate immune system include physical barriers such as the skin
and mucous membranes, as well as cellular and biochemical elements such as phagocytes
(white blood cells that engulf and digest pathogens) [7–11] and natural killer (NK) cells
(infected host or anomalous cells) [12–14].
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The innate response often promotes pro-inflammatory phases and is itself triggered
by inflammation, which helps in the recruitment of immune cells to the site of infection
and improves the body’s overall defense [15–17].

The adaptive immune response develops more slowly but is highly specific and targets
particular pathogens precisely, adapting to the microenvironmental conditions during the
immune response itself [1–3]. Such a response is characterized by “immunological mem-
ory”, which is a fundamental feature of the adaptive immune system offering an effector
advantage upon subsequent encounters with the pathogen [1–3,18,19]. In this regard,
after encountering a specific pathogen, the adaptive immune system “remembers” pre-
vious encounters and responds more effectively upon subsequent exposures to the same
pathogen [1–3,18,19].

The adaptive response involves specialized white blood cells called B and T
lymphocytes [1–3]. Briefly, B cells are immune cells specialized in the production and
secretion of antibodies, proteins specifically capable of recognizing and binding to specific
antigens, expressed by pathogens such as bacteria or viruses [1–3,20,21]. This binding can
either directly neutralize pathogens or flag them for elimination by other immune cells,
thereby contributing to the battle against infections and the maintenance of immune balance
in the body [1–3,20,21]. Moreover, T cells perform various functions [1–3,22], including
assisting B cell functions (T helper, Th) [1–3,23], directly killing infected cells (cytotoxic T
lymphocytes, CTL) [1–3,24], and regulating the immune response [25]. The functions of T
cells are expressed in a marked versatility (or plasticity), which takes on considerable value
in coordinating immune responses, adapting to different challenges, and guaranteeing an
effective but controlled defense against infections and other threats linked to the control
exercised by the immune system [1–3,22–25].

In a perspective, immune cells have several highly specialized roles in the body,
including the identification and neutralization of threats (the effector functions of immune
activation), as well as the ability to activate or inhibit the response itself (the regulatory
mechanisms) [1–3,15–26].

2. The Immune Regulation

The orchestration of the immune response is a sophisticated and intricately managed
process that guarantees the immune system’s efficiency while preventing exaggerated or
detrimental reactions [25–30]. Regulation involves an ample network of immune cells,
signaling molecules, and regulatory mechanisms that work together to maintain immune
balance and prevent immune-related diseases [25–30].

In this regard, both the inappropriate initiation and incorrect termination of the
immune response can lead to various serious health issues, including chronic conditions,
autoimmune diseases, and even cancer [31–35].

On the basis of the “danger model”, originally postulated by P. Matzinger, the initiation
of immune cell responses when there is no actual threat or presence of harmful pathogens
(such as viruses, bacteria, fungi, etc.) in the body represents a risk for the emergence of
several immune-mediated diseases [36–38]. Physiologically, once the immune system has
eliminated the pathogen, it should return to its basal state without expressing functional
residues that are dangerous for the health of the host organism’s own components [1–9].
The continuation of an active immune response in the absence of a threat can seriously
damage the molecular and cellular components of body tissues (the self) [1–9].

The inappropriate initiation and non-termination of immune effector functions, de-
pendent on an immune regulatory failure, represents the basis for immune cells to act
in an autoaggressive way in the absence of the pathogen, generating damage to healthy
tissues [38–41].

2.1. The Interplay between Immune Activation and Regulation

Taking a broader perspective on the functions and organization of the immune system,
the prevailing hypothesis suggests that immune responses are remarkably flexible and
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adaptable [42–44]. Individual immune cells therefore possess the ability to adapt their
functional capabilities over time, responding to the specific demands of their microenviron-
ment, whether it is to trigger an active response (the effector or activation phase) [1–24] or
to maintain control through immune regulation [25–30].

This intricate balancing act within the immune response evokes the concept of “im-
mune plasticity” [45,46]. Consequently, it is reasonable to consider that disruptions in
immune plasticity could serve as a major factor in the failure of both immune activation and
regulation, resulting in immune system-related disorders such as immunodeficiencies [47]
and autoimmune diseases [38–41].

Current research is dedicated to gaining insight into the mechanisms governing
immune regulation and exploring new therapies tailored to address conditions related to
the immune system [48].

2.2. The Main Features of Immune Regulation: Aspects, Molecules, and Cells

The regulation of immune responses is a complex and finely orchestrated process that
involves several aspects and key mechanisms crucial to maintaining the delicate balance
between an effective defense and the restoration of the state of health, avoiding harmful
excessive reactions [25–48].

A peculiar feature of the immune system is the ability to distinguish between the
body’s own cells and tissues (self) and foreign invaders (non-self) [1–9]. Discrimination be-
tween self and non-self is critical to prevent the immune system from mistakenly attacking
the body cells, which can lead to autoimmune diseases [31–33]. Self-recognition [42–44] is
largely based on tolerance mechanisms [42–44,49].

The immune system has mechanisms to recognize and tolerate self-antigens, pre-
venting the immune response from targeting and attacking the body’s own cells and
tissues [49]. Central tolerance occurs during the development of immune cells in the thy-
mus (for T cells) and bone marrow (for B cells), where self-reactive cells are eliminated or
rendered non-functional [30,49–54]. Peripheral tolerance mechanisms further suppress or
regulate self-reactive immune cells in the periphery to prevent autoimmune reactions in
tissue [49,55].

Cytokines are signaling molecules produced by immune cells that regulate the im-
mune response [56]. They can have pro-inflammatory or anti-inflammatory properties.
For example, pro-inflammatory cytokines like interleukin (IL)-1, IL-6, interferon-gamma
(IFN-γ), and tumor necrosis factor-alpha (TNF-α) promote inflammation and immune
activation [56], while anti-inflammatory cytokines like IL-10 and transforming growth
factor beta (TGF-β) dampen immune responses and promote tolerance [57].

Checkpoint molecules, such as programmed cell death protein 1 (PD-1) [58] and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [59], are involved in regulating
immune responses and preventing excessive immune activation [60]. They act as “brakes”
on immune cells and can inhibit their activation and effector functions [60]. Targeting these
checkpoint molecules has been successful in immunotherapy approaches, particularly in
autoimmunity and cancer treatment [60].

The immune system employs feedback mechanisms to regulate its own activity. Vari-
ous immune cells and molecules can produce inhibitory or activating signals that modulate
the immune response [23–30,56–60]. These feedback mechanisms help maintain immune
balance and prevent excessive or prolonged immune activation [44–46].

The local tissue environment can profoundly influence immune responses. The
presence of specific molecules or cells in tissue can boost or dampen immune
reactions [8–11,36–38,41–44].

All these aspects can account for the enormous value of environmental factors in
determining immune plasticity and, therefore, positively or negatively influencing immune
regulation [42–46].

The scientific literature has highlighted the role of numerous cells with regulatory
functions of the immune response. In this sense, the aforementioned characteristics of
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immune plasticity make it highly probable that immune regulation is mediated by a large
and non-definitive number of cells functionally capable of being involved in immune
regulation [42–60].

In this review, we will address the synthetic description of the main cells described as
possessing immune regulation ability.

Regulatory T cells (Tregs) are a specialized subset of CD4+ T lymphocytes (T cells) that play
a crucial role in immune regulation and maintaining immune tolerance [26,29,30,55,61,62]. They
are essential in preventing excessive immune responses and controlling immune-related dis-
eases, including autoimmune disorders, allergies, and graft rejection in transplantation [61–63].
Tregs are characterized by the expression of a transcription factor called FoxP3 (Forkhead
box P3), which is considered a master regulator of their development and function [62,63].
Mutations or deficiencies in FoxP3 lead to severe autoimmune diseases [61–63], highlighting
the critical role of Tregs in immune homeostasis.

Two subtypes of Tregs have been described: the natural constitutive (nTreg) [29,61–63]
and the inducible (iTreg) cells [61–64]. nTregs develop in the thymus and derive from
some progenitor T cells that undergo a selection process conferring them regulatory
properties [29,61–63]. nTregs are characterized by specific surface markers, such as CD4
and CD25 (interleukin-2 receptor alpha chain) [29,61–63]. They have a natural ability to
suppress the activation and proliferation of other immune cells, including effector T cells,
which helps maintain immune homeostasis and prevent autoimmune reactions [29,61–63].
iTregs are generated in peripheral tissues, such as the gut or sites of inflammation, in
response to specific environmental cues [61–64]. The iTreg subtype arises from the differen-
tiation of conventional CD4+ T cells (non-regulatory T cells) in response to signals from the
local tissue microenvironment and the presence of certain cytokines, such as transforming
growth factor-beta (TGF-β) [61–64]. iTregs can tailor their regulatory functions to specific
tissues [61–64].

Tregs use various mechanisms to suppress immune responses: They secrete immuno-
suppressive cytokines like interleukin-10 (IL-10) and transforming growth factor-beta
(TGF-β). These cytokines can suppress the activity and proliferation of other immune
cells, such as T cells, B cells, and antigen-presenting cells, thereby limiting immune
activation [29,61–64]; Tregs can directly interact with and suppress the function of other
immune cells through cell-to-cell contact [29,61–64]. This interaction involves molecules
such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and lymphocyte activation
gene 3 (LAG-3) on the surface of Tregs, which interact with ligands on target cells, leading
to the inhibition of immune responses [63–65]; Tregs can also modulate the metabolic envi-
ronment to suppress immune responses. They use metabolic pathways, such as increased
adenosine production or the consumption of IL-2, to create an immunosuppressive milieu
that dampens immune activation [61].

Tregs are crucial for maintaining self-tolerance and preventing autoimmune
diseases [29,61–65]. They recognize self-antigens and suppress the activation and function
of autoreactive T cells that could potentially cause harm to the body’s own tissues [29,61–65].
However, the balance between Tregs and effector T cells can be disrupted in certain con-
ditions, leading to immune dysregulation [29,41,42,44,55,61–65]. The deficiency or dys-
function of Tregs can result in uncontrolled immune activation and the development of
autoimmune diseases [29,41,42,44,55,61–65]. On the other hand, an excessive or overac-
tive Treg response can contribute to immune suppression and hinder effective immune
responses against infections or cancer [29,41,42,44,55,61–65].

Research on Tregs and their role in immune regulation is a rapidly evolving field.
Several approaches to harnessing the therapeutic potential of Tregs in treating autoimmune
diseases, allergies, transplant rejection, and other immune-related disorders have been
evaluated [66,67]. Strategies include Treg-based cellular therapies and the modulation of
Treg function and stability for therapeutic interventions [66,67].

CD8+ suppressor T cells represent a subtype of Tregs and have been described as
having a unique ability to suppress immune responses, which may be useful in preventing
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autoimmune reactions [68–70]. CD8+ Tregs appear to be a specialized subset of cytotoxic T
cells, whose functions and mechanisms of action are still not entirely clear but play several
crucial roles in immune regulation [68–70].

In the context of T lymphocytes with immunoregulatory abilities, Type 1 (Tr1) and
Type 2 (Tr2) regulatory T cells are certainly worth mentioning. The Tr1 subset plays a cru-
cial role in regulating the immune response and maintaining immune tolerance [71]. The
mechanisms and functions of Tr1 cells are not fully understood [71–73]. However, the sci-
entific literature has described that Tr1 cells predominantly produce the anti-inflammatory
cytokines IL-10 [71–73]. Such cytokines suppress the activity of other immune cells, in-
cluding T cells and macrophages, dampening inflammation [71–73]. The ability of Tr1 cells
to regulate immune responses makes them an interesting target for potential therapeutic
interventions in conditions involving immune dysregulation, such as autoimmune diseases
and allergies [72,73]. In this regard, it is worth noting that Tr1 cells have been described
as contributing to the immune evasion of tumors by suppressing the anti-tumor immune
response [72,73]. This can be a promising challenge in cancer immunotherapy. Moreover,
Tr1 cells are involved in preventing excessive allergic responses by inhibiting the activation
of immune cells responsible for allergy-related inflammation [73,74]. The Tr2 subset has
also been described as Th3 cells and is involved in immune regulation and suppressing in-
flammatory responses [75,76]. They play a crucial role in maintaining immune homeostasis
by dampening excessive immune activation and preventing immune-mediated tissue dam-
age [75,76]. Tr2 cells exert their immunosuppressive effects through the secretion of TGF-β,
which has anti-inflammatory properties and can inhibit the activity of various immune cells,
including T cells, B cells, and APCs [75,76]. Tr2 cells have been implicated in the regulation
of immune responses in a variety of contexts, including allergic reactions, autoimmune
diseases, and tissue inflammation [75,76]. The differentiation and development of Tr1
and Tr2 cells are influenced by various factors, including the cytokine environment and
interactions with other immune cells [77]. They can arise from different sources, including
conventional CD4+ T cells that have been exposed to specific signals, as well as from the
conversion of other regulatory T cell subsets [77].

Natural killer T (NKT) cells are a unique subset of immune cells that possess both
T cell and natural killer cell characteristics [78,79]. These cells express both the T cell
receptor (the CD3 molecule) and the natural killer cell marker (the CD56 molecule) on
their surface [78,79]. NKT cells play a critical role in the immune response by bridging the
innate and adaptive immune systems [80]. They recognize a variety of lipid and glycolipid
antigens presented by the non-classical major histocompatibility complex (MHC) molecule,
CD1d [80,81]. Upon activation, NKT cells rapidly produce large amounts of cytokines, such
as IFN-γ and IL-4, which can modulate the immune response and suppress the activation
and proliferation of other immune cells, such as T cells and NKs [79,80]. Moreover, NKT
cells have been found to play a role in various immune-related diseases and conditions,
including infectious diseases, cancer, and autoimmune disorders [82–85]. Their functional
plasticity and ability to modulate immune responses render them a promising target for
immunotherapy approaches [84].

Some other cell types, with various mechanisms, have been described as capable of
regulating immune responses.

In this regard, the anti-inflammatory role of regulatory B cells (Bregs) has been de-
scribed [86]. Bregs represent a subset of B lymphocytes with immunosuppressive functions,
mainly mediated by the production of anti-inflammatory cytokines such as IL-10, IL-35,
and TGF-β [86,87]. Bregs are characterized by differential expression of CD5 and CD1d
in the mouse immune system and CD24 and CD38 in the human immune system [86–88].
Some evidence suggests that Bregs are involved in infections, inflammation, and autoim-
munity [86].

NK cells [1–5,12–14,89] are a vital component of the innate immune system, and al-
though their primary role is to recognize and eliminate infected or abnormal cells, a large
body of literature suggests that they also play a role in immune regulation [90–92]. NK cells
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recognize and kill tissue cells that display abnormal characteristics, such as infected cells,
tumor cells, or cells lacking major histocompatibility complex class I (MHC-I) molecules,
based on the missing-self hypothesis [93]. NK cytotoxic function helps prevent the spread
of infections and the development of tumors [89,93]. NK cells can also produce numer-
ous cytokines that have both pro-inflammatory and immunosuppressive effects, thus
contributing to immune regulation [90–93]. In addition, they also contribute to immune
tolerance by shedding potentially harmful autoreactive or infected cells and sparing healthy
ones [94–97]. NK cells and Tregs can interact, influencing the balance between the acti-
vation and inhibition of immune responses [98,99]. Furthermore, NK cells play a crucial
role in establishing immune tolerance during pregnancy, facilitating the development of
a semi-allogeneic fetus (with different genetic material) within the maternal environment
and preventing its rejection [92].

Gamma delta (γδ) T cells are a subset of T lymphocytes that possess a T cell receptor
(TCR) composed of γ and δ chains, in contrast to the more common α and β chains
of conventional T cells [100,101]. γδ T cells are a relatively small population of T cells
in the peripheral blood and have more limited diversity than αβ-TCRs, which allows
them to recognize a distinct set of antigens, including non-peptide molecules [101,102].
γδ T cells are often found in tissues such as the skin, the intestinal mucosa, and the
respiratory epithelium [102]. γδ T cells contribute to immune surveillance by recognizing
and responding to a wide range of stress-induced or non-peptide antigens, such as those
produced by infected or transformed cells [101,102]. They can also produce numerous
cytokines, such as IFN-γ and TNF-α, which influence the immune response [101]. For their
production and roles, they have been implicated in some autoimmune diseases, where they
can contribute to inflammation and tissue damage [101].

Dendritic cells (DCs) and macrophages are key players in the immune system, and
their versatility extends beyond their role as immune sentinels and scavengers and their
known ability to present antigens to T lymphocytes [1–10]. Indeed, DCs and macrophages
are specialized antigen-presenting cells (APCs) that have attracted attention for their
intriguing immunomodulatory properties, which allow them to fine-tune immune re-
sponses based on the unique signals they encounter and the specific context of the immune
challenge [1–10]. DCs can also interact with Tregs and other immune modulators to further
optimize the immune response [103]. Therefore, DCs serve as central coordinators in the im-
mune response, ensuring the body’s defenses are alert against threats (immunogenic DCs)
and the immune responses are contained to prevent damage to one’s own tissues (tolero-
genic DCs) [104]. This immunomodulation testifies to the complexity of our immune system
and its ability to maintain balance in the face of different challenges. Macrophages can
assume distinct functional states based on the signals they receive. They can be “classically
activated” (M1) to promote inflammation and defense against pathogens or “alternatively
activated” (M2) to resolve inflammation, promote tissue repair, and suppress excessive
immune responses, reflecting their ability to influence immune modulation [105,106].

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous group of leuko-
cytes with the ability to suppress immune responses [107,108]. MDSCs originate from
myeloid progenitor cells [107,108]. Under certain pathological conditions, such as chronic
inflammation or cancer, MDSCs can undergo expansion and become an important compo-
nent of the immune cell population [107,108].

Finally, the literature highlights a pathogenetic role for some clusters of circulating
cells (CIC cells) [109]. CICs express different genetic markers (see previous reference), and
there is evidence that the loss of function of specific CIC populations is a contributing factor
in T1D [109,110].

3. A New Cell Candidate for Immune Regulation: The TR3-56

In 2020, we investigated the role of CD3+CD56+ regulatory T cells in the progression of
type 1 diabetes (T1D) [111]. We found that individuals with T1D had a significant reduction
in the number of CD3+CD56+ regulatory T cells compared to healthy individuals [111].
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Such an occurrence was associated with an increase in the activation and effector functions
of CD8+ T cells, which are known to contribute to the destruction of insulin-producing
beta cells in the pancreas [111]. The study also demonstrated that the reduced numbers of
CD3+CD56+ regulatory T cells correlated with disease progression in T1D patients. The
decline in these regulatory T cells was associated with increased insulin requirements,
indicating a worsening of the disease [111]. Overall, the study suggested that the loss of
CD3+CD56+ regulatory T cells contributes to the progression of T1D by allowing for the
activation and effector functions of CD8+ T cells. The findings highlight the importance
of these regulatory T cells in maintaining immune tolerance and controlling autoimmune
responses in T1D.

In this study, we also demonstrated that this CD3+CD56+ T regulatory subset [111] is
different from the NKT subset [78–85]. Specifically, CD3+CD56+ regulatory cells (i) are not
CD1d-restricted; (ii) do not express Valpha24/Vbeta11 chains but display a heterogeneous
V-beta repertoire; and (iii) are unable to kill K562 cells in vitro. In addition, (iv) only 1–5%
of CD1d-restricted T cells are positive for the CD56 molecule. We also demonstrated that
this CD3+CD56+ regulatory subset is genetically, metabolically, and functionally distinct
from the NKT subset [111].

We called this subset TR3-56 [111].
In addition, we investigated the role of bone marrow TR3-56 cells in patients with very-

low-risk/low-risk myelodysplastic syndrome (MDS) [112,113] according to the Revised
International Prognostic Scoring System (IPSS-R) [112,113]. MDS comprises a group of
blood disorders characterized by ineffective hematopoiesis and a consistent risk of leukemia
evolution [112]. We found that in patients with very-low-risk/low-risk MDS, there was
an inverse association between the number of TR3-56 cells and the activation and expansion
of bone marrow cytotoxic T cells [112,113]. Such evidence suggests that TR3-56 cells may
play a role in regulating the activity of cytotoxic T cells in the bone marrow. Furthermore,
the study showed that TR3-56 cells from MDS patients exhibited a regulatory phenotype and
were capable of suppressing the proliferation and activation of cytotoxic T cells [112,113].
This indicates that TR3-56 cells may have immunosuppressive functions in the bone marrow
microenvironment, as we previously described for Tregs [114]. Indeed, the imbalance be-
tween TR3-56 cells and cytotoxic T cells in the bone marrow of very-low-risk/low-risk MDS
patients may contribute to the immune-mediated elimination of healthy hematopoiesis,
affecting MDS pathogenesis. On the other hand, an increased number and activity of TR3-56
cells could contribute to the generation of an immune-suppressed microenvironment in
high-risk MDS, which may contribute to the progression of acute leukemia [112,113].

Moreover, we also described the role of TR3-56 in chronic lymphocytic leukemia (CLL)
with stable disease [115]. We observed that the Treg and TR3-56 percentages decreased when
evaluated in the context of total lymphocytes. However, when specifically analyzed in
the T cell compartment alone, the Treg and TR3-56 percentages decreased in CLL subjects.
Furthermore, the absolute number of circulating Treg and TR3-56 cells is significantly higher
in CLL patients than in healthy controls. Since lymphocytes are mainly composed of B
cells in CLL patients, the small percentage of T cells within the lymphocyte compartment
appears to exhibit a preferential expansion of the Treg and TR3-56 regulatory cell subsets as
a possible immune escape mechanism [115].

The role of TR3-56 cells in the regulation of immune response in specific contexts such
as diabetes, cancer, or MDS opens a new scenario towards the possibility of individuating
possible molecular targets on these cells to tune the control that this cell subset exerts over
the immune system (Figure 1).

For instance, diabetes represents a typical disease for which an effective therapy
has not been precisely identified, considering that insulin administration per se does
not preserve organs and tissues from the pathological consequences of a hyperglycemic
environment [116–118]. Indeed, focusing on the role of TR3-56 cells in their modulatory
action over CD8+ cytotoxic lymphocytes could represent a favorable target to keep the
self-destruction of pancreatic cells releasing insulin under control. The identification
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of specific targets/pathways on these cells could lead to the generation of monoclonal
antibodies or small synthetic molecules able to intervene in the treatment of diabetes, better
controlling the disease progression and allowing for second-organ preservation. Similarly,
this approach could be pursued in the fields of cancer and MDS.
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4. Previous Observations on CD3+CD56+ Co-Expressing T Cells in Cancer
Immune Surveillance

Several studies in recent decades have detected a T lymphocyte population co-expressing
CD3+CD56+ molecules, often defining it as NKT-like cells, giving a confusing and non-
definitive characterization of the phenotype and role of these cells. CD3+CD56+ T cells are
increased in the peripheral blood of patients with solid tumors [119,120]. Such immune
cells have been observed in women undergoing in vitro fertilization treatments [121].
A role for CD3+CD56+ T cells has been reported in the pathogenesis of non-alcoholic fatty
liver disease [122] and in the development of allergic and autoimmune disorders [123].
Several studies have evaluated the contribution of the CD3+CD56+ T cell population in
the pathophysiology and evolution of hematological malignancies: CD3+CD56+ T cell
dysfunction has been hypothesized to contribute to the failure of the host immune response
against leukemic blasts in acute myeloid and acute lymphocytic leukemia patients [124];
CD3+CD56+ T cells are expanded in the bone marrow of patients with chronic myeloid
leukemia (CML) [125] and are decreased in CML patients treated with tyrosine kinase
inhibitors [126]; and a higher proportion of CD3+CD56+ lymphocytes has been revealed in
lymph nodes affected by large B cell lymphoma [127].

Overall, all these data reveal a general increase in the number of CD3+CD56+ T lym-
phocytes in cancer patients without addressing a possible explanation for this phenomenon.

Therefore, it is legitimate to argue that the current knowledge does not allow a defini-
tive understanding of these cells. However, a more extensive phenotypic and functional
characterization of all the lymphocyte subtypes co-expressing CD3 and CD56 represents
the only approach to determining their role and possible involvement in effector and/or im-
mune regulation mechanisms. In this regard, our original and pioneering research on TR3-56
cells in the TD1, MDS, and CLL models revealed the phenotypic and functional characteris-
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tics of this distinct subpopulation of CD3+ CD56+ T cells, highlighting its distinctiveness in
immunoregulation [111–114].

Nonetheless, it is currently not possible to exclude that CD3+CD56+ cell phenotypes
are more numerous or that plastic elements may influence their functions.

5. Conclusions

The immune response is ultimately the result of a balance between activation and
inhibition; the success and/or failure of the immune response depends on a set of ge-
netic/epigenetic factors and an array of molecules, cells, and tissue microenvironments
involved in both activating and inhibitory mechanisms of immune regulation (Figure 2).
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Figure 2. Simplified immune plasticity network. Pathogens activate the innate and adaptive immune
effector cells (dendritic cells, DCs; natural killers, NKs; T and B cells) that induce pathogen neutral-
ization during the immune activation phase. However, immune activation could also exert potential
immune-mediated damage as a sort of side effect. The immune regulation phase (T regulatory cells,
Tregs; Type 1 regulatory cells, Tr1s; T helper 3 cells, Th3s; natural killer T cells, NKTs; B regulatory
cells, Bregs; T CD3+ CD56+ regulatory cells, TR3-56 cells; transforming growth factor beta, TGF-β;
interleukin 10, IL-10) modulates immune activation and avoids immune-mediated damages.

The knowledge of all the mechanisms involved in immune regulation is not yet
definitive, and, probably, the overall picture is much broader than what has been described
in the scientific literature so far. Given the plasticity of the immune system and the diversity
of organisms, it is highly probable that numerous other cells and molecules are still to be
ascribed to the immune regulation process.

Therefore, it cannot be excluded that other factors and cells other than those reported
in this review should be taken into consideration to fully understand the complex harmony
between the activation and inhibition of the immune system.

At the same time, it is equally probable that some current knowledge about the role
of cells that have hitherto been specifically described as immunoregulatory might need to
be revised. Such cells might have different, broader, and more plastic roles in the complex
balance between the activation and inhibition of innate and adaptive immune responses.

In this complex framework, it appears highly compelling to propose to the scientific
community the investigation of some “new cells”, such as TR3-56, in their role as immunoreg-
ulatory cell populations, contributing to deepening our knowledge of the immune system
and its plastic and dynamic complexity.
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