The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer’s Disease
Abstract
:1. Introduction
2. The Latest New Findings on Pathology and Treatment of AD
3. An Overview of iPSC Studies Modelling AD
4. How Well Do iPSCs Recapitulate Major Features of AD Disease?
4.1. Amyloid Beta (Aβ)
4.2. Tau
4.3. Other Proteinopathies
4.4. Organelle Pathology
4.5. Neuronal Dysfunction
4.6. Glia Dysfunction
Background | Cell type/s Analyzed | Observation | Reference |
---|---|---|---|
iPSC familial APP Swe | iAstrocytes | Impaired Aβ intake, ↓ APP, ↑ Aβ40, 42, 38, → Aβ42:40 ↓ lipid endocytosis | [104] Fong |
iPSC familial APP V717F | iAstrocytes | → impaired Aβ intake ↑ Aβ42:40, ↑Aβ42 → lipid endocytosis | [104] Fong |
iPSC familial PSEN1 | Astrocytes | ↓ morphological heterogeneity, ↓ processes, ↓ release of IL-8, MCP-1 | [105] Jones |
iPSC sporadic APOE4 | Astrocytes | ↓Aβ uptake ↑ biosynthesis cholesterol | [72] Lin |
iPSC sporadic APOE4 | Astrocytes | ↑ biosynthesis cholesterol | [102] Lee |
iPSC sporadic APOE4 | Astrocytes | ↓ cholesterol efflux, ↓ biosynthesis ↑ cholesterol in lysosomes ↓ Aβ uptake ↑ cytokine secretion | [106] de Leeuw |
iPSC sporadic APOE4 | Astrocytes | ↓ morphological heterogeneity, ↓ processes ↓ release of IL-8, MCP-1 | [105] Jones |
iPSC sporadic APOE4 | Astrocytes | ↑ cholesterol biosynthesis ↑ intracellular cholesterol ↓ cholesterol efflux → cholesterol esters | [103] Tcw |
iPSC sporadic APOE4 | Microglia-like cells | ↑ cholesterol biosynthesis ↑ intracellular cholesterol ↓ cholesterol efflux | [103] Tcw |
iPSC sporadic APOE4 | Microglia-like cells | ↓Aβ uptake Fewer, shorter processes | [72] Lin |
iPSC down syndrome | Microglia-like cells in organoids | ↑ synaptic pruning, ↑ phagocytosis, ↑ type 1-interferon signaling | [96] Jin |
5. Cell Signaling Alterations in iPSC Studies
6. Using AD-iPSCs for Drug Discovery
7. Caveats and Use of iPSC Research
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.T.; Dickson, D.W.; Trojanowski, J.Q.; Jack, C.R.; Boyle, P.A.; Arfanakis, K.; Rademakers, R.; Alafuzoff, I.; Attems, J.; Brayne, C.; et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain 2019, 142, 1503–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Vega, M.P.; Giedraitis, V.; Michno, W.; Kilander, L.; Güner, G.; Zielinski, M.; Löwenmark, M.; Brundin, R.; Danfors, T.; Söderberg, L.; et al. The Uppsala APP deletion causes early onset autosomal dominant Alzheimer’s disease by altering APP processing and increasing amyloid beta fibril formation. Sci. Transl. Med. 2021, 13, eabc6184. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, H.; Yang, C.; Xu, K.; Cai, Y.; Wang, Z.; Zhao, Z.; Shao, T.; Li, Y. Transcriptomic analyses for identification and prioritization of genes associated with Alzheimer’s disease in humans. Front. Bioeng. Biotechnol. 2020, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wightman, D.P.; Jansen, I.E.; Savage, J.E.; Shadrin, A.A.; Bahrami, S.; Holland, D.; Rongve, A.; Børte, S.; Winsvold, B.S.; Drange, O.K.; et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021, 53, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Arseni, D.; Zhang, W.; Huang, M.; Lövestam, S.; Schweighauser, M.; Kotecha, A.; Murzin, A.G.; Peak-Chew, S.Y.; Macdonald, J.; et al. Cryo-EM structures of amyloid-β 42 filaments from human brains. Science 2022, 375, 167–172. [Google Scholar] [CrossRef]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Montagne, A.; Sagare, A.P.; Nation, D.A.; Schneider, L.S.; Chui, H.C.; Harrington, M.G.; Pa, J.; Law, M.; Wang, D.J.J.; et al. Vascular dysfunction—The disregarded partner of Alzheimer’s disease. Alzheimers Dement. 2019, 15, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Montagne, A.; Nation, D.A.; Sagare, A.P.; Barisano, G.; Sweeney, M.D.; Chakhoyan, A.; Pachicano, M.; Joe, E.; Nelson, A.R.; D’Orazio, L.M.; et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 2020, 581, 71–76. [Google Scholar] [CrossRef]
- Kitaguchi, H.; Ihara, M.; Saiki, H.; Takahashi, R.; Tomimoto, H. Capillary beds are decreased in Alzheimer’s disease, but not in Binswanger’s disease. Neurosci. Lett. 2007, 417, 128–131. [Google Scholar] [CrossRef]
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016, 352, 712–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Dejanovic, B.; Gandham, V.D.; Gogineni, A.; Edmonds, R.; Schauer, S.; Srinivasan, K.; Huntley, M.A.; Wang, Y.; Wang, T.-M.; et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep 2019, 28, 2111–2123.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Chen, M.; Du, Z.-Y.; Zheng, X.; Li, D.-L.; Zhou, R.-P. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res. 2018, 13, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Chang, C.-C.; Huang, C.-W.; Nouchi, R.; Cheng, C.-H. Gut microbiota in patients with Alzheimer’s disease spectrum: A systematic review and meta-analysis. Aging 2022, 14, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.T.; Corsini, S.; Kellingray, L.; Hegarty, C.; Le Gall, G.; Narbad, A.; Müller, M.; Tejera, N.; O’Toole, P.W.; Minihane, A.-M.; et al. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimer’s disease pathophysiology. FASEB J. 2019, 33, 8221–8231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhaar, B.J.H.; Hendriksen, H.M.A.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; et al. Gut microbiota composition is related to ad pathology. Front. Immunol. 2021, 12, 794519. [Google Scholar] [CrossRef]
- Leng, K.; Li, E.; Eser, R.; Piergies, A.; Sit, R.; Tan, M.; Neff, N.; Li, S.H.; Rodriguez, R.D.; Suemoto, C.K.; et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 2021, 24, 276–287. [Google Scholar] [CrossRef]
- Dang, Y.; He, Q.; Yang, S.; Sun, H.; Liu, Y.; Li, W.; Tang, Y.; Zheng, Y.; Wu, T. FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer’s disease: Evidence from single-cell transcriptomic analysis. Pharmaceuticals 2022, 15, 1177. [Google Scholar] [CrossRef]
- Olah, M.; Menon, V.; Habib, N.; Taga, M.F.; Ma, Y.; Yung, C.J.; Cimpean, M.; Khairallah, A.; Coronas-Samano, G.; Sankowski, R.; et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 2020, 11, 6129. [Google Scholar] [CrossRef]
- Reardon, S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature, 7 January 2023. [Google Scholar] [CrossRef]
- Mullard, A. More Alzheimer’s drugs head for FDA review: What scientists are watching. Nature, 15 November 2021; pp. 544–545. [Google Scholar]
- Alzforum. 2022. Available online: https://www.alzforum.org/therapeutics/aduhelm (accessed on 27 December 2022).
- Lecanemab Confirmatory Phase 3 Clarity Ad Study Met Primary Endpoint, Showing Highly Statistically Significant Reduction of Clinical Decline in Large Global Clinical Study of 1795 Participants with Early Alzheimer’s Disease. Available online: https://investors.biogen.com/news-releases/news-release-details/lecanemab-confirmatory-phase-3-clarity-ad-study-met-primary (accessed on 28 December 2022).
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2022, 388, 9–21. [Google Scholar] [CrossRef]
- Alzforum. 2023. Available online: https://www.alzforum.org/therapeutics/gv-971 (accessed on 28 December 2022).
- Servick, K.; Normile, D. Alzheimer’s experts greet China’s surprise approval of a drug for brain disease with hope and caution. Science: Scienceinsider, 5 November 2019. [Google Scholar]
- Xiao, S.; Chan, P.; Wang, T.; Hong, Z.; Wang, S.; Kuang, W.; He, J.; Pan, X.; Zhou, Y.; Ji, Y.; et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res. Ther 2021, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Geng, M.; Li, J.; Xin, X.; Wang, J.; Tang, M.; Zhang, J.; Zhang, X.; Ding, J. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J. Pharmacol. Sci. 2004, 95, 248–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Hu, J.; Li, J.; Yang, Z.; Xin, X.; Wang, J.; Ding, J.; Geng, M. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett. 2005, 374, 222–226. [Google Scholar] [CrossRef]
- Teter, B.; Morihara, T.; Lim, G.; Chu, T.; Jones, M.; Zuo, X.; Paul, R.; Frautschy, S.; Cole, G. Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol. Dis. 2019, 127, 432–448. [Google Scholar] [CrossRef]
- Chambers, S.M.; Fasano, C.A.; Papapetrou, E.P.; Tomishima, M.; Sadelain, M.; Studer, L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 2009, 27, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhang, X.-J.; Renier, N.; Wu, Z.; Atkin, T.; Sun, Z.; Ozair, M.Z.; Tchieu, J.; Zimmer, B.; Fattahi, F.; et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat. Biotechnol. 2017, 35, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Pak, C.; Han, Y.; Ahlenius, H.; Zhang, Z.; Chanda, S.; Marro, S.; Patzke, C.; Acuna, C.; Covy, J.; et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013, 78, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Mei, A.; Paquola, A.C.; Stern, S.; Bardy, C.; Klug, J.R.; Kim, S.; Neshat, N.; Kim, H.J.; Ku, M.; et al. Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell 2018, 22, 684–697.e9. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, S.; Engel, M.; Balez, R.; Do-Ha, D.; Cabral-Da-Silva, M.; Hernández, D.; Berg, T.; Fifita, J.; Grima, N.; Yang, S.; et al. A simple differentiation protocol for generation of induced pluripotent stem cell-derived basal forebrain-like cholinergic neurons for Alzheimer’s disease and frontotemporal dementia disease modeling. Cells 2020, 9, 2018. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, C.J.; Lyass, L.; Bhattacharyya, B.J.; Belmadani, A.; Miller, R.J.; Kessler, J.A. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 2011, 29, 802–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, A.X.; Yuan, Q.; Tan, S.; Xiao, Y.; Wang, D.; Khoo, A.T.T.; Sani, L.; Tran, H.-D.; Kim, P.; Chiew, Y.S.; et al. Direct induction and functional maturation of forebrain GABAergic neurons from human pluripotent stem cells. Cell Rep. 2016, 16, 1942–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchieu, J.; Calder, E.L.; Guttikonda, S.R.; Gutzwiller, E.M.; Aromolaran, K.A.; Steinbeck, J.A.; Goldstein, P.A.; Studer, L. NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nat. Biotechnol. 2019, 37, 267–275. [Google Scholar] [CrossRef]
- Canals, I.; Ginisty, A.; Quist, E.; Timmerman, R.; Fritze, J.; Miskinyte, G.; Monni, E.; Hansen, M.G.; Hidalgo-Gavilan, I.; Bryder, D.; et al. Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat. Methods 2018, 15, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Pandya, H.; Shen, M.J.; Ichikawa, D.M.; Sedlock, A.B.; Choi, Y.; Johnson, K.R.; Kim, G.; Brown, M.A.; Elkhaloun, A.G.; Maric, D.; et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 2017, 20, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Guttikonda, S.R.; Sikkema, L.; Tchieu, J.; Saurat, N.; Walsh, R.M.; Harschnitz, O.; Ciceri, G.; Sneeboer, M.; Mazutis, L.; Setty, M.; et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease. Nat. Neurosci. 2021, 24, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Dräger, N.M.; Sattler, S.M.; Huang, C.T.-L.; Teter, O.M.; Leng, K.; Hashemi, S.H.; Hong, J.; Aviles, G.; Clelland, C.D.; Zhan, L.; et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci. 2022, 25, 1149–1162. [Google Scholar] [CrossRef]
- Reich, M.; Paris, I.; Ebeling, M.; Dahm, N.; Schweitzer, C.; Reinhardt, D.; Schmucki, R.; Prasad, M.; Köchl, F.; Leist, M.; et al. Alzheimer’s risk gene TREM2 determines functional properties of new type of human iPSC-derived microglia. Front. Immunol. 2020, 11, 617860. [Google Scholar] [CrossRef]
- Abud, E.M.; Ramirez, R.N.; Martinez, E.S.; Healy, L.M.; Nguyen, C.H.H.; Newman, S.A.; Yeromin, A.V.; Scarfone, V.M.; Marsh, S.E.; Fimbres, C.; et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 2017, 94, 278–293.e9. [Google Scholar] [CrossRef] [Green Version]
- Washer, S.J.; Perez-Alcantara, M.; Chen, Y.; Steer, J.; James, W.S.; Trynka, G.; Bassett, A.R.; Cowley, S.A. Single-cell transcriptomics defines an improved, validated monoculture protocol for differentiation of human iPSC to microglia. Sci. Rep. 2022, 12, 19454. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, T.; Liu, Y.; Skov, J.; Mogus, L.; Lee, J.; Pfisterer, U.; Handfield, L.-F.; Asenjo-Martinez, A.; Lisa-Vargas, I.; Seemann, S.E.; et al. Production of human entorhinal stellate cell-like cells by forward programming shows an important role of Foxp1 in reprogramming. Front. Cell Dev. Biol. 2022, 10, 976549. [Google Scholar] [CrossRef] [PubMed]
- Kobro-Flatmoen, A.; Nagelhus, A.; Witter, M.P. Reelin-immunoreactive neurons in entorhinal cortex layer II selectively express intracellular amyloid in early Alzheimer’s disease. Neurobiol. Dis. 2016, 93, 172–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Isla, T.; Price, J.L.; McKeel, D.W., Jr.; Morris, J.C.; Growdon, J.H.; Hyman, B.T. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 1996, 16, 4491–4500. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Wetzel, I.; Marriott, I.; Dréau, D.; D’Avanzo, C.; Kim, D.Y.; Tanzi, R.E.; Cho, H. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 2018, 21, 941–951. [Google Scholar] [CrossRef]
- Cenini, G.; Hebisch, M.; Iefremova, V.; Flitsch, L.J.; Breitkreuz, Y.; Tanzi, R.E.; Kim, D.Y.; Peitz, M.; Brüstle, O. Dissecting Alzheimer’s disease pathogenesis in human 2D and 3D models. Mol. Cell Neurosci. 2021, 110, 103568. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, Y.; Yamazaki, Y.; Ren, Y.; Davis, M.D.; Liu, C.-C.; Lu, W.; Wang, X.; Chen, K.; Cherukuri, Y.; et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. Nat. Commun. 2020, 11, 5540. [Google Scholar] [CrossRef]
- Pomeshchik, Y.; Klementieva, O.; Gil, J.; Martinsson, I.; Hansen, M.G.; de Vries, T.; Sancho-Balsells, A.; Russ, K.; Savchenko, E.; Collin, A.; et al. Human iPSC-derived hippocampal spheroids: An innovative tool for stratifying Alzheimer disease patient-specific cellular phenotypes and developing therapies. Stem Cell Rep. 2020, 15, 256–273. [Google Scholar] [CrossRef]
- Karmirian, K.; Holubiec, M.; Goto-Silva, L.; Bessone, I.F.; Vitória, G.; Mello, B.; Alloatti, M.; Vanderborght, B.; Falzone, T.L.; Rehen, S. Modeling Alzheimer’s disease using human brain organoids. In Alzheimer’s Disease; Springer Publishing: New York, NY, USA, 2022; pp. 135–158. [Google Scholar]
- Raja, W.K.; Mungenast, A.E.; Lin, Y.T.; Ko, T.; Abdurrob, F.; Seo, J.; Tsai, L.H. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS ONE 2016, 11, e0161969. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sun, G.; Tian, E.; Zhang, M.; Davtyan, H.; Beach, T.G.; Reiman, E.M.; Blurton-Jones, M.; Holtzman, D.M.; Shi, Y. Modeling sporadic Alzheimer’s disease in human brain organoids under serum exposure. Adv. Sci. 2021, 8, 2101462. [Google Scholar] [CrossRef]
- Kwart, D.; Gregg, A.; Scheckel, C.; Murphy, E.A.; Paquet, D.; Duffield, M.; Fak, J.; Olsen, O.; Darnell, R.; Tessier-Lavigne, M. A large panel of isogenic APP and PSEN1 mutant human iPSC neurons reveals shared endosomal abnormalities mediated by APP beta-CTFs, not A beta. Neuron 2019, 104, 256–270.e5. [Google Scholar] [CrossRef] [PubMed]
- Thordardottir, S.; Ståhlbom, A.K.; Almkvist, O.; Thonberg, H.; Eriksdotter, M.; Zetterberg, H.; Blennow, K.; Graff, C. The effects of different familial Alzheimer’s disease mutations on APP processing in vivo. Alzheimers Res. Ther. 2017, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pera, M.; Alcolea, D.; Sánchez-Valle, R.; Guardia-Laguarta, C.; Colom-Cadena, M.; Badiola, N.; Suárez-Calvet, M.; Lladó, A.; Barrera-Ocampo, A.A.; Sepulveda-Falla, D.; et al. Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease. Acta Neuropathol. 2013, 125, 201–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagomarsino, V.N.; Pearse, R.V.; Liu, L.; Hsieh, Y.-C.; Fernandez, M.A.; Vinton, E.A.; Paull, D.; Felsky, D.; Tasaki, S.; Gaiteri, C.; et al. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron 2021, 109, 3402–3420.e9. [Google Scholar] [CrossRef]
- Braithwaite, S.P.; Stock, J.B.; Lombroso, P.J.; Nairn, A.C. Protein phosphatases and Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2012, 106, 343–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, B.; A Rowland, H.; Wei, T.; Arunasalam, K.; Hayes, E.M.; Koychev, I.; Hedegaard, A.; Ribe, E.M.; Chan, D.; Chessell, T.; et al. Neurons derived from individual early Alzheimer’s disease patients reflect their clinical vulnerability. Brain Commun. 2022, 4, fcac267. [Google Scholar] [CrossRef]
- Arber, C.; Toombs, J.; Lovejoy, C.; Ryan, N.S.; Paterson, R.W.; Willumsen, N.; Gkanatsiou, E.; Portelius, E.; Blennow, K.; Heslegrave, A.; et al. Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol. Psychiatry 2020, 25, 2919–2931. [Google Scholar] [CrossRef] [Green Version]
- Muratore, C.R.; Rice, H.C.; Srikanth, P.; Callahan, D.G.; Shin, T.; Benjamin, L.N.P.; Walsh, D.M.; Selkoe, D.J.; Young-Pearse, T.L. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum. Mol. Genet. 2014, 23, 3523–3536. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T.; Asai, M.; Tsukita, K.; Kutoku, Y.; Ohsawa, Y.; Sunada, Y.; Imamura, K.; Egawa, N.; Yahata, N.; Okita, K.; et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 2013, 12, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Israel, M.A.; Yuan, S.H.; Bardy, C.; Reyna, S.M.; Mu, Y.; Herrera, C.; Hefferan, M.P.; Van Gorp, S.; Nazor, K.L.; Boscolo, F.S.; et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012, 482, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Yagi, T.; Ito, D.; Okada, Y.; Akamatsu, W.; Nihei, Y.; Yoshizaki, T.; Yamanaka, S.; Okano, H.; Suzuki, N. Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet. 2011, 20, 4530–4539. [Google Scholar] [CrossRef] [PubMed]
- Mahairaki, V.; Ryu, J.; Peters, A.; Chang, Q.; Li, T.; Park, T.S.; Burridge, P.W.; Talbot, C.C.; Asnaghi, L.; Martin, L.J.; et al. Induced pluripotent stem cells from familial Alzheimer’s disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev. 2014, 23, 2996–3010. [Google Scholar] [CrossRef] [PubMed]
- Ochalek, A.; Mihalik, B.; Avci, H.X.; Chandrasekaran, A.; Téglási, A.; Bock, I.; Giudice, M.L.; Táncos, Z.; Molnár, K.; László, L.; et al. Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimers Res. Ther. 2017, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.; Armijo, E.; Bravo-Alegria, J.; Becerra-Calixto, A.; Mays, C.E.; Soto, C. Modeling amyloid beta and tau pathology in human cerebral organoids. Mol. Psychiatry 2018, 23, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Virumbrales, M.; Moreno, C.; Kruglikov, I.; Marazuela, P.; Sproul, A.; Jacob, S.; Zimmer, M.; Paull, D.; Zhang, B.; Schadt, E.E.; et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 (N141I) neurons. Acta Neuropathol. Commun. 2017, 5, 77. [Google Scholar] [CrossRef]
- Duan, L.; Bhattacharyya, B.J.; Belmadani, A.; Pan, L.; Miller, R.J.; A Kessler, J. Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol. Neurodegener. 2014, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-T.; Seo, J.; Gao, F.; Feldman, H.M.; Wen, H.-L.; Penney, J.; Cam, H.P.; Gjoneska, E.; Raja, W.K.; Cheng, J.; et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 2018, 98, 1141–1154.e7. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Najm, R.; Xu, Q.; Jeong, D.-E.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A.; et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med. 2018, 24, 647–657. [Google Scholar] [CrossRef]
- Park, J.-C.; Jang, S.-Y.; Lee, D.; Lee, J.; Kang, U.; Chang, H.; Kim, H.J.; Han, S.-H.; Seo, J.; Choi, M.; et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat. Commun. 2021, 12, 280. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Z.; Cao, J.; Yu, Y.; Pei, G. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer’s tau pathology. Signal Transduct. Target. Ther. 2022, 7, 176. [Google Scholar] [CrossRef]
- Balez, R.; Steiner, N.; Engel, M.; Muñoz, S.S.; Lum, J.S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M.; et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep. 2016, 6, 31450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibb, W.R.; Mountjoy, C.Q.; Mann, D.M.; Lees, A.J. A pathological study of the association between Lewy body disease and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1989, 52, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotzbauer, P.T.; Trojanowsk, J.Q.; Lee, V.M. Lewy body pathology in Alzheimer’s disease. J. Mol. Neurosci. 2001, 17, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Vizcarra, J.A.; Marsili, L.; Lang, A.E.; Simon, D.K.; Merola, A.; Josephs, K.A.; Fasano, A.; Morgante, F.; Savica, R.; et al. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology 2019, 92, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H.J.; Koh, W.; Li, L.; Heo, H.; Cho, H.; Lyoo, C.H.; Seo, S.W.; Kim, E.-J.; Nakanishi, M.; et al. Modeling of frontotemporal dementia using iPSC technology. Int. J. Mol. Sci. 2020, 21, 5319. [Google Scholar] [CrossRef]
- Prudencio, M.; Humphrey, J.; Pickles, S.; Brown, A.-L.; Hill, S.E.; Kachergus, J.M.; Shi, J.; Heckman, M.G.; Spiegel, M.R.; Cook, C.; et al. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J. Clin. Investig. 2020, 130, 6080–6092. [Google Scholar] [CrossRef]
- Mitake, S.; Ojika, K.; Hirano, A. Hirano bodies and Alzheimer’s disease. Kaohsiung J. Med. Sci. 1997, 13, 10–18. [Google Scholar]
- Oka, S.; Leon, J.; Sakumi, K.; Ide, T.; Kang, D.; LaFerla, F.M.; Nakabeppu, Y. Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease. Sci. Rep. 2016, 6, 37889. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, J.H.; Wanner, D.; Gietl, A.; Saake, A.; Kündig, T.M.; Hock, C.; Nitsch, R.M.; Tackenberg, C. Oxidative stress and altered mitochondrial protein expression in the absence of amyloid-beta and tau pathology in iPSC-derived neurons from sporadic Alzheimer’s disease patients. Stem Cell Res. 2018, 27, 121–130. [Google Scholar] [CrossRef]
- Flannagan, K.; Stopperan, J.A.; Troutwine, B.R.; Lysaker, C.R.; Strope, T.A.; Draper, J.; Shaddy-Gouvion, C.; Vivian, J.; Haeri, M.; Wilkins, H.M. Mitochondrial phenotypes in iPSC AD Models. Alzheimer’s Dement. 2022, 18, e060394. [Google Scholar] [CrossRef]
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 2021, 13, 617588. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.J.; Ivanyuk, D.; Panagiotakopoulou, V.; Di Napoli, G.; Kalb, S.; Brunetti, D.; Al-Shaana, R.; Kaeser, S.A.; Fraschka, S.A.-K.; Jucker, M.; et al. Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer’s disease-like pathology in human cerebral organoids. Mol. Psychiatry 2021, 26, 5733–5750. [Google Scholar] [CrossRef] [PubMed]
- Knupp, A.; Mishra, S.; Martinez, R.; Braggin, J.E.; Szabo, M.; Kinoshita, C.; Hailey, D.W.; Small, S.A.; Jayadev, S.; Young, J.E. Depletion of the AD risk gene SORL1 selectively impairs neuronal endosomal traffic independent of amyloidogenic APP processing. Cell Rep. 2020, 31, 107719. [Google Scholar] [CrossRef] [PubMed]
- Small, S.A.; Gandy, S. Sorting through the cell biology of Alzheimer’s disease: Intracellular pathways to pathogenesis. Neuron 2006, 52, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Sinyor, B.; Mineo, J.; Ochner, C. Alzheimer’s disease, inflammation, and the role of antioxidants. J. Alzheimers Dis. Rep. 2020, 4, 175–183. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Frank, J.A.; Ke, Z.-J.; Luo, J. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells. Toxicol. Appl. Pharmacol. 2017, 320, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Martín-Maestro, P.; Gargini, R.; Sproul, A.A.; García, E.; Antón, L.C.; Noggle, S.; Arancio, O.; Avila, J.; García-Escudero, V. Mitophagy failure in fibroblasts and iPSC-derived neurons of Alzheimer’s disease-associated presenilin 1 mutation. Front. Mol. Neurosci. 2017, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Vickers, J.C.; King, A.; Woodhouse, A.; Kirkcaldie, M.T.; Staal, J.A.; McCormack, G.H.; Blizzard, C.; Musgrove, R.E.; Mitew, S.; Liu, Y.; et al. Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res. Bull. 2009, 80, 217–223. [Google Scholar] [CrossRef]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef]
- Wang, M.Y.; Liang, G.; Liang, S.; Mund, R.; Shi, M.Y.; Wei, M.H. Dantrolene ameliorates impaired neurogenesis and synaptogenesis in induced pluripotent stem cell lines derived from patients with Alzheimer’s disease. Anesthesiology 2020, 132, 1062–1079. [Google Scholar] [CrossRef]
- Jin, M.; Xu, R.; Wang, L.; Alam, M.M.; Ma, Z.; Zhu, S.; Martini, A.C.; Jadali, A.; Bernabucci, M.; Xie, P.; et al. Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer’s disease. Cell Stem Cell 2022, 29, 1135–1153.e8. [Google Scholar] [CrossRef]
- Sellgren, C.M.; Gracias, J.; Watmuff, B.; Biag, J.D.; Thanos, J.M.; Whittredge, P.B.; Fu, T.; Worringer, K.; Brown, H.E.; Wang, J.; et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat. Neurosci. 2019, 22, 374–385. [Google Scholar] [CrossRef] [PubMed]
- ellgren, C.M.; Sheridan, S.D.; Gracias, J.; Xuan, D.; Fu, T.; Perlis, R.H. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol. Psychiatry 2017, 22, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, W.; Lee, H.; Cho, S.; Seo, J. ApoE4-induced cholesterol dysregulation and its brain cell type-specific implications in the pathogenesis of Alzheimer’s disease. Mol. Cells 2019, 42, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Yoo, G.; Choi, J.; Park, S.-H.; Shin, H.; Prasad, R.; Lee, Y.; Ahn, M.R.; Cho, I.-J.; Sun, W. Cell-line dependency in cerebral organoid induction: Cautionary observations in Alzheimer’s disease patient-derived induced pluripotent stem cells. Mol. Brain 2022, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, S.; Dolatabadi, N.; Trudler, D.; Zhang, X.; Wu, Y.; Mohata, M.; Ambasudhan, R.; Talantova, M.; A Lipton, S. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs. isogenic controls. Elife 2019, 8, e50333. [Google Scholar] [CrossRef]
- Lee, S.-I.; Jeong, W.; Lim, H.; Cho, S.; Lee, H.; Jang, Y.; Cho, J.; Bae, S.; Lin, Y.-T.; Tsai, L.-H.; et al. APOE4-carrying human astrocytes oversupply cholesterol to promote neuronal lipid raft expansion and A beta generation. Stem Cell Rep. 2021, 16, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Tcw, J.; Qian, L.; Pipalia, N.H.; Chao, M.J.; Liang, S.A.; Shi, Y.; Jain, B.R.; Bertelsen, S.E.; Kapoor, M.; Marcora, E.; et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell 2022, 185, 2213–2233.e25. [Google Scholar] [CrossRef]
- Fong, L.K.; Yang, M.; Chaves, R.D.S.; Reyna, S.M.; Langness, V.F.; Woodruff, G.; Roberts, E.A.; Young, J.E.; Goldstein, L.S.B. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-beta clearance in human astrocytes. J. Biol. Chem. 2018, 293, 11341–11357. [Google Scholar] [CrossRef] [Green Version]
- Jones, V.C.; Atkinson-Dell, R.; Verkhratsky, A.; Mohamet, L. Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis. 2017, 8, e2696. [Google Scholar] [CrossRef] [Green Version]
- de Leeuw, S.M.; Kirschner, A.W.; Lindner, K.; Rust, R.; Budny, V.; Wolski, W.E.; Gavin, A.-C.; Nitsch, R.M.; Tackenberg, C. APOE2, E3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Rep. 2022, 17, 1229–1231. [Google Scholar] [CrossRef]
- Chen, M.; Lee, H.-K.; Moo, L.; Hanlon, E.; Stein, T.; Xia, W. Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. J. Proteom. 2018, 182, 21–33. [Google Scholar] [CrossRef]
- Sackmann, C.; Hallbeck, M. Oligomeric amyloid-beta induces early and widespread changes to the proteome in human iPSC-derived neurons. Sci. Rep. 2020, 10, 6538. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T.; Imamura, K.; Funayama, M.; Tsukita, K.; Miyake, M.; Ohta, A.; Woltjen, K.; Nakagawa, M.; Asada, T.; Arai, T.; et al. iPSC-Based compound screening and in vitro trials identify a synergistic anti-amyloid beta combination for Alzheimer’s disease. Cell Rep. 2017, 21, 2304–2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safety and Efficacy Study of ALZT-OP1 in Subjects With Evidence of Early Alzheimer’s Disease (COGNITE). 2022. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02547818 (accessed on 27 December 2022).
- Brownjohn, P.W.; Smith, J.; Portelius, E.; Serneels, L.; Kvartsberg, H.; De Strooper, B.; Blennow, K.; Zetterberg, H.; Livesey, F.J. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer’s Disease. Stem Cell Rep. 2017, 8, 870–882. [Google Scholar] [CrossRef] [Green Version]
- Panza, F.; Frisardi, V.; Imbimbo, B.P.; Capurso, C.; Logroscino, G.; Sancarlo, D.; Seripa, D.; Vendemiale, G.; Pilotto, A.; Solfrizzi, V. Gamma-secretase inhibitors for the treatment of Alzheimer’s disease: The current state. CNS Neurosci. Ther. 2010, 16, 272–284. [Google Scholar] [CrossRef]
- Myriad Genetics Reports Results of, U.S. Phase 3 Trial of Flurizan™ in Alzheimer’s Disease. 2008. Available online: https://web.archive.org/web/20080730012308/http://www.myriad.com/news/release/1170283 (accessed on 27 December 2022).
- van der Kant, R.; Langness, V.F.; Herrera, C.M.; Williams, D.A.; Fong, L.K.; Leestemaker, Y.; Steenvoorden, E.; Rynearson, K.D.; Brouwers, J.F.; Helms, J.B.; et al. Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-beta in iPSC-Derived Alzheimer’s disease neurons. Cell Stem Cell 2019, 24, 363–375.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, A.M.; Lam, M.; Mast, N.; Moon, J.; Li, Y.; Maxfield, E.; Pikuleva, I.A. CYP46A1 Activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics 2019, 16, 710–724. [Google Scholar] [CrossRef] [PubMed]
- Efavirenz for Patients with Alzheimer’s Disease (EPAD). Available online: https://beta.clinicaltrials.gov/study/NCT03706885 (accessed on 27 December 2022).
- Maia, M.A.; Sousa, E. BACE-1 and gamma-secretase as therapeutic targets for Alzheimer’s disease. Pharmaceuticals 2019, 12, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costamagna, G.; Comi, G.P.; Corti, S. Advancing drug discovery for neurological disorders using iPSC-derived neural organoids. Int. J. Mol. Sci. 2021, 22, 2659. [Google Scholar] [CrossRef]
- Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018, 217, 459–472. [Google Scholar] [CrossRef]
- Bassil, R.; Shields, K.; Granger, K.; Zein, I.; Ng, S.; Ben Chih, B. Improved modeling of human AD with an automated culturing platform for iPSC neurons, astrocytes and microglia. Nat. Commun. 2021, 12, 5220. [Google Scholar] [CrossRef] [PubMed]
- Lischka, F.W.; Efthymiou, A.; Zhou, Q.; Nieves, M.D.; McCormack, N.M.; Wilkerson, M.D.; Sukumar, G.; Dalgard, C.L.; Doughty, M.L. Neonatal mouse cortical but not isogenic human astrocyte feeder layers enhance the functional maturation of induced pluripotent stem cell-derived neurons in culture. Glia 2018, 66, 725–748. [Google Scholar] [CrossRef] [PubMed]
- Sato, C.; Barthélemy, N.R.; Mawuenyega, K.G.; Patterson, B.W.; Gordon, B.A.; Jockel-Balsarotti, J.; Sullivan, M.; Crisp, M.J.; Kasten, T.; Kirmess, K.M.; et al. Tau kinetics in neurons and the human central nervous system. Neuron 2018, 97, 1284–1298.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Background | Cell type/s Analyzed | Observation | Reference |
---|---|---|---|
ESCs familial APP SWE | Cortical neurons | ↑ Aβ38, ↑ Aβ40, ↑ Aβ42 | [41] Guttikonda |
iPSC familial APP SWE/V717I | Cortical neurons | ↑ Aβ40, ↑ Aβ42 | [49] Park |
iPSC familial APP SWE, A692G | Cortical neurons | ↑ total Aβ, ↑ Aβ42 → Aβ42:40 | [56] Kwart |
iPSC familial APP V717G | Cortical neurons | ↑ Aβ42:40 ↑ Aβ42 | [56] Kwart |
iPSC familial APP V717I | Cortical neurons | ↑ Aβ38:40 ↑ Aβ42:40 | [62] Arber |
iPSC familial APP V717I | Cortical neurons | ↑ Aβ42:40 ↑ Aβ42, ↑ Aβ38 | [63] Muratore |
iPSC familial APP V717I | Cortical neurons | → intracellular Aβ oligomers | [64] Kondo |
iPSC familial APP Dp | Cortical neurons | ↑ Aβ40 | [65] Israel |
iPSC familial APP E693delta | Cortical neurons | ↑ intracellular Aβ oligomers | [64] Kondo |
iPSC familial APP V717I | Organoids | ↑ Aβ42:40 ↑ Aβ42:38 | [62] Arber |
iPSC familial APP Dp | Organoids | Aβ aggregates, → Aβ42:40 ↑ Aβ42, ↑ Aβ40 | [54] Raja |
iPSC familial PSEN1 A246E, N141I | Cortical neurons | ↑ Aβ42:40 → Aβ40 | [66] Yagi |
iPSC familial PSEN1 A246E | Cortical neurons | ↑ Aβ42:40 | [67] Mahairaki |
iPSC familial PSEN1 Y115H, int4del, M139V, M146I, R278I | Cortical neurons | ↑ Aβ38:40 ↑ Aβ42:40 | [62] Arber |
iPSC familial PSEN1 M146V, L166P, M233L, A246E | Cortical neurons | ↓ total Aβ, ↑ Aβ42 ↑ Aβ42:40 | [56] Kwart |
iPSC familial PSEN1 V89L, L150P | Cortical neurons | ↑ Aβ42:40 ↑ Aβ42, ↑ Aβ40 | [68] Ochalek |
iPSC familial PSEN1 A246E | Organoids | Extracellular Aβ ↑ Aβ42:40 | [69] Gonzalez |
iPSC familial PSEN1 Y115H, int4del, M139V, M146I, R278I | Organoids | ↑ Aβ42:40 ↑ Aβ42:38 | [62] Arber |
iPSC familial PSEN1 A264E | Organoids | Aβ aggregates | [54] Raja |
iPSC familial PSEN1 M146I | Organoids | → Aβ42, → Aβ40 | [54] Raja |
iPSC familial PSEN2 N141I | Basal forebrain cholinergic neurons | ↑ Aβ42:40 ↑ Aβ | [70] Ortiz-Virumbrales |
iPSC sporadic APOE3 * | Organoids | ↑ Aβ40, ↑ Aβ42 | [51] Zhao |
iPSC sporadic APOE3/4 | Basal forebrain cholinergic neurons | ↑ Aβ42:40 | [71] Duan |
iPSC sporadic APOE4 | iNeurons | ↑ Aβ42 → Aβ40 | [72] Lin |
iPSC sporadic APOE4 | Cortical neurons | ↑ Aβ42 ↑40 ↑ sAPP | [73] Wang |
iPSC sporadic APOE4 | Organoids | ↑ Aβ40, ↑ Aβ42 | [51] Zhao |
iPSC sporadic APOE4 | Organoids | ↑ Aβ42 | [74] Park |
iPSC sporadic APOE4 | Organoids | ↑ Aβ42, ↑ Aβ40 | [75] Huang |
iPSC sporadic * | Cortical neurons | → Aβ42:40 ↑ Aβ42, ↑ Aβ40 | [68] Ochalek |
iPSC sporadic * | Cortical neurons | ↑ Aβ40 | [65] Israel |
iPSC sporadic * | Cortical neurons | ↑ Aβ42, → Aβ40 | [76] Balez |
iPSC sporadic * | Cortical neurons | ↑ intracellular Aβ in 1 of 2 lines | [64] Kondo |
iPSC sporadic | Organoids | → Aβ40, no amyloid aggregates | [55] Chen |
iPSC sporadic + serum | Organoids | ↑ Aβ40, Aβ aggregates | [55] Chen |
Background | Cell type/s Analyzed | Observation | Reference |
---|---|---|---|
iPSC familial APP V717I | Cortical neurons | ↑ total tau, pTauSer262 | [63] Muratore |
iPSC familial APP Dp | Cortical neurons | ↑ pTauSer231 | [65] Israel |
iPSC familial APP Dp | Organoids | ↑ pTauSer231, Thr181 | [54] Raja |
iPSC familial PSEN1 V89L, L150P | Cortical neurons | ↑ pTauSer262, Ser396, AT8, Thr181, Ser400/Thr403/Ser404 | [68] Mahairaki |
iPSC familial PSEN1 A264E | Organoids | ↑ pTauSer231 | [54] Raja |
iPSC familial PSEN1 M146I | Organoids | → pTauSer231 | [54] Raja |
iPSC familial PSEN1 A246E | Organoids | ↑ pTau, NFTs | [69] Gonzalez |
iPSC sporadic * | Cortical neurons | ↑pTauSer262, Ser396, AT8, Thr181, Ser400/Thr403/Ser404 | [68] Mahairaki |
iPSC sporadic * | Cortical neurons | ↑ pTauSer396, Thr181 | [65] Israel |
iPSC sporadic APOE3 * | Organoids | → pTau | [51] Zhao |
iPSC sporadic APOE4 | Cortical neurons | ↑ pTau | [73] Wang |
iPSC sporadic APOE4 | Organoids | ↑ pTau | [51] Zhao |
iPSC sporadic APOE4 | Organoids | → secreted total tau, ↑ pTau | [74] Park |
iPSC sporadic APOE4 | Organoids | ↑ pTau | [75] Huang |
iPSC sporadic + Serum | Organoids | ↑ pTau | [55] Chen |
Background | Cell type/s Analyzed | Observation | Reference |
---|---|---|---|
iPSC familial APP V717L | Cortical neurons | ↓autophagy, ↓mitophagy | [7] Fang |
iPSC familial APP swe, A692G, V717G | Cortical neurons | RAB5+ early endosome enlargement | [56] Kwart |
iPSC familial APP Dp | Cortical neurons | RAB5+ early endosome enlargement | [65] Israel |
iPSC familial APP E693delta | Cortical neurons | ↑ ER stress and oxidative stress | [64] Kondo |
iPSC familial APP V717I | Cortical neurons | → ER stress and oxidative stress | [64] Kondo |
iPSC familial APP Dp | Organoids | ↑ large endosomes | [54] Raja |
iPSC familial PSEN1 L166P | Cortical neurons | RAB5+ early endosome enlargement | [56] Kwart |
iPSC familial PSEN1 P117L | Basal forebrain cholinergic neurons | Mitochondrial dysfunction, ↓ mitochondrial membrane potential, ↑ ROS, ↑ superoxide | [83] Oka |
iPSC familial PSEN1 A246E | Cortical neurons | ↓autophagy ↑ autophagic vacuoles ↑ lysosomal biogenesis | [92] Martín-Maestro |
iPSC familial PSEN1 M146I, A264E | Organoids | ↑ large endosomes | [54] Raja |
iPSC sporadic APOE4 | Cortical neurons | ↓autophagy, ↓mitophagy | [7] Fang |
iPSC sporadic APOE4 | iNeurons | ↑ early endosomes | [72] Lin |
iPSC sporadic AD * | Cortical neurons | ↑ ER stress and oxidative stress | [64] Kondo |
iPSC sporadic AD * | iNeurons | Mitochondrial dysfunction ↑ ROS in some lines ↑ oxidative phosphorylation | [84] Birnbaum |
iPSC sporadic AD * | Cortical neurons | RAB5+ early endosome enlargement | [65] Israel |
iPSC sporadic AD * | Cortical neurons | ↓ Cox Vmax ↓ mitochondrial mass ↓ mitochondrial respiration ↓ mitochondrial membrane potential ↓ superoxide | [85] Flannagan |
iPSC sporadic AD * | Organoids | ↓ COX Vmax | [85] Flannagan |
iPSC sporadic AD * | Astrocytes | → COX Vmax ↓ mitochondrial respiration ↑ mitochondrial membrane potential → superoxide | [85] Flannagan |
iPSC sporadic SORL1 KO | Neurons | early endosome enlargement | [88] Knupp |
iPSC sporadic SORL1 KO | Microglia | → in endosome | [88] Knupp |
Background | Cell type/s Analyzed | Observation | Reference |
---|---|---|---|
iPSC familial APP Swe | Cortical neurons | Hyperexcitability → resting membrane potential → action potential firing threshold ↓ Neurite length, branching ↑ excitatory synaptic activity | [101] Ghatak |
iPSC familial PSEN1 deltaE9 | Cortical neurons | Hyperexcitability → action potential firing threshold ↓ Neurite length, branching ↑ excitatory synaptic activity | [101] Ghatak |
iPSC familial PSEN1 M146V | Cortical neurons | Hyperexcitability → action potential firing threshold ↓ Neurite length, branching ↑ excitatory synaptic activity | [101] Ghatak |
iPSC familial PSEN2 N141I | Basal forebrain cholinergic neurons | ↓ excitability | [70] Ortiz-Virumbrales |
iPSC sporadic APOE3/4 * | Cortical neurons | ↓ synaptic density | [95] Wang |
iPSC sporadic APOE3/3 * | Cortical neurons | ↓ synaptic density | [95] Wang |
iPSC sporadic APOE4 | iNeurons | ↑ synapses | [72] Lin |
iPSC sporadic APOE4 | Organoids | ↑ cholesterol and lipid droplets | [75] Huang |
iPSC sporadic APOE4 | Organoids | ↓ synapses | [51] Zhao |
iPSC sporadic * | Cortical neurons | ↓ Neurite length, hyperexcitability | [76] Balez |
iPSC sporadic + serum | Organoids | ↓ synapses | [55] Chen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahlgren Bendtsen, K.M.; Hall, V.J. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer’s Disease. Cells 2023, 12, 420. https://doi.org/10.3390/cells12030420
Sahlgren Bendtsen KM, Hall VJ. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer’s Disease. Cells. 2023; 12(3):420. https://doi.org/10.3390/cells12030420
Chicago/Turabian StyleSahlgren Bendtsen, Katja Maria, and Vanessa Jane Hall. 2023. "The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer’s Disease" Cells 12, no. 3: 420. https://doi.org/10.3390/cells12030420
APA StyleSahlgren Bendtsen, K. M., & Hall, V. J. (2023). The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer’s Disease. Cells, 12(3), 420. https://doi.org/10.3390/cells12030420