People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR+ Tregs
Abstract
:1. Introduction
2. Results
2.1. pwPPMS Present a Lower Number of Circulating Central Memory CD4+ T Cells
2.2. pwPPMS Display a Lower Number of Activated HLA-DR+ among TREGS
2.3. pwPPMS Have a Higher Percentage of the Most Mature NK Cells Expressing NKp46 and of NKT Cells Expressing KIR2DL2/3 and/or NKp30
2.4. Disease Severity and Time from Diagnosis Are Mostly Correlated with Alterations on NK Cells Subsets
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Population
5.2. Blood Processing
5.3. Anti-Human Cytomegalovirus IgG seroprevalence
5.4. FACS Staining
5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; Horwitz, R.; Cutter, G.; Tyry, T.; Campagnolo, D.; Vollmer, T. Comorbidity delays diagnosis and increases disability at diagnosis in MS. Neurology 2009, 72, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Bielekova, B.; Becker, L.B. Monoclonal antibodies in MS Mechanisms of action. Neurology 2010, 74 (Suppl. 1), S31–S40. [Google Scholar] [CrossRef]
- Martin, M.D.P.; Cravens, P.D.; Winger, R.; Frohman, E.M.; Racke, M.K.; Eagar, T.N.; Zamvil, S.S.; Weber, M.S.; Hemmer, B.; Karandikar, N.J.; et al. Decrease in the Numbers of Dendritic Cells and CD4+ T Cells in Cerebral Perivascular Spaces Due to Natalizumab. Arch. Neurol. 2008, 65, 1596–1603. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.R.; Ratzer, R.; Börnsen, L.; Lyksborg, M.; Garde, E.; Dyrby, T.B.; Siebner, H.R.; Sorensen, P.S.; Sellebjerg, F. Natalizumab in progressive MS: Results of an open-label, phase 2A, proof-of-concept trial. Neurology 2014, 82, 1499–1507. [Google Scholar] [CrossRef]
- Wolinsky, J.S.; Arnold, D.L.; Brochet, B.; Hartung, H.-P.; Montalban, X.; Naismith, R.T.; Manfrini, M.; Overell, J.; Koendgen, H.; Sauter, A.; et al. Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: A post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2020, 19, 998–1009. [Google Scholar] [CrossRef]
- Holloman, J.P.; Axtell, R.C.; Monson, N.L.; Wu, G.F. The Role of B Cells in Primary Progressive Multiple Sclerosis. Front. Neurol. 2021, 12, 680581. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Haegert, D.G.; Hackenbroch, J.D.; Duszczyszyn, D.; Fitz-Gerald, L.; Zastepa, E.; Mason, H.; Lapierre, Y.; Antel, J.; Bar-Or, A. Reduced thymic output and peripheral naïve CD4 T-cell alterations in primary progressive multiple sclerosis (PPMS). J. Neuroimmunol. 2011, 233, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.R.; Börnsen, L.; Ratzer, R.; Piehl, F.; Khademi, M.; Olsson, T.; Sorensen, P.S.; Sellebjerg, F. Systemic Inflammation in Progressive Multiple Sclerosis Involves Follicular T-Helper, Th17- and Activated B-Cells and Correlates with Progression. PLoS ONE 2013, 8, e57820. [Google Scholar] [CrossRef] [PubMed]
- Teniente-Serra, A.; Grau-López, L.; Mansilla, M.J.; Fernández-Sanmartín, M.; Condins, A.E.; Ramo-Tello, C.; Martínez-Cáceres, E. Multiparametric flow cytometric analysis of whole blood reveals changes in minor lymphocyte subpopulations of multiple sclerosis patients. Autoimmunity 2016, 49, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Pender, M.P.; Csurhes, P.A.; Pfluger, C.M.; Burrows, S.R. Deficiency of CD8+ effector memory T cells is an early and persistent feature of multiple sclerosis. Mult. Scler. J. 2014, 20, 1825–1832. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, B.R.; Ratzer, R.; Börnsen, L.; von Essen, M.R.; Christensen, J.R.; Sellebjerg, F. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis. J. Neuroimmunol. 2017, 310, 17–25. [Google Scholar] [CrossRef]
- Dombrowski, Y.; O’Hagan, T.; Dittmer, M.; Penalva, R.; Mayoral, S.R.; Bankhead, P.; Fleville, S.; Eleftheriadis, G.; Zhao, C.; Naughton, M.; et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 2017, 20, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Rasmussen, J.; Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 2007, 8, 191–197. [Google Scholar] [CrossRef]
- Canto-Gomes, J.; Silva, C.S.; Rb-Silva, R.; Boleixa, D.; da Silva, A.M.; Cheynier, R.; Costa, P.; González-Suárez, I.; Correia-Neves, M.; Cerqueira, J.J.; et al. Low Memory T Cells Blood Counts and High Naïve Regulatory T Cells Percentage at Relapsing Remitting Multiple Sclerosis Diagnosis. Front. Immunol. 2022, 13, 901165. [Google Scholar] [CrossRef]
- Baecher-Allan, C.; Wolf, E.; Hafler, D.A. MHC Class II Expression Identifies Functionally Distinct Human Regulatory T Cells. J. Immunol. 2006, 176, 4622–4631. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.K.; Saban, D.R.; Lee, H.K.; Dana, R. Levels of Foxp3 in Regulatory T Cells Reflect Their Functional Status in Transplantation. J. Immunol. 2009, 182, 148–153. [Google Scholar] [CrossRef]
- Geraldes, L.; Morgado, J.; Almeida, A.; Todo-Bom, A.; Santos, P.; Chieira, C.; Pais, M.L. Expression patterns of HLA-DR+ or HLA-DR- on CD4+/CD25++/CD127low regulatory t cells in patients with allergy. J. Investig. Allergol. Clin. Immunol. 2010, 20, 201–209. [Google Scholar] [PubMed]
- Kaur, G.; Trowsdale, J.; Fugger, L. Natural killer cells and their receptors in multiple sclerosis. Brain 2013, 136, 2657–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thewissen, M.; Linsen, L.; Somers, V.; Geusens, P.; Raus, J.; Stinissen, P. Premature Immunosenescence in Rheumatoid Arthritis and Multiple Sclerosis Patients. Ann. N. Y. Acad. Sci. 2005, 1051, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Di Benedetto, S.; Derhovanessian, E.; Steinhagen-Thiessen, E.; Goldeck, D.; Müller, L.; Pawelec, G. Impact of age, sex and CMV-infection on peripheral T cell phenotypes: Results from the Berlin BASE-II Study. Biogerontology 2015, 16, 631–643. [Google Scholar] [CrossRef]
- Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; et al. B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis. N. Engl. J. Med. 2008, 358, 676–688. [Google Scholar] [CrossRef] [Green Version]
- Piancone, F.; Saresella, M.; Marventano, I.; La Rosa, F.; Zoppis, M.; Agostini, S.; Longhi, R.; Caputo, D.; Mendozzi, L.; Rovaris, M.; et al. B Lymphocytes in Multiple Sclerosis: Bregs and BTLA/CD272 Expressing-CD19+ Lymphocytes Modulate Disease Severity. Sci. Rep. 2016, 6, 29699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraczka, K.; Nekam, K.; Pozsonyi, T.; Szuts, I.; Ormos, G. Investigation of cytokine (tumor necrosis factor-alpha, interleukin-6, interleukin-10) concentrations in the cerebrospinal fluid of female patients with multiple sclerosis and systemic lupus erythematosus. Eur. J. Neurol. 2004, 11, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Nissimov, N.; Hajiyeva, Z.; Torke, S.; Grondey, K.; Brück, W.; Häusser-Kinzel, S.; Weber, M.S. B cells reappear less mature and more activated after their anti-CD20–mediated depletion in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2020, 117, 25690–25699. [Google Scholar] [CrossRef]
- Ciccocioppo, F.; Lanuti, P.; Pierdomenico, L.; Simeone, P.; Bologna, G.; Ercolino, E.; Buttari, F.; Fantozzi, R.; Thomas, A.; Onofrj, M.; et al. The Characterization of Regulatory T-Cell Profiles in Alzheimer’s Disease and Multiple Sclerosis. Sci. Rep. 2019, 9, 8788. [Google Scholar] [CrossRef] [Green Version]
- Pallmer, K.; Oxenius, A. Recognition and Regulation of T Cells by NK Cells. Front. Immunol. 2016, 7, 251. [Google Scholar] [CrossRef]
- Ahmadi, A.; Vastani, Z.F.; Abounoori, M.; Azizi, M.; Labani-Motlagh, A.; Mami, S.; Mami, S. The role of NK and NKT cells in the pathogenesis and improvement of multiple sclerosis following disease-modifying therapies. Health Sci. Rep. 2022, 5, e489. [Google Scholar] [CrossRef] [PubMed]
- Laroni, A.; Armentani, E.; de Rosbo, N.K.; Ivaldi, F.; Marcenaro, E.; Sivori, S.; Gandhi, R.; Weiner, H.L.; Moretta, A.; Mancardi, G.L.; et al. Dysregulation of regulatory CD56bright NK cells/T cells interactions in multiple sclerosis. J. Autoimmun. 2016, 72, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Llano, M.; Carretero, M.; Ishitani, A.; Navarro, F.; López-Botet, M.; Geraghty, D.E. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl. Acad. Sci. USA 1998, 95, 5199–5204. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wan, Q. NKT Cells in Neurological Diseases. Front. Cell. Neurosci. 2019, 13, 245. [Google Scholar] [CrossRef]
- Mars, L.T.; Gautron, A.-S.; Novak, J.; Beaudoin, L.; Diana, J.; Liblau, R.S.; Lehuen, A. Invariant NKT Cells Regulate Experimental Autoimmune Encephalomyelitis and Infiltrate the Central Nervous System in a CD1d-Independent Manner. J. Immunol. 2008, 181, 2321–2329. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.J.; Chung, D.H. Invariant NKT Cells Producing IL-4 or IL-10, But Not IFN-γ, Inhibit the Th1 Response in Experimental Autoimmune Encephalomyelitis, Whereas None of These Cells Inhibits the Th17 Response. J. Immunol. 2011, 186, 6815–6821. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, H.; Geng, J.; Zheng, X.; Wei, H.; Sun, R.; Tian, Z. Tumor-released Galectin-3, a Soluble Inhibitory Ligand of Human NKp30, Plays an Important Role in Tumor Escape from NK Cell Attack. J. Biol. Chem. 2014, 289, 33311–33319. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, L.A.; Millet, V.; Hoyos, H.C.; Giannoni, J.P.; Croci, D.O.; Marder, M.; Liu, F.T.; Rabinovich, G.A.; Pasquini, J.M. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ. 2011, 18, 1746–1756. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.; Pasquini, L.A. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front. Cell. Neurosci. 2018, 12, 297. [Google Scholar] [CrossRef] [Green Version]
- Haines, J.D.; Vidaurre, O.G.; Zhang, F.; Riffo-Campos, Á.L.; Castillo, J.; Casanova, B.; Casaccia, P.; Lopez-Rodas, G. Multiple sclerosis patient-derived CSF induces transcriptional changes in proliferating oligodendrocyte progenitors. Multile Scler. 2015, 21, 1655–1669. [Google Scholar] [CrossRef]
- Castanho, T.; Santos, N.; Meleiro-Neves, C.; Neto, S.; Moura, G.; Santos, M.; Cruz, A.; Cunha, O.; Rodrigues, A.C.; Sousa, N. Association of positive and negative life events with cognitive performance and psychological status in late life: A cross-sectional study in Northern Portugal. Aging Brain 2021, 1, 100020. [Google Scholar] [CrossRef]
- Marques, P.; Moreira, P.; Magalhães, R.; Costa, P.; Santos, N.; Zihl, J.; Soares, J.; Sousa, N. The functional connectome of cognitive reserve. Hum. Brain Mapp. 2016, 37, 3310–3322. [Google Scholar] [CrossRef]
pwPPMS (n = 23) | Healthy Controls (n = 23) | |
---|---|---|
Age (years). Median [range] | 54.7 [24;74] | 54.4 [25;76] 1 |
Men. % (n) | 30.4 (7) | 30.4 (7) 2 |
Age at PPMS onset (years). Median [range] | 50 [24;73] | na |
Time since MS diagnosis (years). Median [range] | 2.2 [0.2;22.6] | na |
EDSS. Median [range] | 5 [2;7] | na |
anti-HCMV IgG+. % (n) | 95.7 (22) | 95.7 (22) 3 |
1 t44 = −0.095; p = 0.9240 | ||
2 χ2 (df = 1) = 0.000; p = 1.000 | ||
3 χ2 (df = 1) = 0.000; p= 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canto-Gomes, J.; Da Silva-Ferreira, S.; Silva, C.S.; Boleixa, D.; Martins da Silva, A.; González-Suárez, I.; Cerqueira, J.J.; Correia-Neves, M.; Nobrega, C. People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR+ Tregs. Cells 2023, 12, 439. https://doi.org/10.3390/cells12030439
Canto-Gomes J, Da Silva-Ferreira S, Silva CS, Boleixa D, Martins da Silva A, González-Suárez I, Cerqueira JJ, Correia-Neves M, Nobrega C. People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR+ Tregs. Cells. 2023; 12(3):439. https://doi.org/10.3390/cells12030439
Chicago/Turabian StyleCanto-Gomes, João, Sara Da Silva-Ferreira, Carolina S. Silva, Daniela Boleixa, Ana Martins da Silva, Inés González-Suárez, João J. Cerqueira, Margarida Correia-Neves, and Claudia Nobrega. 2023. "People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR+ Tregs" Cells 12, no. 3: 439. https://doi.org/10.3390/cells12030439
APA StyleCanto-Gomes, J., Da Silva-Ferreira, S., Silva, C. S., Boleixa, D., Martins da Silva, A., González-Suárez, I., Cerqueira, J. J., Correia-Neves, M., & Nobrega, C. (2023). People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR+ Tregs. Cells, 12(3), 439. https://doi.org/10.3390/cells12030439