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Abstract: Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese
(BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being
characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical
consequence. Importantly, this pathological tissue expansion is associated with many alterations in
the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical,
and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular
disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling
cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent
signaling between adipocytes and endothelial cells is discussed in the context of the development
and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and
cardiovascular disease.
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1. Introduction

Obesity is a complex phenomenon involving the accumulation of excess body fat.
While there are genetic, behavioral, environmental, and hormonal influences on the devel-
opment and progression of obesity, the basis of the disease lies in the premise of caloric
excess, with this surplus being stored as triacylglycerols within adipose depots [1]. The
prevalence of obesity has been continuously increasing, with approximately 42% of Amer-
icans being considered obese (body mass index (BMI) ≥ 30) and 9.2% being considered
morbidly obese (BMI ≥ 40) between 2017 and 2018 [1,2]. With obesity being characterized
as a chronic low-grade inflammatory disease, there are many alterations in the cellular
populations within the tissue, lending to cellular, paracrine, mechanical, and metabolic
alterations that have local and systemic effects, including cardiovascular and metabolic
diseases. In particular, vascular dynamics shift during the progression of obesity, providing
signaling cues that drive metabolic dysfunction [3].

Adipose tissue has a high degree of plasticity, whereby it can accommodate normal
fluctuations in the body’s energy intake and demand by regulating tissue size. Adipose
tissue can expand either through adipocyte hypertrophy or hyperplasia, and it can shrink in
a state of fasting or exercise in order to supply the necessary free fatty acids to other organs.
This shrinkage occurs through a lipolytic mechanism, where triacylglycerols are broken
down into free fatty acids and glycerol. Adipocyte hypertrophy, the growth of adipocyte
cell size, occurs through lipogenesis; this converts free fatty acids into triacylglycerols,
which are stored within the cell’s lipid vacuole. Adipocyte hyperplasia occurs through
the recruitment and differentiation of adipose-derived stem cells and preadipocytes into
new adipocytes, thus increasing the overall adipocyte number. A unique feature of adi-
pose tissue is the coordination between angiogenesis and adipogenesis with adult stem
cells [3–5]. By modulating the vascularity of the tissue, the overall quantity of fat mass can
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be regulated [6]. For example, Rupnick et al. showed that angiogenesis inhibitors induced
endothelial cell apoptosis, which resulted in adipose tissue regression and weight loss in
ob/ob mice [7].

As demonstrated in Figure 1, with progressive obesity, there is a reduction in the quan-
tity of adipogenic stem cells and an impairment in adipogenesis, resulting in hypertrophic
lipid accumulation [8,9]. As a result, the uncontrolled adipocyte expansion reduces the
overall capillary density (rarefaction) within the tissue, limits the diffusion of nutrients and
oxygen, and creates a hypoxic and proinflammatory environment [6,9–12]. Epidemiological
studies have shown that subcutaneous adipocyte cell size is negatively correlated with
insulin sensitivity [8,13–15]. Additionally, these hypoxic, hypertrophic adipocytes are more
likely to become necrotic, contributing to a cycle of hypoxia, cell death, and inflamma-
tion [16]. With the influx of inflammatory cells, including macrophages, into obese adipose
tissue, cells within this environment, including adipocytes and endothelial cells, start to
behave aberrantly, communicating with neighboring cells and their environment through
paracrine- and matrix-derived signals, including inflammatory cytokines, adipokines, and
vasoregulators [17]. In this review, paracrine-, autocrine-, and matrix-dependent signaling
between adipocytes and endothelial cells is discussed in the context of the development
and progression of obesity and its consequential diseases.
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Figure 1. Cellular and functional differences in lean and obese adipose tissue. (A) Lean adipose
tissue displays functional adipocytes that maintain a homeostatic balance of lipolysis and lipogenesis
and is sufficiently vascularized to maintain the nutrient supply required for adipose tissue. (B) Obese
adipose tissue is characterized by hypertrophic adipocytes that have a lower capillary density to
supply the necessary nutrients, resulting in a hypoxic and proinflammatory environment.
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2. Paracrine Signals Involved in Obesity

In response to sustained hypoxia due to hypertrophied adipocytes, resident macrophages
undergo a phenotypic switch toward an M1 phenotype. There is then the further recruitment
and infiltration of circulating monocytes that are then directed toward this proinflammatory
phenotype [18]. These macrophages are notorious for their pernicious cytokines, including
Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF). These potent molecules run rampant in
obesity, having direct adverse effects on the adipocyte niche, as well as on the stromal vascular
fraction, as summarized in Table 1. Additionally, these two cytokines are primary regulators for
the release of other adipokines and vasoregulators, as noted in Figure 2, including adiponectin,
leptin, nitric oxide (NO), and endothelin-1 (ET-1).

2.1. Inflammatory Cytokines

TNF is synthesized as a transmembrane protein that presents on the cell surface [19].
Upon cleavage by the TNF-converting enzyme, the soluble form of TNF is shed from the cell
surface [19,20]. While transmembrane TNF is prevalent on obese adipocytes, the primary
producers of soluble TNF are preadipocytes and macrophages within obese tissue [19].
Clinical studies have shown that individuals with obesity have increased levels of TNF-α
in their sera and that these levels decrease with weight loss [21].

The implications of this chronic TNF elevation in adipose tissue during obesity have
been studied in vitro through the addition of soluble TNF to the tissue’s cellular con-
stituents, including adipocytes, preadipocytes, and endothelial cells. TNF has been shown
to be a lipolytic stimulant of adipose cells cultured in vitro, including adipocytes and
preadipocytes [22,23]. Additionally, Weiner et al. found that 3T3-L1-derived adipocytes
dedifferentiated and subsequently upregulated transforming growth factor-β (TGF-β) se-
cretion in the presence of 5 nM TNF [24]. This further resulted in the upregulation of
extracellular matrix secretions, including collagen types I, III, and IV [24]. This transdif-
ferentiation phenomenon was similarly seen when preadipocytes cultured with TNF-α
experienced preferential differentiation toward a macrophage-like phenotype, as indi-
cated by the expressions of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF),
Interleukin-1β (IL-1β), Macrophage Inflammatory Protein-1α (MIP-1α), TNF-α, CD68, and
matrix metalloprotease 3 (MMP3) [25–27].

The development of endothelial dysfunction has been reported to occur as a result of
adipose-tissue-derived TNF. Upon incubation with obese adipocyte-derived infranatant,
human umbilical vein endothelial cells (HUVECs) significantly upregulated their VCAM-1,
ICAM-1, and E-selectin receptors in a TNF-dependent manner [28]. Not only do these
endothelial cells become more receptive to inflammatory cells in response to TNF, but
they also begin to have a more proinflammatory secretome, as signified by the secretion
of IL-8, MIP-1β, MIP-3α, Monocyte Chemoattractant Protein-1 (MCP-1), and IL-6 [29,30].
Finally, Haynes et al. identified the occurrence of endothelial-to-mesenchymal transition
in obese adipose tissue, as indicated by the colocalization of CD31 and α-SMA in the
capillaries of obese adipose tissue [31]. This phenomenon was also seen when healthy
adipose-tissue-derived endothelial cells were exposed in vitro to either TNF, TGF-β, or
IFN-γ. These endothelial cells exposed to inflammatory signals underwent this transition
to obtain a mesenchymal-like phenotype, where they were unable to maintain tight barriers
in the culture, had enhanced migration and reduced angiogenesis, released proinflamma-
tory extracellular vesicles, and experienced reductions in oxidative phosphorylation and
glycolysis [31]. It is apparent that there is potential for the inflammatory signal TNF to
induce both local and systemic effects.

However, the role of TNF in the initiation of insulin resistance remains unclear. While
TNF secretion has been speculated to be involved in the initiation of insulin resistance [32],
much of the research has been performed in high-fat diet-fed animals [33] or with differen-
tiated murine cells lacking cellular interactions [34], both of which do not mimic human
physiology or pathophysiology. Human adipocytes in co-culture with stromal vascular
cells (endothelial cells, stem cells, and pericytes [35]) responded to TNF stimulation with
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an increase in glucose uptake [36]. Despite the positive correlations found between plasma
TNF levels and peripheral insulin resistance, the neutralization and antagonization of TNF
have not been shown to improve insulin resistance in humans [37–39].
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Figure 2. Paracrine, autocrine, and matrix signaling present in adipose tissue. Adipose tissue
contains many subpopulations of cells, including inflammatory cells, stem cells and progenitors,
and endothelial cells, which are in constant communication with each other and their surroundings.
These signals occur in the following contexts: (1) Inflammatory cytokines, including IL-6 and TNF,
tend to be abundantly present in obese adipose tissue. These cytokines stimulate a proinflammatory
cascade in both adipocytes and the vasculature while also stimulating dedifferentiation within both
adipocytes and endothelial cells. (2) Adipokines, leptin, and adiponectin are readily released from
adipocytes but act in both an autocrine and paracrine manner, and leptin, a cytokine upregulated in
obese adipose tissue, induces the production of reactive oxygen species in endothelial cells while
affecting the proliferative capacity and adipogenicity of adipose precursor cells. (3) Vasocrine factors,
including vasoconstrictors and vasodilators, are released by both adipocytes and endothelial cells to
regulate vascular tone while also altering adipocyte functionality. (4) Matrix-regulating molecules are
released by adipocytes and endothelial cells to alter the microenvironment of adipose tissue.
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While TNF-α acts locally, adipose-derived interleukins have metabolic and inflam-
matory effects both locally and systemically [40,41]. Interleukins are cytokines largely
secreted by leukocytes, but, more recently, they have been found to both be produced
by and act upon adipose-specific cells, including adipose stem and progenitor cells [42].
Composed of close to 50 different interleukins, this family of cytokines plays a crucial role
in regulating both the innate and adaptive immune systems, as well as in both metabolic
and regenerative processes [40,43]. For more information regarding the breakdown of these
adipose-relevant interleukins, please refer to the following review articles: [43,44].

It is well-documented that IL-6 secretion is upregulated in obesity, with positive
relationships being found between adipose tissue mass, adipocyte cell size, and IL-6
secretion [45–49]. This proinflammatory cytokine induces effects on adipocytes similar to
those of TNF, including lipolytic stimulation and leptin secretion [22,46,50]. Importantly,
this cytokine has been found to be strongly positively correlated with the amount of non-
esterified free fatty acids in the serum and negatively correlated with whole-body insulin
sensitivity, showing the detrimental effects of this cytokine [45].

Many cells, including adipocytes, macrophages, and endothelial cells, both secrete
and respond to IL-6, giving them autocrine, paracrine, and endocrine effects [46,51,52].
However, the cellular origin of the cytokine determines the effect that it has within adipose
tissue. Han et al. used IL-6 knockout mice to study the source-specific role of IL-6 in
the development of obesity. Here, it was found that adipocyte-derived IL-6 promotes
high-fat diet-induced adipose tissue inflammation, while myeloid-derived, adipocyte-
targeted IL-6 prevents adipose tissue macrophage accumulation and improves glucose
and insulin tolerance through the canonical pathway [48]. Further, it was found that these
differential responses are determined by the signaling pathway that they go through. The
classical signaling pathway is conducted through the membrane-bound IL-6 receptor (IL-
6R) and is characterized by PI3K-Akt and ERK 1/2 activation, resulting in anti-inflammatory
responses [43,48,53]. It is also possible for signaling to go through the trans-signaling
pathway, which depends on the ADAM 10/17-cleaved, soluble IL-6 receptor, which then
activates the STAT3 pathway if the soluble form of the IL-6 receptor is present [54]. This
IL-6 trans-signaling pathway has proinflammatory results [43,48,53].

Cytokines IL-1, TNF, and IFN-γ have been shown to stimulate IL-6 release from
HUVECs [55]. However, this stimulated IL-6 did not have an autocrine effect despite the
known presence of an IL-6R on endothelial cells [54,55]. By culturing endothelial cells with
or without IL-6 or IL-6+soluble IL-6R, Montgomery et al. was able to observe the differential
effects of the classical signaling and trans-signaling in endothelial cells [54]. The activation
of the classical pathway in endothelial cells results in the inhibition of cell death induced
via serum deprivation, but the activation of the trans-signaling pathway encourages the
secretion of proinflammatory cytokines, such as MCP-1, and the upregulation of monocyte
adhesion molecules on endothelial cells [54].
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Table 1. Prominent signaling molecules in adipose tissue.

Signaling Molecule Physiological Role in Adipose Tissue Obese State Regulation Citation

Inflammatory
Cytokines

TNF
Involved in immunity
Regulates the functions of immune cells,
but is found in low levels

Increase in TNF in obesity
Stimulates:
Adipocyte lipolysis
Leptin production
IL-6 secretion
Plasminogen Activator Inhibitor-1 (PAI-1)
biosynthesis
ROS production
Activates NFκB
Inhibits adipocyte differentiation

Triggered through adipocyte
cell death [10,19,25,46,56,57]

Interleukins

Classical signaling through the IL-6
canonical pathway is anti-inflammatory
and regulates glucose and insulin
sensitivity
IL-10 is a more prominent interleukin in
lean adipose tissue

IL-1β, IL-6, and IL-8 increase adipose inflammation
during obesity
IL-6 induces lipolytic stimulation and leptin
secretion from adipocytes through the
trans-signaling pathway while upregulating MCP-1
secretion from endothelial cells that then upregulate
their expression of monocyte adhesion molecules

Cellular source of IL-6
production regulates
response
Endothelial cells release IL-6
in response to TNF, IFN-γ,
and IL-1

[10,46,54,58–60]

Interferons

A balance in pro and anti-inflammatory
interferons is maintained in order to
properly identify and combat invading
viruses. This is done through
communication between the immune
system and the target cells.

Type 1 interferons are upregulated through
obesity-derived metabolic endotoxemia.
Lipopolysaccharide (LPS) stimulates the production
of IFN-β in mouse adipocytes
Type II interferon, IFN-γ, is upregulated in obesity
due to the influx of IFN-γ-secreting T cells in obese
adipose tissue
Promotes both a local and systemic inflammatory
network between immune cells, adipocytes, and
endothelial cells

Adiponectin limits IFN-γ
release from CD4+ T cells [61–64]

MCP-1
Chemokine that is secreted by both
immune and non-immune cells to attract
monocytes/macrophages into the tissue

Increased circulating levels in individuals with
obesity
Adipocyte progenitors secrete MCP-1 to promote
M1 macrophage accumulation in adipose tissue
Induces endothelial apoptosis in vitro, thus
promoting atherosclerosis

Secreted upon injury or ROS
exposure
Regulated by TNF and
trans-IL-6 signaling
Insulin-responsive gene

[25,27,54,65–70]
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Table 1. Cont.

Signaling Molecule Physiological Role in Adipose Tissue Obese State Regulation Citation

Adipose Hormones

Leptin

Produced by adipose tissue and the
stomach but acts on the central nervous
system (hypothalamus) in order to
regulate satiety.

Increase in leptin production alongside an increase
in fat mass
Chronic hyperleptinemia can result in leptin
resistance and atherogenic consequences
Induces SPARC and collagen II and IV expressions
and increases profibrotic signaling

Regulated by insulin and
steroids [71–74]

Adiponectin

Encourages angiogenesis through the
upregulation of Vascular endothelial
growth factor (VEGF)-A, MMP-2 and
MMP-9
Regulates glucose and lipid homeostasis
and maintains insulin sensitivity

Reduced in obesity

Regulated by peroxisome-
proliferator-activated
receptor (PPAR)-γ ligands
Inhibited by endoplasmic
reticulum stress and
proinflammatory cytokines

[75–84]

Vasoconstrictor Endothelin-1
Endothelial cells release ET-1 in response
to low shear stress and hypoxia to
increase blood flow

ET-1 elevation in obesity resulting in vascular
vasoconstriction and increased vascular
permeability, adipocyte lipolysis, insulin resistance
and endothelial inflammation, and perivascular
fibrosis
Can increase reactive oxidative species (ROS)
production

Regulated by
blood flow, leptin, and insulin [85–88]

Vasodilator Nitric Oxide

Adipose-derived nitric oxide inhibits
lipolytic activity and promotes
endothelial relaxation and vasodilation
Adiponectin stimulates NO production

NO is reduced in obesity through TNF-mediated
destabilization and free fatty acid (FFA) inhibition
of NOS3 phosphorylation
Increased ROS will quench NO

ROS
FFA
TNF

[89,90]

Serpin (serine
protease inhibitor) PAI-1 Induces fibrinogenesis by suppressing

intravascular fibrinolysis

Marked increase in PAI-1 in individuals with
obesity and diabetes (positive correlation with
insulin resistance)
When released into the blood stream, it negatively
impacts vascular metabolism
Fibrinolytic activities decrease in individuals with
obesity individuals. Sustained impairment
accelerates atherosclerosis

TNF
TGF-β1
and Angiotensin II promote
PAI-1 production in
adipocytes and stromal cells
Insulin responsive

[25,79,91–93]
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Table 1. Cont.

Signaling Molecule Physiological Role in Adipose Tissue Obese State Regulation Citation

Growth Factors

VEGF

Secreted by endothelial cells and
adipocytes
Acts as a chemotactic factor
VEGF-A increases vascularization
VEGF-B controls endothelial uptake of
fatty acids

Suggestions of a positive VEGF correlation with
BMI in humans
Dysfunctional VEGF signaling results in impaired
vascularization, increased vascular permeability,
and endothelial dysfunction in individuals with
obesity

SPARC regulates VEGF in
individuals with diabetes
Leptin modulates VEGF-A
expression

[10,79,83,94–98]

PDGF

Involved in angiogenesis and
developmental adipogenesis
ASCs become pro angiogenic in response
to Platelet-derived growth factor (PDGF)

M1 macrophages overexpress PDGF-B during
obesity
PDGF-B induces proliferation and migration of
aortic smooth muscle cells in vitro, which results in
the thickening of the artery
Myofibroblast mitogen that contributes to adipose
fibrosis

Stromal-cell-derived factor 1
Positively regulated by IL-1β
and TGF-β1

[99–105]

TGF-β Regulates the rate of adipogenesis

TGF-β1 and TGF-β3 increase and can cause
mesenchymal transitions and dedifferentiation
during obesity
These isoforms increase basement membrane
production, crosslinking, and inflammatory
cytokine production in both adipocytes and
endothelial cells

TNF can promote TGF-β
secretion in differentiated
adipocytes

[24,31,106,107]
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2.2. Adipokine Secretion

There are several proteins produced by adipose tissue that function to regulate its
energy balance. Leptin works through the central nervous system in order to regulate sati-
ety [108]. This peptide hormone is primarily released from adipocytes, indicating that the
amount in circulation has a positive correlation with the fat mass of the individual [109,110].
In obesity, where there is an elevated triacylglycerol level and an increased fat mass, leptin
is elevated [72]. In healthy individuals, leptin works through the hypothalamus to reduce
hunger, but in obesity, leptin resistance is not uncommon [111]. An individual with leptin
resistance expresses a lack of satiety, resulting in further over-consumption and an increase
in total body mass [112]. This hyperleptinemia that occurs in obesity has adverse cellular
effects and has been implicated in the development and progression of atherosclerosis by
stimulating the production and accumulation of ROS from endothelial cells [73,113,114].

It has been shown that many cells express the leptin receptor. Unsurprisingly, the
paracrine effects of leptin are seen within the immune system, within the vasculature, and
within the adipose lineage itself [115,116]. Importantly, leptin regulates the adipogenic-
ity and insulin sensitivity of both adipose stem cells and adipocytes through Pre-B-cell
leukemia homeobox (Pbx)-regulating protein-1 (PREP1). Notably, the administration of
leptin on adipocytes and adipose stem cells reduced PREP1 while increasing TLR4 to limit
the adipogenicity [116]. Leptin has been shown to have biphasic effects on preadipocyte
and stromal vascular fraction (SVF) proliferation, with lower concentrations promoting
proliferation but higher concentrations reducing proliferation [117].

It is known that insulin regulates the release of leptin from adipocytes; however,
the effects remain inconsistent. When treated with 100 nM insulin, rat explants and
rat-isolated adipocytes experienced a 30–50% reduction in leptin secretion, dependent
upon co-treatment with steroids, dexamethasone or hydrocortisone, which elevated leptin
secretion [118]. However, Wabitsch found a stimulatory dose-dependent response of insulin
on leptin release from differentiated human adipocytes [71], and this was substantiated
when 100 nM of insulin was administered to isolated adipocytes, resulting in a 10-fold
increase in the secretion of leptin [119]. Further, Kolaczynski found that insulin did not
stimulate leptin production acutely; however, over time, insulin increased the production
of leptin [120,121].

There are contradictory results surrounding the relationship between leptin and VEGF.
Morad et al. explored this relationship in the context of breast tissue and found that the
exogenous inhibition of VEGF resulted in a decrease in adipocyte-derived leptin but that the
inhibition of leptin did not alter VEGF secretion [122]. However, Nigro et al. showed that
the administration of leptin to HUVECs drastically inhibited endothelial tube formation and
cellular migration. This leptin administration was also shown to reduce VEGF-A, MMP2,
and MMP9 protein levels [83]. This leptin-derived vascular dysregulation was corroborated
by Cao et al. [123]. However, it was found that leptin induced angiogenesis and an increased
vascular permeability through the upregulation of VEGF and fibroblast growth factor-2
(FGF-2) [123]. Further, obese adipose tissue has an increased secretion of VEGF that results
in vascular smooth muscle proliferation, which contributes to vascular dysfunction [98].
However, this dysfunction has been shown to be ameliorated by the activity of adiponectin,
an adipokine abundantly present in healthy individuals and lowered with obesity [97].

Adiponectin has been shown to have positive effects on adipocyte differentiation,
promoting the more favorable hyperplastic growth rather than hypertrophic growth, and
to assist in insulin sensitization [124,125]. In healthy individuals, adiponectin also has
paracrine effects on both endothelial cells and macrophages. It has been demonstrated
that adiponectin protects endothelial cells from the adverse effects of TNF through the
inhibition of the NF-κB pathway [76]. For example, Kobashi et al. showed that adiponectin
inhibits Interleukin-8 (IL-8) synthesis through the inhibition of the NF-κB pathway [126].
Additionally, adiponectin reduces the recruitment and restricts the lycollysis of infiltrating
T cells, reducing obesity-induced adipose inflammation [63,127]. Individuals with obesity
experience a reduction in adiponectin, allowing for a more proinflammatory and insulin-
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resistant environment [84]. While it is apparent that adiponectin has protective effects that
contribute to insulin sensitization, the actions of adiponectin seem to be comparable to
those of insulin in regard to its ability to encourage vasodilation and increase blood flow
through its direct activation of endothelial nitric oxide synthase (eNOS), a regulator of
vascular tone [128].

2.3. Vasoregulators in Obesity

Vascular tone is regulated by a series of vasodilators and vasoconstrictors. Under
normal circumstances, these regulators work together to maintain homeostasis. However,
in obesity, dysfunctional and inflamed adipose tissue secretes proinflammatory adipokines
that impair normal vasoactivity, resulting in an imbalance in constrictors and dilators,
including endothelin-1 and nitric oxide, respectively [85,89].

The vasoconstrictor, endothelin-1, is primarily secreted by endothelial cells and acts
in both an autocrine and paracrine manner in adipose tissue, affecting both endothelial
cells and adipocytes [129]. In obesity, ET-1 tends to be elevated, resulting in vasoconstric-
tion, adipocyte lipolysis due to hormone sensitive lipase (HSL) phosphorylation, insulin
resistance, and endothelial inflammation [130–132]. Similarly, reactive oxygen species are
vasoconstrictors that exist as byproducts of aerobic metabolism [133]. It is well-founded
that these entities, including hydrogen peroxide, hydroxyl radicals, and superoxide anions,
induce cellular damage and inflammation [133,134]. The additional effects of ROS on the
vasculature include a surge in intracellular Ca2+, which results in vascular contraction, in-
creased permeability, and NO quenching, resulting in additional constriction [135]. Further,
TNF activates the generation of ROS in HUVECs while also inducing the transcription
of NF-κB and ERK 1/2 phosphorylation, which both upregulate ICAM-1 and VCAM-1
expressions on the endothelial surface to promote monocyte attachment, as previously
mentioned [28,136–138].

Human adipose tissue expresses several enzymes responsible for the production of
NO, a paracrine molecule whose primary function is to mediate endothelial relaxation,
including membrane-bound eNOS and cytoplasmic inducible NO synthase (iNOS) [139].
It has been suggested that NO production in adipose tissue promotes the differentiation
of adipose preadipocytes through the upregulation of PPARγ but that it also inhibits both
basal- and catecholamine-stimulated lipolysis in subcutaneous tissue [140–142]. However,
the bioavailability of NO is reduced during obesity. This occurs due to either TNF-mediated
destabilization, the FFA-mediated inhibition of NOS3 phosphorylation, or through ROS-
mediated quenching [89,90]. More explanation on this can be found in Sansbury et al.’s
review on the subject [90]. As a consequence, this reduction in nitric oxide results in
impaired vasodilation and tends to have pro-hypertensive effects [143].

Adiponectin has also been shown to be released from healthy perivascular adipose
tissue and to travel trans-luminally in order to stimulate nitric oxide production and
encourage the vasodilation of blood vessels [76,82,134]. However, this vasodilatory activity
is inhibited in obese perivascular adipose tissue (PVAT), with low levels of adiponectin
being correlated with impaired vasodilation [144]. Similar phenotypes were seen when
an exogenous adiponectin blocker, a NO synthase inhibitor, TNF, and IL-6 were applied
to healthy PVAT+vessels, indicating the role of inflammation and free radicals in PVAT-
induced endothelial contractility [134]. This protective paracrine role of adiponectin on
endothelial cells has been further shown to prevent the detrimental inflammatory activity
of TNF on endothelial cells, as previously discussed [75,76].

3. Extracellular Matrix Remodeling during Obesity

Filamentous actin (f-actin) is the primary cytoskeletal filament that provides struc-
tural integrity within most cells. As an adipose progenitor cell matures into a unilocular
adipocyte, there is a normal reduction in the filamentous actin to accommodate intracellu-
lar lipid storage. However, one characteristic of mice fed a high-fat diet was the massive
increase in f-actin, actin polymerization machinery, and Rho Kinase activity in adipocytes
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that resulted in a reduction in insulin sensitivity, indicating that the mechanical stretch of
the cell was transduced toward a pathological phenotype [13,145].

In order to accommodate cell size fluctuations, the tissue’s extracellular matrix (ECM)
will dynamically remodel and allow for cell and tissue expansion, with healthy subcuta-
neous and omental adipose tissue expressing elevated levels of enzymes involved in ECM
remodeling [146]. However, it has been shown that a consequence of obesity is a gradual
accumulation of ECM. Henegar et al.’s transcriptomic analysis indicated that the chronic
inflammation that occurs in obesity encourages macrophages to stimulate ECM produc-
tion from neighboring pathological preadipocytes [147]. This ECM regulates the further
expandability of the tissue, as well as nutrient diffusion to the cells, and future angiogenesis.

With the pericellular fibrosis of adipocytes and the vasculature being a consequence
of obesity, Reggio et al. investigated both the composition and quantity of basement
membrane proteins in the endothelial cells and adipocytes from lean, obese, and morbidly
obese subcutaneous adipose tissue [106]. Here, it was found that both isolated endothelial
cells and adipocytes express common basement membrane components, such as collagen
IV and laminin; however, it was also found that adipocytes displayed more Heparan
Sulfate Proteoglycan 2 (HSPG2/Perlecan) and Secreted Protein, Acidic, Rich in Cysteine
(SPARC) than endothelial cells [106]. This suggests the existence of more crosslinks in the
adipocyte matrix [148]. Further, TGF-β1 and TGF-β3 isoforms were upregulated alongside
all basement membrane proteins in cellular fractions from individuals with obesity. The
treatment of lean adipocytes and endothelial cells with these recombinant isoforms resulted
in the upregulation of both inflammatory- and ECM-related genes, including, PAI-1, TGF-
β1, connective tissue growth factor (CTGF), IL-6, collagen VI, SPARC, and lysyl oxidase
(LOX). This indicates the involvement of both adipocytes and endothelial cells in the
thickening of their respective basement membranes and releasing pro-fibrotic stimuli
during obesity [106]. For further implications, please see our recent review on coordinated
ECM remodeling, angiogenesis, and adipogenesis [149].

To corroborate the finding that basement membrane components derived from adipocytes
and endothelial cells serve as pro-fibrotic stimuli, Kos et al. found positive correlations with
SPARC levels and adipose fibrosis and metabolic dysfunction [150]. It was shown that leptin
induces SPARC expression in adipose tissue and that SPARC expression was then correlated
with IL-6 and fasting insulin levels [150]. SPARC has also been shown to further retinopathy in
individuals with diabetes by interacting with VEGF and PAI-1 in endothelial cells [151]. In a 3D
in vitro vasculature model, leptin was also shown to have profibrotic effects, indicated by the
upregulation of collagens II and IV and the downregulation of MMPs 2 and 9 [28,80]. These
pro-fibrotic effects were mitigated with the simultaneous addition of a counteracting adipokine,
adiponectin (which is downregulated in obesity) [80]. This perivascular fibrosis has been shown
to occur in individuals with obesity, where Spencer et al. showed that individuals with obesity
have 58% less CD31-positive capillaries that were surrounded by more collagen V and less
elastin [152]. Further, with the addition of collagen V to an HUVEC culture, angiogenesis was
inhibited [152].

These matrix and paracrine alterations that occur in adipocytes and the vasculature
during obesity can have severe implications if weight loss measures are not taken and the
condition of low-grade inflammation is not resolved. Sasso et al. found an association
between the adipose tissue elastography measurements on individuals with obesity taken
prior to bariatric surgery and their degree of pericellular fibrosis, indicating the prominence
of tissue stiffening and fibrosis in these same individuals [153]. These alterations also play a
role in the development of obesity-induced comorbidities, including metabolic dysfunction
and hypertension [154,155].

4. Obesity-Related Comorbidities: The Role of Adipose Tissue

It has been shown that the state of adipose tissue influences the behavior of endothe-
lial cells, with obesity inducing endothelial dysfunction and interrupting the homeostatic
paracrine signaling that occurs within healthy tissue [82]. It has also been indicated that
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endothelial cells from subjects with obesity tend to disrupt adipocyte function through
the inflammatory signaling of IL-6 and IL-1β when co-cultured in vitro [156]. These obese
endothelial cells reduced insulin sensitivity and lipolytic function of the adipocyte [156].
It is apparent that the crosstalk between cells in the obese state promotes a cycle of com-
pounded inflammation that leads to other comorbidities, including cardiovascular disease
and diabetes.

Adipose tissue has continuous capillaries with endothelial cells that form tight junc-
tions and a persistent basement membrane in order to closely regulate the transport of
molecules [157]. When dysfunctional, endothelial cells have an increased permeability
and cause arterial stiffening. If endothelial dysfunction persists, there is a continuation
of oxidative stress that leads to the elevation of ET-1, the reduction of NO, and the cycle
of proinflammatory cytokines [89,158,159]. This impaired vasocrine signaling is charac-
terized by the imbalance of vasoconstricting, and the released vasodilatory factors con-
tribute to a proatherogenic and prothrombotic environment. The clinical implications
of obesity-derived endothelial dysfunction include the development of atherosclerosis
and hypertension.

Atherosclerotic lesions result from the deposition of fat into the artery walls, the
infiltration of macrophages, and the successive development of macrophage foam cells.
Notably, atherosclerosis may be accelerated by obese adipose tissue in both direct and
indirect manners. It has been shown that the adipokine resistin happens to be elevated in
obesity [160]. When applied to endothelial cells in vitro, this adipokine was observed to
upregulate the expression of the monocyte chemoattractant chemokine, as well as mono-
cyte adhesion proteins, while also increasing the production of ET-1 [161]. Additionally,
adipocyte-derived inflammatory cytokines, including IL-6 and TNF, may have similar
endothelial dysregulation effects that stimulate the development and progression of an
atherosclerotic plaque [162]. In this regard, there is a direct pathological process that
provokes inflammatory cell infiltration and lipid deposition [163–165]. Further, when an
individual is obese, there is more tissue to supply blood to. Thus, the body attempts to
increase blood flow in order to support the increased tissue mass, coinciding with arterial
stiffening and chronic vasoconstriction and resulting in an elevated arterial blood pressure,
also referred to as hypertension [143,166]. This condition can, in turn, result in exacerbated
arterial stiffening, and, in conjunction with other obesity-related comorbidities, such as
atherosclerosis, it can result in heart disease and/or thrombosis.

Moreover, the concomitant development of adipose fibrosis during obesity can result
in detrimental metabolic consequences, including the deposition of ectopic lipids in other
organs and insulin resistance [167–170]. Several review papers have delved into the current
mechanistic understanding of the development and progression of adipose tissue fibrosis
and its relationship with insulin resistance [152,169,171]. Briefly, DeBari et al. discussed the
contribution of chronic hypoxia and inflammation to adipose fibrosis [169]. While hypoxia
typically encourages angiogenesis as a normal homeostatic response, the vasculature fails
to appropriately expand in obese adipose tissue, reducing capillary density and prolonging
hypoxia. Further, pathological angiogenesis is a notable characteristic and consequence of
insulin resistance. This insulin resistance is characteristic of Type 2 Diabetes, leading to ele-
vated blood glucose, which furthers endothelial damage and impairs angiogenesis through
ROS and advanced glycation end-product (AGE)-mediated complications [12,172,173]. The
chronic damage to adipose tissue and its vascular supply results in a cyclical deterioration
requiring urgent intervention.

5. Conclusions

Here, we lay out the current research into the paracrine-, autocrine-, vasocrine-, and
matrix-dependent signaling that occurs between adipose tissue and its vasculature in the
development and progression of obesity and its consequential diseases. Throughout the
progression of obesity, there is an infiltration of inflammatory cells, including monocytes,
macrophages, and T cells, that then drive a cycle of local and systemic inflammation [18].
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Upon infiltration, proinflammatory signals, including TNF, interleukins, and interferons,
promote the transdifferentiation of both adipocytes and endothelial cells into mesenchymal,
pro-fibrotic cells that then sustain local inflammation [24,31]. Additionally, the dysregu-
lation of adipose-specific hormones, leptin and adiponectin, in obese adipose tissue has
been shown to have atherogenic and fibrotic consequences by stimulating the production
of ROS and pericellular collagen, respectively [73,74,174]. With cardiovascular disease and
adipose fibrosis developing concomitantly with obesity, it is important to investigate these
interactions between adipocytes, the vasculature, and their surrounding matrix. There
are still many unknowns regarding this complex communication; for example, there is
evidence to suggest an adipocyte-dependent signaling loop revolving around leptin and
VEGF; however, the directionalities of autocrine and paracrine activities have yet to be
fully elucidated. Further, it has yet to be determined how vascularization impacts adipose
fibrosis and metabolic dysfunction in humans. It is imperative that future research expands
on these relationships in order to identify adipose-tissue-related therapeutics.
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Abbreviations

BMI Body Mass Index
PVAT Perivascular adipose tissue
IL Interleukin
PDGF Platelet-derived growth factor
VEGF Vascular Endothelial Growth Factor
TNF Tumor Necrosis Factor-α
MCP-1 Monocyte Chemoattractant Protein-1
ROS Reactive oxidative species
NO Nitric Oxide
ET-1 Endothelin-1
MMP Matrix Metalloproteinase
GM-CSF Granulocyte-Macrophage Colony Stimulating Factor
IL-1β Interleukin-1β
MIP-1α Macrophage Inflammatory Protein-1α
HUVECs Human umbilical vein endothelial cells
NFκB Nuclear factor kappa B
IFN-y Interferon-Gamma
ECM Extracellular Matrix
PREP1 Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1
eNOS Endothelial nitric oxide synthase
HSL Hormone sensitive lipase
iNOS Inducible NO synthase
FFA Free Fatty Acids
f-actin Filamentous actin
SPARC Secreted Protein, Acidic, Rich in Cysteine
LOX Lysyl Oxidase
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CTGF Connective Tissue Growth Factor
PAI-1 Plasminogen Activator Inhibitor-1
AGE Advanced glycation end products
VCAM Vascular cell adhesion molecule
ICAM Intercellular adhesion molecule-1
ERK 1/2 Extracellular signal-regulated kinase 1/2

ADAM A disintegrin and metalloprotease
STAT3 Signal transducer and activator of transcription 3
PI3K-Akt Phosphatidylinositol 3-kinase- protein kinase B
LPS Lipopolysaccharides
PPARγ Peroxisome proliferator-activated receptors
TLR4 Toll-like receptor 4
SVF Stromal vascular fraction
FGF Fibroblast growth factor
HSPG2 Heparan sulfate proteoglycan 2
TGF-β Transforming growth factor- β
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