Association of Autofluorescent Advanced Glycation End Products (AGEs) with Frailty Components in Chronic Kidney Disease (CKD): Data from a Single-Center Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. sRAGE, esRAGE and cRAGE Quantification
2.3. AGE Quantification
2.4. Frailty Assessment
2.5. Anthropometric Measurements
2.6. Statistical Analysis
3. Results
3.1. General Population Characteristics
3.2. General Cohort Characteristics, Inflammation and Frailty
3.3. Variation in AGEs and Different RAGE Isoforms According to Frailty Status
3.4. Variation in AGEs and RAGE Isoforms According to Different Frailty Domains
3.5. Evaluation of the Association between AGEs and RAGE Isoforms and Frailty Domains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vettoretti, S.; Caldiroli, L.; Porata, G.; Vezza, C.; Cesari, M.; Messa, P. Frailty phenotype and multi-domain impairments in older patients with chronic kidney disease. BMC Geriatr. 2020, 20, 371. [Google Scholar] [CrossRef]
- Yabuuchi, J.; Ueda, S.; Yamagishi, S.-I.; Nohara, N.; Nagasawa, H.; Wakabayashi, K.; Matsui, T.; Yuichiro, H.; Kadoguchi, T.; Otsuka, T.; et al. Association of Advanced Glycation End Products with Sarcopenia and Frailty in Chronic Kidney Disease. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Buchner, D.M. Unstable disability and the fluctuations of frailty. Age Ageing 1997, 26, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenvinkel, P.; Larsson, T.E. Chronic kidney disease: A clinical model of premature aging. Am. J. Kidney Dis. 2013, 62, 339–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walston, J.; McBurnie, M.A.; Newman, A.; Tracy, R.P.; Kop, W.J.; Hirsch, C.H.; Gottdiener, J.; Fried, L.P. Frailty and Activation of the Inflammation and Coagulation Systems with and without Clinical Comorbidities: Results from the Cardiovascular Health Study. Arch. Intern. Med. 2002, 162, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- De Souza, V.A.; de Oliveira, D.; Mansur, H.N.; Fernandes, N.M.D.S.; Bastos, M.G. Sarcopenia in chronic kidney disease. J. Bras. Nefrol. 2015, 37, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Fahal, I.H. Uraemic sarcopenia: Aetiology and implications. Nephrol. Dial. Transplant. 2014, 29, 1655–1665. [Google Scholar] [CrossRef] [Green Version]
- Shlipak, M.G.; Stehman-Breen, C.; Fried, L.F.; Song, X.; Siscovick, D.; Fried, L.P.; Psaty, B.M.; Newman, A.B. The Presence of Frailty in Elderly Persons with Chronic Renal Insufficiency. Am. J. Kidney Dis. 2004, 43, 861–867. [Google Scholar] [CrossRef]
- Shen, Z.; Ruan, Q.; Yu, Z.; Sun, Z. Chronic kidney disease-related physical frailty and cognitive impairment: A systemic review. Geriatr. Gerontol. Int. 2017, 17, 529–544. [Google Scholar] [CrossRef]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Tamura, M.K.; Chertow, G.M. Frailty and chronic kidney disease: The Third National Health and Nutrition Evaluation Survey. Am. J. Med. 2009, 122, 664–671. [Google Scholar] [CrossRef]
- Roshanravan, B.; Khatri, M.; Robinson-Cohen, C.; Levin, G.; Patel, K.v.; de Boer, I.H.; Seliger, S.; Ruzinski, J.; Himmelfarb, J.; Kestenbaum, B. A Prospective Study of Frailty in Nephrology-Referred Patients with CKD. Am. J. Kidney Dis. 2012, 60, 912–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinari, P.; Caldiroli, L.; Dozio, E.; Rigolini, R.; Giubbilini, P.; Romanelli, M.M.C.; Castellano, G.; Vettoretti, S. Association between Advanced Glycation End-Products and Sarcopenia in Patients with Chronic Kidney Disease. Biomedicines 2022, 10, 1489. [Google Scholar] [CrossRef]
- Dozio, E.; Vettoretti, S.; Lungarella, G.; Messa, P.; Romanelli, M.M.C. Sarcopenia in Chronic Kidney Disease: Focus on Advanced Glycation End Products as Mediators and Markers of Oxidative Stress. Biomedicines 2021, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Cai, W.; Peppa, M.; Goodman, S.; Ferrucci, L.; Striker, G.; Vlassara, H. Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. J. Gerontol. Biol. Sci. Med. Sci. 2007, 62, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinghen, A.E.M.; Massy, Z.A.; Vlassara, H.; Striker, G.E.; Boullier, A. Uremic Toxicity of Advanced Glycation End Products in CKD. J. Am. Soc. Nephrol. 2016, 27, 354–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagishi, S.; Nakamura, K.; Matsui, T.; Inoue, H.; Takeuchi, M. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med. Hypotheses 2007, 69, 666–668. [Google Scholar] [CrossRef]
- Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006, 114, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Aucella, F.; Corsonello, A.; Leosco, D.; Brunori, G.; Gesualdo, L.; Antonelli-Incalzi, R. Beyond chronic kidney disease: The diagnosis of Renal Disease in the Elderly as an unmet need. A position paper endorsed by Italian Society of Nephrology (SIN) and Italian Society of Geriatrics and Gerontology (SIGG). J. Nephrol. 2019, 32, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Heimbürger, O.; Lindholm, B.; Kaysen, G.A.; Bergström, J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol. Dial. Transplant. 2000, 15, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Caldiroli, L.; Vettoretti, S.; Armelloni, S.; Mattinzoli, D.; Ikehata, M.; Molinari, P.; Alfieri, C.; Messa, P.; Castellano, G. Possible Benefits of a Low Protein Diet in Older Patients With CKD at Risk of Malnutrition: A Pilot Randomized Controlled Trial. Front. Nutr. 2022, 8. [Google Scholar] [CrossRef]
- Semba, R.D.; Arab, L.; Sun, K.; Nicklett, E.J.; Ferrucci, L. Fat mass is inversely associated with serum carboxymethyl-lysine, an advanced glycation end product, in adults. J. Nutr. 2011, 141, 1726–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waqas, K.; Chen, J.; Lu, T.; van der Eerden, B.C.J.; Rivadeneira, F.; Uitterlinden, A.G.; Voortman, T.; Zillikens, M.C. Dietary Advanced Glycation End-Products (DAGEs) Intake and Its Relation to Sarcopenia and Frailty - The Rotterdam Study. Bone 2022, 165, 116564. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Bandinelli, S.; Sun, K.; Guralnik, J.M.; Ferrucci, L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: The InCHIANTI study. Eur. J. Appl. Physiol. 2010, 108, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, G.W. Effect of inflammation on the aging microcirculation: Impact on skeletal muscle blood flow control. Microcirculation 2006, 13, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Haus, J.M.; Carrithers, J.A.; Trappe, S.W.; Trappe, T.A. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J. Appl. Physiol. 2007, 103, 2068–2076. [Google Scholar] [CrossRef]
- Dalal, M.; Ferrucci, L.; Sun, K.; Beck, J.; Fried, L.P.; Semba, R.D. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J. Gerontol. Biol. Sci. Med. Sci. 2009, 64, 132–137. [Google Scholar] [CrossRef]
- Whitson, H.E.; Arnold, A.M.; Yee, L.M.; Mukamal, K.J.; Kizer, J.R.; Djousse, L.; Ix, J.H.; Siscovick, D.; Tracy, R.P.; Thielke, S.M.; et al. Serum Carboxymethyl-Lysine, Disability, and Frailty in Older Persons: The Cardiovascular Health Study. J. Gerontol. Biol. Sci. Med. Sci. 2014, 69, 710–716. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Yang, R.S.; Sheu, M.L.; Chan, D.C.; Yang, T.H.; Tsai, K.S.; Chiang, C.K.; Liu, S.H. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J. Pathol. 2016, 238, 470–482. [Google Scholar] [CrossRef]
- Dozio, E.; Vettoretti, S.; Caldiroli, L.; Nerini-Molteni, S.; Tacchini, L.; Ambrogi, F.; Messa, P.; Corsi Romanelli, M.M. Advanced Glycation End Products (AGE) and Soluble Forms of AGE Receptor: Emerging Role as Mortality Risk Factors in CKD. Biomedicines 2020, 8, 638. [Google Scholar] [CrossRef]
- Yanagisawa, K.; Makita, Z.; Shiroshita, K.; Ueda, T.; Fusegawa, T.; Kuwajima, S.; Takeuchi, M.; Koike, T. Specific Fluorescence Assay for Advanced Glycation End Products in Blood and Urine of Diabetic Patients. Metabolism 1998, 47, 1348–1353. [Google Scholar] [CrossRef]
- Guerin-Dubourg, A.; Cournot, M.; Planesse, C.; Debussche, X.; Meihac, O.; Rondeau, P.; Bourdon, E. Association between Fluorescent Advanced Glycation End-Products and Vascular Complications in Type 2 Diabetic Patients. Biomed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, C.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Caldiroli, L.; Molinari, P.; Dozio, E.; Rigolini, R.; Giubbilini, P.; Romanelli, M.M.C.; Castellano, G.; Vettoretti, S. In Patients with Chronic Kidney Disease Advanced Glycation End-Products Receptors Isoforms (sRAGE and esRAGE) Are Associated with Malnutrition. Antioxidants 2022, 11, 1253. [Google Scholar] [CrossRef] [PubMed]
- Meerwaldt, R.; Links, T.; Zeebregts, C.; Tio, R.; Hillebrands, J.L.; Smit, A. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes. Cardiovasc. Diabetol. 2008, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waqas, K.; Chen, J.; Trajanoska, K.; Ikram, M.A.; Uitterlinden, A.C.D.S.G.; Rivadeneira, F.; Zillikens, M.C. Skin Autofluorescence, a Noninvasive Biomarker for Advanced Glycation End-Products, Is Associated With Sarcopenia. J. Clin. Endocrinol. Metab. 2022, 107, E793–E803. [Google Scholar] [CrossRef]
- Kato, M.; Kubo, A.; Sugioka, Y.; Mitsui, R.; Fukuhara, N.; Nihei, F.; Takeda, Y. Relationship between Advanced Glycation End-Product Accumulation and Low Skeletal Muscle Mass in Japanese Men and Women. Geriatr. Gerontol. Int. 2017, 17, 785–790. [Google Scholar] [CrossRef]
- Rao, M.; Jaber, B.L.; Balakrishnan, V.S. Chronic kidney disease and acquired mitochondrial myopathy. Curr. Opin. Nephrol. Hypertens. 2018, 27, 113–120. [Google Scholar] [CrossRef]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.S.; Kelly, T.N.; Chen, J.; He, J. A Systematic Analysis of Worldwide Population-Based Data on the Global Burden of Chronic Kidney Disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Suliman, M.E.; Heimbürger, O.; Bárány, P.; Anderstam, B.; Pecoits-Filho, R.; Ayala, E.R.; Qureshi, A.R.; Fehrman-Ekholm, I.; Lindholm, B.; Stenvinkel, P. Plasma Pentosidine Is Associated with Inflammation and Malnutrition in End-Stage Renal Disease Patients Starting on Dialysis Therapy. J. Am. Soc. Nephrol. 2003, 14, 1614–1622. [Google Scholar] [CrossRef] [Green Version]
- Luketin, M.; Mizdrak, M.; Boric-skaro, D.; Martinovic, D.; Tokic, D.; Vilovic, M.; Supe-domic, D.; Kurir, T.T.; Bozic, J. Plasma Catestatin Levels and Advanced Glycation End Products in Patients on Hemodialysis. Biomolecules 2021, 11, 456. [Google Scholar] [CrossRef]
- Fukasawa, H.; Ishigaki, S.; Kinoshita-Katahashi, N.; Yasuda, H.; Kumagai, H.; Furuya, R. Plasma levels of the pro-inflammatory protein S100A12 (EN-RAGE) are associated with muscle and fat mass in hemodialysis patients: A cross-sectional study. Nutr. J. 2014, 13, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hörner, V.D.; Selby, N.M.; Taal, M.W. Skin autofluorescence and malnutrition as predictors of mortality in persons receiving dialysis: A prospective cohort study. J. Hum. Nutr. Diet. 2020, 33, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D.; Kalantar-Zadeh, K.; Mehrotra, R. Risks of chronic metabolic acidosis in patients with chronic kidney disease. Kidney Int. Suppl. 2005, 67, S21–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, E.A.; Bistrian, B.R.; Pomposelli, J.J.; Dinarello, C.A.; Blackburn, G.L.; Istfan, N.W. Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A synergistic effect with interleukin 1. J. Clin. Investig. 1989, 83, 1614–1622. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Ikizler, T.A.; Block, G.; Avram, M.M.; Kopple, J.D. Malnutrition-inflammation complex syndrome in dialysis patients: Causes and consequences. Am. J. Kidney Dis. 2003, 42, 864–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Semba, R.D.; Nicklett, E.J.; Ferrucci, L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J. Gerontol. Biol. Sci. Med. Sci. 2010, 65, 963–975. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Semba, R.D.; Fried, L.P.; Schaumberg, D.A.; Ferrucci, L.; Varadhan, R. Elevated Serum Carboxymethyl-Lysine, an Advanced Glycation End Product, Predicts Severe Walking Disability in Older Women: The Women’s Health and Aging Study I. J. Aging Res. 2012, 2012, 586385. [Google Scholar] [CrossRef] [Green Version]
- Alpérovitch, A.; Amouyel, P.; Dartigues, J.F.; Ducimetière, P.; Mazoyer, B.; Ritchie, K.; Tzourio, C.; Dufouil, C.; Gautier, M.; Artero, S.; et al. Vascular Factors and Risk of Dementia: Design of the Three-City Study and Baseline Characteristics of the Study Population. Neuroepidemiology 2003, 22, 316–325. [Google Scholar] [CrossRef]
- Pilleron, S.; Rajaobelina, K.; Teguo, M.T.; Dartigues, J.F.; Helmer, C.; Delcourt, C.; Rigalleau, V.; Féart, C. Accumulation of Advanced Glycation End Products Evaluated by Skin Autofluorescence and Incident Frailty in Older Adults from the Bordeaux Three-City Cohort. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Jaisson, S.; Badr, S.; Jaidi, Y.; Bertholon, L.A.; Novella, J.L.; Gillery, P. Post-Translational Modification-Derived Products Are Associated with Frailty Status in Elderly Subjects. Clin. Chem. Lab. Med. 2019, 57. [Google Scholar] [CrossRef] [PubMed]
- Assar, S.H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J.M. Determination of Nepsilon-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids 2009, 36, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell. Longev. 2020, 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
Variable | Overall Cohort (n = 117) |
---|---|
General characteristics | |
Age (years) | 80 ± 11 |
Males/females, n (%) | 82 (70)/35 (30) |
Diabetes, n (%) | 65 (56) |
BMI, (kg/m2) | 28 ± 5 |
Frailty | |
Not frail, n (%) | 26 (22) |
Pre-frail; n (%) | 40 (34) |
Frail, n (%) | 51 (44) |
Metabolic characteristics | |
eGFR, (mL/min/1.73m2) | 25 ± 11 |
Creatinine clearance (mL/min) | 24.4 [17.2–36.0] |
Uric acid (mg/dL) | 6.0 ± 1.5 |
Total cholesterol (mg/dL) | 168 ± 37 |
HDL cholesterol (mg/dL) | 51 ± 15 |
Triglycerides (mg/dL) | 130 ± 54 |
Albumin (g/dL) | 4.0 ± 0.4 |
Prealbumin (mg/dL) | 28 ± 5 |
Proteinuria 24 h (g/24 h) | 1.2 ± 1.6 |
Inflammatory status | |
CRP (mg/dL) | 0.4 ± 0.7 |
TNF alpha (pg/mL) | 15.3 ± 8.2 |
Variables | Non-Frail (n = 26) | Pre-Frail (n = 40) | Frail (n = 51) | p |
---|---|---|---|---|
Males, n (%) | 23 (88) | 35 (88) | 24 (47) | <0.0001 |
Diabetes, n (%) | 13 (50) | 23 (58) | 29 (57) | 0.8 |
Age, (years) | 66 ± 18 | 79 ± 6 | 81 ± 6 | <0.0001 |
BMI, (kg/m2) | 26.1 ± 3.6 | 27.9 ± 4.5 | 28.5 ± 5.6 | 0.13 |
Metabolic characteristics | ||||
eGFR, (mL/min/1.73 m2) | 28.8 ± 13.6 | 23.4 ± 10.3 | 23.8 ± 9.7 | 0.097 |
Creatinine clearance, (mL/min) | 34.3 [20.8–45.1] | 30.6 [16.6–36.6] | 20.8 [16.6–28.0] | 0.002 |
Total cholesterol, (mg/dL) | 165.4 ± 30.2 | 167.0 ± 33.8 | 170.9 ± 42.8 | 0.79 |
HDL cholesterol, (mg/dL) | 53.7 ± 19.5 | 50.9 ± 13.0 | 54.8 ± 21.1 | 0.59 |
Triglycerides, (mg/dL) | 111.8 ± 40.9 | 135.8 ± 57.2 | 132.0 ± 55.9 | 0.18 |
Uric acid, (mg/dL) | 6.3 ± 1.3 | 6.0 ± 1.4 | 6.1 ± 1.7 | 0.83 |
Prealbumin, (mg/dL) | 29.2 ± 5.6 | 30.1 ± 5.4 | 26.8 ± 5.0 | 0.011 |
Albumin, (g/dL) | 4.3 ± 0.4 | 4.1 ± 0.3 | 4.0 ± 0.3 | 0.002 |
Hb, (g/dL) | 13.1 ± 1.8 | 12.8 ± 1.4 | 12.0 ± 1.3 | 0.003 |
Urinary protein (mg/24 h) | 882 ± 899 | 1088 ± 1337 | 1314 ± 1886 | 0.5 |
Inflammatory markers | ||||
CRP, (mg/dL) | 0.4 ± 0.9 | 0.5 ± 0.7 | 0.5 ± 0.7 | 0.96 |
TNFα, (pg/mL) | 11.3 ± 8.8 | 13.8 ± 5.4 | 16.1 ± 8.3 | 0.04 |
Variable | Not Frail (n = 26) | Pre-Frail (n = 40) | Frail (n = 51) | p |
---|---|---|---|---|
AGEs, (arbitrary units) | 2932 ± 912 | 2997 ± 822 | 3086 ± 732 | 0.71 |
sRAGE, (pg/mL) | 2291 ± 1131 | 2144 ± 1205 | 2551 ± 1380 | 0.31 |
esRAGE, (pg/mL) | 541 [369–737] | 591 [403–814] | 468 [360–668] | 0.63 |
cRAGE, (pg/mL) | 1649 ± 805 | 1521 ± 777 | 1856.8 ± 1071 | 0.22 |
AGEs/sRAGE, (arbitrary units) | 1.7 ± 1.2 | 1.8 ± 0.9 | 1.5 ± 0.8 | 0.52 |
cRAGE/esRAGE, (arbitrary units) | 2.8 ± 0.9 | 2.8 ± 1.1 | 2.7 ± 0.7 | 0.78 |
Dependent Variable | Variable | OR | p |
---|---|---|---|
Involuntary weight loss | Sex | 1.83 | 0.30 |
AGEs (A.U.) | 1.65 | 0.108 | |
Cr. Cl (mL/min) | 0.98 | 0.35 | |
Age (years) | 1.08 | 0.049 | |
Sex | 1.70 | 0.36 | |
AGEs (A.U.) | 1.84 | 0.027 | |
Age (years) | 1.08 | 0.035 | |
Sex | 1.76 | 0.33 | |
AGEs (A.U.) | 1.59 | 0.14 | |
Cr. Cl (mL/min) | 0.97 | 0.20 | |
AGEs (A.U) | 1.61 | 0.10 | |
Cr. Cl (mL/min) | 0.98 | 0.42 | |
Age (years) | 1.07 | 0.05 | |
Sex | 1.55 | 0.44 | |
AGEs (A.U.) | 1.84 | 0.019 | |
AGEs (A.U.) | 1.69 | 0.13 | |
Cr. Cl. (mL/min) | 0.97 | 0.25 | |
AGEs (A.U.) | 1.911 | 0.0028 | |
Age (years) | 1.08 | 0.039 |
Dependent Variable | Variable | B | p |
---|---|---|---|
BMI (kg/m2) | Overall | 0.27 | 0.06 |
Sex | 0.06 | 0.47 | |
AGEs (A.U.) | 0.13 | 0.17 | |
Cr. Cl (mL/min) | 0.13 | 0.21 | |
Age (years) | 0.13 | 0.17 | |
Overall | 0.25 | 0.05 | |
Sex | 0.05 | 0.59 | |
AGEs (A.U.) | −0.23 | 0.01 | |
Age (years) | 0.10 | 0.25 | |
Overall | 0.25 | 0.07 | |
Sex | 0.07 | 0.43 | |
AGEs (A.U.) | −0.17 | 0.05 | |
Cr. Cl (mL/min) | 0.10 | 0.32 | |
Overall | 0.28 | 0.02 | |
AGEs (A.U) | −0.17 | 0.049 | |
Cr. Cl (mL/min) | 0.12 | 0.24 | |
Age (years) | 0.15 | 0.08 | |
Overall | 0.23 | 0.04 | |
Sex | 0.06 | 0.53 | |
AGEs (A.U.) | −0.22 | 0.01 | |
Overall | 0.23 | 0.03 | |
AGEs (A.U.) | −0.18 | 0.048 | |
Cr. Cl. (mL/min) | 0.09 | 0.38 | |
Overall | 0.26 | 0.01 | |
AGEs (A.U.) | −0.23 | 0.01 | |
Age (years) | 0.14 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinari, P.; Caldiroli, L.; Dozio, E.; Rigolini, R.; Giubbilini, P.; Carminati, F.M.I.; Castellano, G.; Corsi Romanelli, M.M.; Vettoretti, S. Association of Autofluorescent Advanced Glycation End Products (AGEs) with Frailty Components in Chronic Kidney Disease (CKD): Data from a Single-Center Cohort Study. Cells 2023, 12, 438. https://doi.org/10.3390/cells12030438
Molinari P, Caldiroli L, Dozio E, Rigolini R, Giubbilini P, Carminati FMI, Castellano G, Corsi Romanelli MM, Vettoretti S. Association of Autofluorescent Advanced Glycation End Products (AGEs) with Frailty Components in Chronic Kidney Disease (CKD): Data from a Single-Center Cohort Study. Cells. 2023; 12(3):438. https://doi.org/10.3390/cells12030438
Chicago/Turabian StyleMolinari, Paolo, Lara Caldiroli, Elena Dozio, Roberta Rigolini, Paola Giubbilini, Francesca Maria Ida Carminati, Giuseppe Castellano, Massimiliano M. Corsi Romanelli, and Simone Vettoretti. 2023. "Association of Autofluorescent Advanced Glycation End Products (AGEs) with Frailty Components in Chronic Kidney Disease (CKD): Data from a Single-Center Cohort Study" Cells 12, no. 3: 438. https://doi.org/10.3390/cells12030438
APA StyleMolinari, P., Caldiroli, L., Dozio, E., Rigolini, R., Giubbilini, P., Carminati, F. M. I., Castellano, G., Corsi Romanelli, M. M., & Vettoretti, S. (2023). Association of Autofluorescent Advanced Glycation End Products (AGEs) with Frailty Components in Chronic Kidney Disease (CKD): Data from a Single-Center Cohort Study. Cells, 12(3), 438. https://doi.org/10.3390/cells12030438