Beyond Pellagra—Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease
Abstract
:1. History of NAD and Pellagra
2. NAD Deficiency Problems in the Modern Day
2.1. NAD and Aging
2.2. NAD and Skin Photoaging
2.3. NAD and Cancer
2.4. Iatrogenic and Nutritional NAD Deficiency
2.5. NAD in Reproduction and Development
2.6. The Role of NAD in Degenerative Diseases
2.7. NAD and Infectious Diseases
3. Models of NAD Deficiency
3.1. In Vitro Models
3.2. In Vivo Models
3.2.1. Historical Models
3.2.2. Dietary Rat Model with Transient NAD Deficiency
3.2.3. Dietary Mouse Models with Mild NAD Deficiency
3.2.4. Pharmacological Animal Models
3.2.5. Genetic Mouse Models
4. Modeling NAD Turnover (“Flux”)
5. Current Strategies to Increase NAD
6. Summary/Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harden, A.; Young, W.J. The Alcoholic Ferment of Yeast-Juice. Proc. R. Soc. Lond. B. 1906, 77, 405–420. [Google Scholar] [CrossRef]
- Friedkin, M.; Lehninger, A.L. Esterification of Inorganic Phosphate Coupled to Electron Transport between Dihydrodiphosphopyridine Nucleotide and Oxygen. J. Biol. Chem. 1949, 178, 611–644. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O.; Christian, J.W.B.Z. Pyridin, the Hydrogen-Transferring Component of the Fermentation Enzymes (Pyridine Nucleotide). Biochem. Z. 1936, 287, 1. [Google Scholar]
- Chambon, P.; Weill, J.D.; Doly, J.; Strosser, M.T.; Mandel, P. On the Formation of a Novel Adenylic Compound by Enzymatic Extracts of Liver Nuclei. Biochem. Biophys. Res. Commun. 1966, 25, 638–643. [Google Scholar] [CrossRef]
- Lüscher, B.; Ahel, I.; Altmeyer, M.; Ashworth, A.; Bai, P.; Chang, P.; Cohen, M.; Corda, D.; Dantzer, F.; Daugherty, M.D.; et al. ADP-Ribosyltransferases, an Update on Function and Nomenclature. FEBS J. 2021, 289, 7399–7410. [Google Scholar] [CrossRef]
- Takasawa, S. CD38-Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and Pathophysiology. Int. J. Mol. Sci. 2022, 23, 4306. [Google Scholar] [CrossRef]
- Zeidler, J.D.; Hogan, K.A.; Agorrody, G.; Peclat, T.R.; Kashyap, S.; Kanamori, K.S.; Gomez, L.S.; Mazdeh, D.Z.; Warner, G.M.; Thompson, K.L.; et al. The CD38 Glycohydrolase and the NAD Sink: Implications for Pathological Conditions. Am. J. Physiol. -Cell Physiol. 2022, 322, C521–C545. [Google Scholar] [CrossRef]
- Chini, C.C.S.; Zeidler, J.D.; Kashyap, S.; Warner, G.; Chini, E.N. Evolving Concepts in NAD+ Metabolism. Cell Metab. 2021, 33, 1076–1087. [Google Scholar] [CrossRef]
- Morabia, A. Joseph Goldberger’s Research on the Prevention of Pellagra. JRSM 2008, 101, 566–568. [Google Scholar] [CrossRef]
- Elvehjem, C.A.; Madden, R.J.; Strong, F.M.; Wolley, D.W. The Isolation and Identification of the Anti-Black Tongue Factor. 1937. J. Biol. Chem. 2002, 277, e22. [Google Scholar]
- Spies, T.D. The Use of Nicotinic Acid in the Treatment of Pellagra. JAMA 1938, 110, 622. [Google Scholar] [CrossRef]
- Park, Y.K.; Sempos, C.T.; Barton, C.N.; Vanderveen, J.E.; Yetley, E.A. Effectiveness of Food Fortification in the United States: The Case of Pellagra. Am. J. Public Health 2000, 90, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Bishai, D.; Nalubola, R. The History of Food Fortification in the United States: Its Relevance for Current Fortification Efforts in Developing Countries. Econ. Dev. Cult. Change 2002, 51, 37–53. [Google Scholar] [CrossRef]
- Jacobson, E.L. Niacin Deficiency and Cancer in Women. J. Am. Coll. Nutr. 1993, 12, 412–416. [Google Scholar] [CrossRef]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD+ Metabolism: Pathophysiologic Mechanisms and Therapeutic Potential. Sig. Transduct. Target Ther. 2020, 5, 227. [Google Scholar] [CrossRef]
- Strømland, Ø.; Niere, M.; Nikiforov, A.A.; VanLinden, M.R.; Heiland, I.; Ziegler, M. Keeping the Balance in NAD Metabolism. Biochem. Soc. Trans. 2019, 47, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-H.; Lu, M.; Lee, B.-Y.; Ugurbil, K.; Chen, W. In Vivo NAD Assay Reveals the Intracellular NAD Contents and Redox State in Healthy Human Brain and Their Age Dependences. Proc. Natl. Acad. Sci. USA 2015, 112, 2876–2881. [Google Scholar] [CrossRef] [PubMed]
- Yaku, K.; Okabe, K.; Hikosaka, K.; Nakagawa, T. NAD Metabolism in Cancer Therapeutics. Front. Oncol. 2018, 8, 622. [Google Scholar] [CrossRef]
- Jagielska, G.; Tomaszewicz-Libudzic, E.C.; Brzozowska, A. Pellagra: A Rare Complication of Anorexia Nervosa. Eur. Child Adolesc. Psychiatry 2007, 16, 417–420. [Google Scholar] [CrossRef]
- Portale, S.; Sculati, M.; Stanford, F.C.; Cena, H. Pellagra and Anorexia Nervosa: A Case Report. Eat. Weight Disord. 2020, 25, 1493–1496. [Google Scholar] [CrossRef]
- Prousky, J.E. Pellagra May Be a Rare Secondary Complication of Anorexia Nervosa: A Systematic Review of the Literature. Altern. Med. Rev. 2003, 8, 180–185. [Google Scholar] [PubMed]
- Badawy, A.A.-B. Pellagra and Alcoholism: A Biochemical Perspective. Alcohol Alcohol. 2014, 49, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Boileau, M.; Azib, S.; Staumont-Sallé, D.; Dezoteux, F. Increased Risk of Pellagra in an Alcoholic Patient Treated with Antiepileptic Drugs. Ann. De Dermatol. Et De Vénéréologie 2022, 149, 284–285. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.; Heng, L.; Shaodong, W.; Fangyu, W.; Zhenkai, W. Pellagra Affecting a Patient with Crohn’s Disease. An. Bras. Dermatol. 2017, 92, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Barrah, S.; Jebali, H.; Kheder, R.; Krid, M.; Smaoui, W.; Beji, S.; Hmida, F.; Fatma, L.; Rais, L.; Zouaghi, M. Pellagra Disease in a Hemodialysis Patient. Saudi J. Kidney Dis. Transpl. 2020, 31, 874. [Google Scholar] [CrossRef]
- Ftukijwatari, T.; Murakami, M.; Ohta, M.; Kimura, N.; Jin-No, Y.; Sasaki, R.; Shibata, K. Changes in the Urinary Excretion of the Metabolites of the Tryptophan-Niacin Pathway during Pregnancy in Japanese Women and Rats. J. Nutr. Sci. Vitaminol. 2004, 50, 392–398. [Google Scholar] [CrossRef]
- Shibata, K.; Fukuwatari, T.; Murakami, M.; Sasaki, R. Increase in Conversion of Tryptophan to Niacin in Pregnant Rats. Adv. Exp. Med. Biol. 2003, 527, 435–441. [Google Scholar] [CrossRef]
- Dattilo, M.; Giuseppe, D.; Ettore, C.; Ménézo, Y. Improvement of Gamete Quality by Stimulating and Feeding the Endogenous Antioxidant System: Mechanisms, Clinical Results, Insights on Gene-Environment Interactions and the Role of Diet. J. Assist. Reprod. Genet. 2016, 33, 1633–1648. [Google Scholar] [CrossRef]
- Martin, J.H.; Nixon, B.; Cafe, S.L.; Aitken, R.J.; Bromfield, E.G.; Lord, T. Oxidative stress and reproductive function: Oxidative Stress and in Vitro Ageing of the Post-Ovulatory Oocyte: An Update on Recent Advances in the Field. Reproduction 2022, 164, F109–F124. [Google Scholar] [CrossRef]
- Bertoldo, M.J.; Listijono, D.R.; Ho, W.-H.J.; Riepsamen, A.H.; Goss, D.M.; Richani, D.; Jin, X.L.; Mahbub, S.; Campbell, J.M.; Habibalahi, A.; et al. NAD+ Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep. 2020, 30, 1670–1681.e7. [Google Scholar] [CrossRef]
- Miao, Y.; Cui, Z.; Gao, Q.; Rui, R.; Xiong, B. Nicotinamide Mononucleotide Supplementation Reverses the Declining Quality of Maternally Aged Oocytes. Cell Rep. 2020, 32, 107987. [Google Scholar] [CrossRef]
- Meyer-Ficca, M.L.; Zwerdling, A.E.; Swanson, C.A.; Tucker, A.G.; Lopez, S.A.; Wandersee, M.K.; Warner, G.M.; Thompson, K.L.; Chini, C.C.S.; Chen, H.; et al. Low NAD+ Levels Are Associated With a Decline of Spermatogenesis in Transgenic ANDY and Aging Mice. Front. Endocrinol. 2022, 13, 896356. [Google Scholar] [CrossRef]
- Shi, H.; Enriquez, A.; Rapadas, M.; Martin, E.M.M.A.; Wang, R.; Moreau, J.; Lim, C.K.; Szot, J.O.; Ip, E.; Hughes, J.N.; et al. NAD Deficiency, Congenital Malformations, and Niacin Supplementation. N. Engl. J. Med. 2017, 377, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Lautrup, S.; Sinclair, D.A.; Mattson, M.P.; Fang, E.F. NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019, 30, 630–655. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.F.; Lautrup, S.; Hou, Y.; Demarest, T.G.; Croteau, D.L.; Mattson, M.P.; Bohr, V.A. NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol. Med. 2017, 23, 899–916. [Google Scholar] [CrossRef] [PubMed]
- Garrido, A.; Djouder, N. NAD+ Deficits in Age-Related Diseases and Cancer. Trends Cancer 2017, 3, 593–610. [Google Scholar] [CrossRef]
- Katsyuba, E.; Romani, M.; Hofer, D.; Auwerx, J. NAD+ Homeostasis in Health and Disease. Nat. Metab. 2020, 2, 9–31. [Google Scholar] [CrossRef] [PubMed]
- Massudi, H.; Grant, R.; Braidy, N.; Guest, J.; Farnsworth, B.; Guillemin, G.J. Age-Associated Changes in Oxidative Stress and NAD+ Metabolism in Human Tissue. PLoS ONE 2012, 7, e42357. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Guillemin, G.J.; Mansour, H.; Chan-Ling, T.; Poljak, A.; Grant, R. Age Related Changes in NAD+ Metabolism Oxidative Stress and Sirt1 Activity in Wistar Rats. PLoS ONE 2011, 6, e19194. [Google Scholar] [CrossRef]
- Strømland, Ø.; Diab, J.; Ferrario, E.; Sverkeli, L.J.; Ziegler, M. The Balance between NAD+ Biosynthesis and Consumption in Ageing. Mech. Ageing Dev. 2021, 199, 111569. [Google Scholar] [CrossRef]
- Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S. Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice. Cell Metabolism. 2011, 14, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Chini, C.C.S.; Peclat, T.R.; Warner, G.M.; Kashyap, S.; Espindola-Netto, J.M.; de Oliveira, G.C.; Gomez, L.S.; Hogan, K.A.; Tarragó, M.G.; Puranik, A.S.; et al. CD38 Ecto-Enzyme in Immune Cells Is Induced during Aging and Regulates NAD+ and NMN Levels. Nat. Metab. 2020, 2, 1284–1304. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Pereira, J.; Tarragó, M.G.; Chini, C.C.S.; Nin, V.; Escande, C.; Warner, G.M.; Puranik, A.S.; Schoon, R.A.; Reid, J.M.; Galina, A.; et al. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab. 2016, 23, 1127–1139. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nat. Rev. Mol. Cell Biol. 2020, 22, 119–141. [Google Scholar] [CrossRef] [PubMed]
- Deniz, M.; Zengerling, F.; Gundelach, T.; Moreno-Villanueva, M.; Bürkle, A.; Janni, W.; Bolenz, C.; Kostezka, S.; Marienfeld, R.; Benckendorff, J.; et al. Age-Related Activity of Poly (ADP-Ribose) Polymerase (PARP) in Men with Localized Prostate Cancer. Mech. Ageing Dev. 2021, 196, 111494. [Google Scholar] [CrossRef]
- Schumacher, B.; Pothof, J.; Vijg, J.; Hoeijmakers, J.H.J. The Central Role of DNA Damage in the Ageing Process. Nature 2021, 592, 695–703. [Google Scholar] [CrossRef]
- Grube, K.; Bürkle, A. Poly(ADP-Ribose) Polymerase Activity in Mononuclear Leukocytes of 13 Mammalian Species Correlates with Species-Specific Life Span. Proc. Natl. Acad. Sci. USA 1992, 89, 11759–11763. [Google Scholar] [CrossRef]
- Beneke, S.; Burkle, A. Poly(ADP-Ribosyl)Ation in Mammalian Ageing. Nucleic Acids Res. 2007, 35, 7456–7465. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, J.; Hu, K.; He, X.; Yun, D.; Tong, T.; Han, L. Sirtuins and Their Biological Relevance in Aging and Age-Related Diseases. Aging Dis. 2020, 11, 927. [Google Scholar] [CrossRef]
- Imai, S.; Guarente, L. It Takes Two to Tango: NAD+ and Sirtuins in Aging/Longevity Control. NPJ Aging Mech. Dis. 2016, 2, 16017. [Google Scholar] [CrossRef]
- Schmauck-Medina, T.; Molière, A.; Lautrup, S.; Zhang, J.; Chlopicki, S.; Madsen, H.B.; Cao, S.; Soendenbroe, C.; Mansell, E.; Vestergaard, M.B.; et al. New Hallmarks of Ageing: A 2022 Copenhagen Ageing Meeting Summary. Aging 2022, 14, 6829–6839. [Google Scholar] [CrossRef] [PubMed]
- Poston, H.A.; Wolfe, M.J. Niacin Requirement for Optimum Growth, Feed Conversion and Protection of Rainbow Trout, Salmo Gairdneri Richardson, from Ultraviolet-B Irradiation. J. Fish Diseases 1985, 8, 451–460. [Google Scholar] [CrossRef]
- Shah, G.M.; Le Rhun, Y.; Sutarjono, I.; Kirkland, J.B. Niacin Deficient SKH-1 Mice Are More Susceptible to Ultraviolet B Radiation-Induced Skin Carcinogenesis. J. Nutr. 2001, 131, 3150S. [Google Scholar]
- Benavente, C.A.; Jacobson, M.K.; Jacobson, E.L. NAD in Skin: Therapeutic Approaches for Niacin. Curr. Pharm. Des. 2009, 15, 29–38. [Google Scholar] [CrossRef]
- Benavente, C.A.; Jacobson, E.L. Niacin Restriction Upregulates NADPH Oxidase and Reactive Oxygen Species (ROS) in Human Keratinocytes. Free Radic. Biol. Med. 2008, 44, 527–537. [Google Scholar] [CrossRef]
- Kang, M.; Park, S.; Park, S.-H.; Lee, H.G.; Park, J.H. A Double-Edged Sword: The Two Faces of PARylation. Int. J. Mol. Sci. 2022, 23, 9826. [Google Scholar] [CrossRef]
- Pascal, J.M. The Comings and Goings of PARP-1 in Response to DNA Damage. DNA Repair 2018, 71, 177–182. [Google Scholar] [CrossRef]
- Eisemann, T.; Pascal, J.M. Poly(ADP-Ribose) Polymerase Enzymes and the Maintenance of Genome Integrity. Cell. Mol. Life Sci. 2020, 77, 19–33. [Google Scholar] [CrossRef]
- Martin-Hernandez, K.; Rodriguez-Vargas, J.-M.; Schreiber, V.; Dantzer, F. Expanding Functions of ADP-Ribosylation in the Maintenance of Genome Integrity. Semin. Cell Dev. Biol. 2017, 63, 92–101. [Google Scholar] [CrossRef]
- Dawson, V.L.; Dawson, T.M. Deadly Conversations: Nuclear-Mitochondrial Cross-Talk. J. Bioenerg. Biomembr. 2004, 36, 287–294. [Google Scholar] [CrossRef]
- Risdon, E.N.; Chau, C.H.; Price, D.K.; Sartor, O.; Figg, W.D. PARP Inhibitors and Prostate Cancer: To Infinity and Beyond BRCA. Oncologist 2021, 26, e115–e129. [Google Scholar] [CrossRef] [PubMed]
- Tummala, K.S.; Gomes, A.L.; Yilmaz, M.; Graña, O.; Bakiri, L.; Ruppen, I.; Ximénez-Embún, P.; Sheshappanavar, V.; Rodriguez-Justo, M.; Pisano, D.G.; et al. Inhibition of De Novo NAD + Synthesis by Oncogenic URI Causes Liver Tumorigenesis through DNA Damage. Cancer Cell 2014, 26, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, J.B. Niacin and Carcinogenesis. Nutr. Cancer 2003, 46, 110–118. [Google Scholar] [CrossRef]
- Nikas, I.P.; Paschou, S.A.; Ryu, H.S. The Role of Nicotinamide in Cancer Chemoprevention and Therapy. Biomolecules 2020, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Navas, L.E.; Carnero, A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022, 11, 2627. [Google Scholar] [CrossRef]
- Ghanem, M.S.; Monacelli, F.; Nencioni, A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021, 13, 1665. [Google Scholar] [CrossRef]
- Shah, G.M.; Shah, R.G.; Veillette, H.; Kirkland, J.B.; Pasieka, J.L.; Warner, R.R.P. Biochemical Assessment of Niacin Deficiency among Carcinoid Cancer Patients. Am. J. Gastroenterol. 2005, 100, 2307–2314. [Google Scholar] [CrossRef]
- Yokomizo, Y.; Fujikawa, A.; Tajiri, T.; Ota, J.; Yumura, Y.; Moriyama, M.; Mouri, S. [Two cases of pellagra associated with chemotherapy of docetaxel, estramustine, dexamethasone]. Hinyokika Kiyo 2010, 56, 585–588. [Google Scholar]
- Conahan, C.; Booth, S.; Hartley, M.; Okpoebo, A.; Sun, J. Pellagra Secondary to GI Malignancy and Fluorouracil-Based Chemotherapy. J. Oncol. Pract. 2018, 14, 696–698JOP1800227. [Google Scholar] [CrossRef]
- Prabhu, D.; Dawe, R.S.; Mponda, K. Pellagra a Review Exploring Causes and Mechanisms, Including Isoniazid-induced Pellagra. Photodermatol. Photoimmunol. Photomed. 2021, 37, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Coates, S.J.; Blasini, A.W.; Musinguzi, P.; Laker-Oketta, M. Drug-Related Pellagra in a Ugandan Woman on Isoniazid Preventative Therapy. IDCases 2020, 20, e00750. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Y.; Shah, I. Ethionamide-Induced Pellagra. J. Trop. Pediatr. 2015, 61, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Stevens, H.P.; Ostlere, L.S.; Begent, R.H.; Dooley, J.S.; Rustin, M.H. Pellagra Secondary to 5-Fluorouracil. Br. J. Dermatol. 1993, 128, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, T.; Ma, C.; Li, H.; Li, Z.; Guo, J. Azathioprine-Induced Pellagra in Neuromyelitis Optica: A Case Report and Review of Literature. Mult. Scler. Relat. Disord. 2018, 25, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Kabengele, C.; M’hango, H.; Mweemba, D.; Malumani, M. A Peculiarly Characterised Case of Isoniazid-Induced Pellagra- 2 Ds and a C: A Case Report. Pan. Afr. Med. J. 2021, 39, 73. [Google Scholar] [CrossRef] [PubMed]
- Nabity, S.A.; Mponda, K.; Gutreuter, S.; Surie, D.; Zimba, S.B.; Chisuwo, L.; Moffitt, A.; Williams, A.M.; Sharma, A.J.; Marshall, R.E.; et al. Isoniazid-Associated Pellagra during Mass Scale-up of Tuberculosis Preventive Therapy: A Case-Control Study. Lancet Glob. Health 2022, 10, e705–e714. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Xu, J.; Zeng, X.; Sun, Y.; Yang, Q. Nicotinamide Riboside Supplementation Ameliorated Post-Ovulatory Oocyte Quality Decline. Reproduction 2023, 165, 103–111. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, J.; Yang, G.; Feng, T.; Zhang, X.; Chen, Y.; Feng, R.; Qian, Y. Effects of Nicotinamide on Follicular Development and the Quality of Oocytes. Reprod. Biol. Endocrinol. 2022, 20, 70. [Google Scholar] [CrossRef]
- Pollard, C.-L.; Gibb, Z.; Swegen, A.; Grupen, C.G. NAD+, Sirtuins and PARPs: Enhancing Oocyte Developmental Competence. J. Reprod. Dev. 2022, 68, 2022–2052. [Google Scholar] [CrossRef]
- Pollard, C.-L.; Younan, A.; Swegen, A.; Gibb, Z.; Grupen, C.G. Insights into the NAD+ Biosynthesis Pathways Involved during Meiotic Maturation and Spindle Formation in Porcine Oocytes. J. Reprod. Dev. 2022, 68, 216–224. [Google Scholar] [CrossRef]
- Pollard, C.-L.; Gibb, Z.; Clulow, J.; Ruiz, A.; Sheridan, A.; Bahrami, M.; Swegen, A.; Grupen, C.G. Supplemental Nicotinic Acid Elevates NAD+ Precursors in the Follicular Fluid of Mares. Animals 2022, 12, 1383. [Google Scholar] [CrossRef]
- Mark, P.R.; Dunwoodie, S.L. Viewing Teratogens through the Lens of Nicotinamide Adenine Dinucleotide (NAD+). Birth Defects Res. 2022, 114, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
- Palawaththa, S.; Islam, R.M.; Illic, D.; Rabel, K.; Lee, M.; Romero, L.; Leung, X.Y.; Karim, M.N. Effect of Maternal Dietary Niacin Intake on Congenital Anomalies: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2022, 61, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a Risk Factor for Neurodegenerative Disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zou, Z.; Li, Q. Nicotinic Acid Supplementation Contributes to the Amelioration of Alzheimer’s Disease in Mouse Models. Ann. Transl. Med. 2022, 10, 1049. [Google Scholar] [CrossRef]
- Kayazawa, T.; Kuniyoshi, K.; Hatsukawa, Y.; Fujinami, K.; Yoshitake, K.; Tsunoda, K.; Shimojo, H.; Iwata, T.; Kusaka, S. Clinical Course of a Japanese Girl with Leber Congenital Amaurosis Associated with a Novel Nonsense Pathogenic Variant in NMNAT1: A Case Report and Mini Review. Ophthalmic Genet. 2022, 43, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.S.; Corneo, B.; Miller, J.D.; Kiehl, T.R.; Wang, Q.; Boles, N.C.; Blenkinsop, T.A.; Stern, J.H.; Temple, S. Nicotinamide Ameliorates Disease Phenotypes in a Human IPSC Model of Age-Related Macular Degeneration. Cell Stem Cell 2017, 20, 635–647.e7. [Google Scholar] [CrossRef]
- Cimaglia, G.; Votruba, M.; Morgan, J.E.; André, H.; Williams, P.A. Potential Therapeutic Benefit of NAD+ Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020, 12, 2871. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Harder, J.M.; Foxworth, N.E.; Cochran, K.E.; Philip, V.M.; Porciatti, V.; Smithies, O.; John, S.W.M. Vitamin B3 Modulates Mitochondrial Vulnerability and Prevents Glaucoma in Aged Mice. Science 2017, 355, 756–760. [Google Scholar] [CrossRef]
- Kim, H.-N.; Ponte, F.; Warren, A.; Ring, R.; Iyer, S.; Han, L.; Almeida, M. A Decrease in NAD+ Contributes to the Loss of Osteoprogenitors and Bone Mass with Aging. NPJ Aging Mech. Dis. 2021, 7, 8. [Google Scholar] [CrossRef]
- Migliavacca, E.; Tay, S.K.H.; Patel, H.P.; Sonntag, T.; Civiletto, G.; McFarlane, C.; Forrester, T.; Barton, S.J.; Leow, M.K.; Antoun, E.; et al. Mitochondrial Oxidative Capacity and NAD+ Biosynthesis Are Reduced in Human Sarcopenia across Ethnicities. Nat. Commun. 2019, 10, 5808. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, Y.; Zhou, L.; Sangwung, P.; Fujioka, H.; Zhang, L.; Liao, X. Short-Term Administration of Nicotinamide Mononucleotide Preserves Cardiac Mitochondrial Homeostasis and Prevents Heart Failure. J. Mol. Cell. Cardiol. 2017, 112, 64–73. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, X.; Li, J.; Liu, J.; Baks-te Bulte, L.; Wiersma, M.; Malik, N.-A.; van Marion, D.M.S.; Tolouee, M.; Hoogstra-Berends, F.; et al. DNA Damage-Induced PARP1 Activation Confers Cardiomyocyte Dysfunction through NAD+ Depletion in Experimental Atrial Fibrillation. Nat. Commun. 2019, 10, 1307. [Google Scholar] [CrossRef]
- Shi, B.; Wang, W.; Korman, B.; Kai, L.; Wang, Q.; Wei, J.; Bale, S.; Marangoni, R.G.; Bhattacharyya, S.; Miller, S.; et al. Targeting CD38-Dependent NAD+ Metabolism to Mitigate Multiple Organ Fibrosis. iScience 2021, 24, 101902. [Google Scholar] [CrossRef] [PubMed]
- Balducci, E.; Braidy, N.; Migaud, M. Editorial: NAD+ Metabolism as a Novel Target against Infection-Volume II. Front. Mol. Biosci. 2022, 9, 1087897. [Google Scholar] [CrossRef]
- Tran, T.; Pencina, K.M.; Schultz, M.B.; Li, Z.; Ghattas, C.; Lau, J.; Sinclair, D.A.; Montano, M. Reduced Levels of NAD in Skeletal Muscle and Increased Physiologic Frailty Are Associated With Viral Coinfection in Asymptomatic Middle-Aged Adults. J. Acquir. Immune Defic. Syndr. 2022, 89, S15–S22. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.F.; Nghiem, M.; Srinivasan, A. HIV Infection Decreases Intracellular Nicotinamide Adenine Dinucleotide [NAD]. Biochem. Biophys. Res. Commun. 1995, 212, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.F.; Srinivasan, A. Nicotinamide Inhibits HIV-1 in Both Acute and Chronic in Vitro Infection. Biochem. Biophys. Res. Commun. 1995, 210, 954–959. [Google Scholar] [CrossRef]
- Murray, M.F. Niacin as a Potential AIDS Preventive Factor. Med. Hypotheses 1999, 53, 375–379. [Google Scholar] [CrossRef]
- Taylor, E.W. The Oxidative Stress-Induced Niacin Sink (OSINS) Model for HIV Pathogenesis. Toxicology 2010, 278, 124–130. [Google Scholar] [CrossRef]
- Grunewald, M.E.; Shaban, M.G.; Mackin, S.R.; Fehr, A.R.; Perlman, S. Murine Coronavirus Infection Activates the Aryl Hydrocarbon Receptor in an Indoleamine 2,3-Dioxygenase-Independent Manner, Contributing to Cytokine Modulation and Proviral TCDD-Inducible-PARP Expression. J. Virol. 2020, 94, e01743-19. [Google Scholar] [CrossRef]
- Zheng, M.; Schultz, M.B.; Sinclair, D.A. NAD+ in COVID-19 and Viral Infections. Trends Immunol. 2022, 43, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zheng, C. When PARPs Meet Antiviral Innate Immunity. Trends Microbiol. 2021, 29, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Heer, C.D.; Sanderson, D.J.; Voth, L.S.; Alhammad, Y.M.O.; Schmidt, M.S.; Trammell, S.A.J.; Perlman, S.; Cohen, M.S.; Fehr, A.R.; Brenner, C. Coronavirus Infection and PARP Expression Dysregulate the NAD Metabolome: An Actionable Component of Innate Immunity. J. Biol. Chem. 2020, 295, 17986–17996. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.; Wentzel, A.R.; Richards, G.A. COVID-19: NAD+ Deficiency May Predispose the Aged, Obese and Type2 Diabetics to Mortality through Its Effect on SIRT1 Activity. Med. Hypotheses 2020, 144, 110044. [Google Scholar] [CrossRef] [PubMed]
- Habeichi, N.J.; Tannous, C.; Yabluchanskiy, A.; Altara, R.; Mericskay, M.; Booz, G.W.; Zouein, F.A. Insights into the Modulation of the Interferon Response and NAD+ in the Context of COVID-19. Int. Rev. Immunol. 2022, 41, 464–474. [Google Scholar] [CrossRef]
- Durkacz, B.W.; Omidiji, O.; Gray, D.A.; Shall, S. (ADP-Ribose)n Participates in DNA Excision Repair. Nature 1980, 283, 593–596. [Google Scholar] [CrossRef]
- Poirier, G.G.; Moreau, P. ADP-Ribosylation Reactions; Springer New York: New York, NY, USA, 1992; ISBN 978-1-4419-8718-1. [Google Scholar]
- Rawling, J.M.; Jackson, T.M.; Driscoll, E.R.; Kirkland, J.B. Dietary Niacin Deficiency Lowers Tissue Poly(ADP-Ribose) and NAD+ Concentrations in Fischer-344 Rats. J. Nutr. 1994, 124, 1597–1603. [Google Scholar] [CrossRef]
- Liu, L.; Su, X.; Quinn, W.J.; Hui, S.; Krukenberg, K.; Frederick, D.W.; Redpath, P.; Zhan, L.; Chellappa, K.; White, E.; et al. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. 2018, 27, 1067–1080.e5. [Google Scholar] [CrossRef]
- Benavente, C.A.; Schnell, S.A.; Jacobson, E.L. Effects of Niacin Restriction on Sirtuin and PARP Responses to Photodamage in Human Skin. PLoS ONE 2012, 7, e42276. [Google Scholar] [CrossRef]
- Chittenden, R.H.; Underhill, F.P. The Production in Dogs of a Pathological Condition Which Closely Resembles Human Pellagra. Proc. Natl. Acad. Sci. USA 1917, 3, 195–197. [Google Scholar] [CrossRef]
- Elvehjem, C.A.; Madden, R.J.; Strong, F.M.; Woolley, D.W. Relation of nicotinic acid and nicotinic acid amide to canine black tongue. J. Am. Chem. Soc. 1937, 59, 1767–1768. [Google Scholar] [CrossRef]
- Koehn, C.J., Jr.; Elvehjem, C.A. Further Studies on the Concentration of the Antipellagra Factor. J. Biol. Chem. 1937, 118, 693–699. [Google Scholar] [CrossRef]
- Burch, H.B.; Storvick, C.A.; Bicknell, R.L.; Kung, H.C.; Alejo, L.G.; Everhart, W.A.; Lowry, O.H.; King, C.G.; Bessey, O.A. Metabolic studies of precursors of pyridine nucleotides. J. Biol. Chem. 1955, 212, 897–907. [Google Scholar] [CrossRef]
- Spirtes, M.A.; Alper, C. The Effect of Niacin-Deficient, Tryptophan-Low and Protein-Deficient Diets on the DPN/DPNH Ratio in Mouse Liver. J. Nutr. 1961, 73, 374–378. [Google Scholar] [CrossRef]
- Reid, M.E. Nutritional Studies with the Guinea Pig. J. Nutr. 1961, 75, 279–286. [Google Scholar] [CrossRef]
- Wooley, J.G.; Sebrell, W.H. Niacin (Nicotinic Acid), an Essential Growth Factor for Rabbits Fed A Purified Diet. J. Nutr. 1945, 29, 191–199. [Google Scholar] [CrossRef]
- Hickman, D.L.; Johnson, J.; Vemulapalli, T.H.; Crisler, J.R.; Shepherd, R. Commonly Used Animal Models. In Principles of Animal Research; Elsevier: Amsterdam, The Netherlands, 2017; pp. 117–175. ISBN 978-0-12-802151-4. [Google Scholar]
- Thorn, S.L.; Young, G.S.; Kirkland, J.B. The Guinea-Pig Is a Poor Animal Model for Studies of Niacin Deficiency and Presents Challenges in Any Study Using Purified Diets. Br. J. Nutr. 2007, 98, 78–85. [Google Scholar] [CrossRef]
- Fukuwatari, T.; Shibata, K. Nutritional Aspect of Tryptophan Metabolism. Int. J. Tryptophan Res. 2013, 6s1, IJTR-S11588. [Google Scholar] [CrossRef]
- Palzer, L.; Bader, J.J.; Angel, F.; Witzel, M.; Blaser, S.; McNeil, A.; Wandersee, M.K.; Leu, N.A.; Lengner, C.J.; Cho, C.E.; et al. Alpha-Amino-Beta-Carboxy-Muconate-Semialdehyde Decarboxylase Controls Dietary Niacin Requirements for NAD+ Synthesis. Cell Rep. 2018, 25, 1359–1370.e4. [Google Scholar] [CrossRef]
- Horwitt, M.K.; Harper, A.E.; Henderson, L.M. Niacin-Tryptophan Relationships for Evaluating Niacin Equivalents. Am. J. Clin. Nutr. 1981, 34, 423–427. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Henning, M. Poly(ADP-Ribose) Polymerase Activity and DNA Strand Breaks Are Affected in Tissues of Niacin-Deficient Rats. J. Nutr. 1993, 123, 1349–1355. [Google Scholar]
- Boyonoski, A.C.; Gallacher, L.M.; ApSimon, M.M.; Jacobs, R.M.; Shah, G.M.; Poirier, G.G.; Kirkland, J.B. Niacin Deficiency Increases the Sensitivity of Rats to the Short and Long Term Effects of Ethylnitrosourea Treatment. Mol. Cell. Biochem. 1999, 193, 83–87. [Google Scholar] [CrossRef]
- Boyonoski, A.C.; Gallacher, L.M.; ApSimon, M.M.; Jacobs, R.M.; Shah, G.M.; Poirier, G.G.; Kirkland, J.B. Niacin Deficiency in Rats Increases the Severity of Ethylnitrosourea-Induced Anemia and Leukopenia. J. Nutr. 2000, 130, 1102–1107. [Google Scholar] [CrossRef]
- Boyonoski, A.C.; Spronck, J.C.; Jacobs, R.M.; Shah, G.M.; Poirier, G.G.; Kirkland, J.B. Pharmacological Intakes of Niacin Increase Bone Marrow Poly(ADP-Ribose) and the Latency of Ethylnitrosourea-Induced Carcinogenesis in Rats. J. Nutr. 2002, 132, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Boyonoski, A.C.; Spronck, J.C.; Gallacher, L.M.; Jacobs, R.M.; Shah, G.M.; Poirier, G.G.; Kirkland, J.B. Niacin Deficiency Decreases Bone Marrow Poly(ADP-Ribose) and the Latency of Ethylnitrosourea-Induced Carcinogenesis in Rats. J. Nutr. 2002, 132, 108–114. [Google Scholar] [CrossRef]
- Spronck, J.C.; Kirkland, J.B. Niacin Deficiency Increases Spontaneous and Etoposide-Induced Chromosomal Instability in Rat Bone Marrow Cells in Vivo. Mutat. Res. 2002, 508, 83–97. [Google Scholar] [CrossRef]
- Bartleman, A.-P.; Jacobs, R.; Kirkland, J.B. Niacin Supplementation Decreases the Incidence of Alkylation-Induced Nonlymphocytic Leukemia in Long-Evans Rats. Nutr. Cancer 2008, 60, 251–258. [Google Scholar] [CrossRef]
- Tang, K.; Sham, H.; Hui, E.; Kirkland, J.B. Niacin Deficiency Causes Oxidative Stress in Rat Bone Marrow Cells but Not through Decreased NADPH or Glutathione Status. J. Nutr. Biochem. 2008, 19, 746–753. [Google Scholar] [CrossRef]
- Shi, W.; Hegeman, M.A.; Doncheva, A.; der Stelt, I.; Bekkenkamp-Grovenstein, M.; Schothorst, E.M.; Brenner, C.; Boer, V.C.J.; Keijer, J. Transcriptional Response of White Adipose Tissue to Withdrawal of Vitamin B3. Mol. Nutr. Food Res. 2019, 63, 1801100. [Google Scholar] [CrossRef]
- Susai, N.; Kuroita, T.; Kuronuma, K.; Yoshioka, T. Analysis of the Gut Microbiome to Validate a Mouse Model of Pellagra. Biosci. Microbiota Food Health 2022, 41, 73–82. [Google Scholar] [CrossRef]
- Shi, W.; Hegeman, M.A.; van Dartel, D.A.M.; Tang, J.; Suarez, M.; Swarts, H.; van der Hee, B.; Arola, L.; Keijer, J. Effects of a Wide Range of Dietary Nicotinamide Riboside (NR) Concentrations on Metabolic Flexibility and White Adipose Tissue (WAT) of Mice Fed a Mildly Obesogenic Diet. Mol. Nutr. Food Res. 2017, 61, 1600878. [Google Scholar] [CrossRef]
- van der Stelt, I.; Shi, W.; Bekkenkamp-Grovenstein, M.; Zapata-Pérez, R.; Houtkooper, R.H.; de Boer, V.C.J.; Hegeman, M.A.; Keijer, J. The Female Mouse Is Resistant to Mild Vitamin B3 Deficiency. Eur. J. Nutr. 2022, 61, 329–340. [Google Scholar] [CrossRef]
- Cuny, H.; Rapadas, M.; Gereis, J.; Martin, E.M.M.A.; Kirk, R.B.; Shi, H.; Dunwoodie, S.L. NAD Deficiency Due to Environmental Factors or Gene–Environment Interactions Causes Congenital Malformations and Miscarriage in Mice. Proc. Natl. Acad. Sci. USA 2020, 117, 3738–3747. [Google Scholar] [CrossRef]
- Sugita, K.; Ikenouchi-Sugita, A.; Nakayama, Y.; Yoshioka, H.; Nomura, T.; Sakabe, J.; Nakahigashi, K.; Kuroda, E.; Uematsu, S.; Nakamura, J.; et al. Prostaglandin E2 Is Critical for the Development of Niacin-Deficiency-Induced Photosensitivity via ROS Production. Sci. Rep. 2013, 3, 2973. [Google Scholar] [CrossRef] [Green Version]
- Natsumi, S.; Kuroita, T.; Ishikawa, T.; Kuronuma, K.; Yoshioka, T. Effect of Niacin Supplementation on Nausea-like Behaviour in an Isoniazid-Induced Mouse Model of Pellagra. Br. J. Nutr. 2022, 127, 961–971. [Google Scholar] [CrossRef]
- Shibata, K.; Ogawa, A.; Taniguchi, I. Effects of Dietary 6-Aminonicotinamide, an Antagonist of Nicotinamide, on the Metabolism of Tryptophan to Nicotinamide in Rats. Biosci. Biotechnol. Biochem. 1994, 58, 727–733. [Google Scholar] [CrossRef]
- Terakata, M.; Fukuwatari, T.; Sano, M.; Nakao, N.; Sasaki, R.; Fukuoka, S.-I.; Shibata, K. Establishment of True Niacin Deficiency in Quinolinic Acid Phosphoribosyltransferase Knockout Mice. J. Nutr. 2012, 142, 2148–2153. [Google Scholar] [CrossRef]
- Shibata, K.; Fukuwatari, T. Organ Correlation with Tryptophan Metabolism Obtained by Analyses of TDO-KO and QPRT-KO Mice. Int. J. Tryptophan Res. 2016, 9, IJTR.S37984. [Google Scholar] [CrossRef]
- Terakata, M.; Fukuwatari, T.; Kadota, E.; Sano, M.; Kanai, M.; Nakamura, T.; Funakoshi, H.; Shibata, K. The Niacin Required for Optimum Growth Can Be Synthesized from L-Tryptophan in Growing Mice Lacking Tryptophan-2,3-Dioxygenase. J. Nutr. 2013, 143, 1046–1051. [Google Scholar] [CrossRef]
- Shibata, K. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. J. Nutr. Sci. Vitaminol. 2018, 64, 90–98. [Google Scholar] [CrossRef]
- Revollo, J.R.; Grimm, A.A.; Imai, S. The Regulation of Nicotinamide Adenine Dinucleotide Biosynthesis by Nampt/PBEF/Visfatin in Mammals. Curr. Opin. Gastroenterol. 2007, 23, 164–170. [Google Scholar] [CrossRef]
- Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R.; et al. Nampt/PBEF/Visfatin Regulates Insulin Secretion in Beta Cells as a Systemic NAD Biosynthetic Enzyme. Cell Metab. 2007, 6, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Q.; Van Haandel, L.; Xiong, M.; Huang, P.; Heruth, D.P.; Bi, C.; Gaedigk, R.; Jiang, X.; Li, D.-Y.; Wyckoff, G.; et al. Metabolic and Molecular Insights into an Essential Role of Nicotinamide Phosphoribosyltransferase. Cell Death Dis. 2017, 8, e2705. [Google Scholar] [CrossRef]
- Rongvaux, A.; Galli, M.; Denanglaire, S.; Van Gool, F.; Drèze, P.L.; Szpirer, C.; Bureau, F.; Andris, F.; Leo, O. Nicotinamide Phosphoribosyl Transferase/Pre-B Cell Colony-Enhancing Factor/Visfatin Is Required for Lymphocyte Development and Cellular Resistance to Genotoxic Stress. J. Immunol. 2008, 181, 4685–4695. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Hackett, A.R.; Kim, S.; Strickland, A.; Milbrandt, J. Dysregulation of NAD+ Metabolism Induces a Schwann Cell Dedifferentiation Program. J. Neurosci. 2018, 38, 6546–6562. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Chen, C.; Wang, T.; Gao, T.-Y.; Zeng, M.; Lu, Y.-B.; Zhang, W.-P. The Depletion of NAMPT Disturbs Mitochondrial Homeostasis and Causes Neuronal Degeneration in Mouse Hippocampus. Mol. Neurobiol. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Yaku, K.; Palikhe, S.; Izumi, H.; Yoshida, T.; Hikosaka, K.; Hayat, F.; Karim, M.; Iqbal, T.; Nitta, Y.; Sato, A.; et al. BST1 Regulates Nicotinamide Riboside Metabolism via Its Glycohydrolase and Base-Exchange Activities. Nat. Commun. 2021, 12, 6767. [Google Scholar] [CrossRef]
- Fletcher, R.S.; Ratajczak, J.; Doig, C.L.; Oakey, L.A.; Callingham, R.; Da Silva Xavier, G.; Garten, A.; Elhassan, Y.S.; Redpath, P.; Migaud, M.E.; et al. Nicotinamide Riboside Kinases Display Redundancy in Mediating Nicotinamide Mononucleotide and Nicotinamide Riboside Metabolism in Skeletal Muscle Cells. Mol. Metab. 2017, 6, 819–832. [Google Scholar] [CrossRef]
- Yamamoto, M.; Hikosaka, K.; Mahmood, A.; Tobe, K.; Shojaku, H.; Inohara, H.; Nakagawa, T. Nmnat3 Is Dispensable in Mitochondrial NAD Level Maintenance In Vivo. PLoS ONE 2016, 11, e0147037. [Google Scholar] [CrossRef]
- Conforti, L.; Janeckova, L.; Wagner, D.; Mazzola, F.; Cialabrini, L.; Di Stefano, M.; Orsomando, G.; Magni, G.; Bendotti, C.; Smyth, N.; et al. Reducing Expression of NAD+ Synthesizing Enzyme NMNAT1 Does Not Affect the Rate of Wallerian Degeneration: NMNAT1 Gene Inactivation and Axon Degeneration. FEBS J. 2011, 278, 2666–2679. [Google Scholar] [CrossRef] [PubMed]
- Gilley, J.; Adalbert, R.; Yu, G.; Coleman, M.P. Rescue of Peripheral and CNS Axon Defects in Mice Lacking NMNAT2. J. Neurosci. 2013, 33, 13410–13424. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Chen, L.; Rabinowitz, J.D. Metabolomics and Isotope Tracing. Cell 2018, 173, 822–837. [Google Scholar] [CrossRef]
- Hayaishi, O.; Ijichi, H.; Ichiyama, A. Studies on the Biosynthesis of Nad by a Direct Method of Tracing Metabolism in Vivo. Adv. Enzym. Regul. 1967, 5, 9–22. [Google Scholar] [CrossRef]
- Shabalin, K.; Nerinovski, K.; Yakimov, A.; Kulikova, V.; Svetlova, M.; Solovjeva, L.; Khodorkovskiy, M.; Gambaryan, S.; Cunningham, R.; Migaud, M.; et al. NAD Metabolome Analysis in Human Cells Using 1H NMR Spectroscopy. Int. J. Mol. Sci. 2018, 19, 3906. [Google Scholar] [CrossRef] [Green Version]
- McReynolds, M.R.; Chellappa, K.; Baur, J.A. Age-Related NAD+ Decline. Exp. Gerontol. 2020, 134, 110888. [Google Scholar] [CrossRef] [PubMed]
- McReynolds, M.R.; Chellappa, K.; Chiles, E.; Jankowski, C.; Shen, Y.; Chen, L.; Descamps, H.C.; Mukherjee, S.; Bhat, Y.R.; Lingala, S.R.; et al. NAD+ Flux Is Maintained in Aged Mice despite Lower Tissue Concentrations. Cell Syst. 2021, 12, 1160–1172.e4. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Radenkovic, D.; Verdin, E. Clinical Evidence for Targeting NAD Therapeutically. Pharmaceuticals 2020, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Escande, C.; Nin, V.; Price, N.L.; Capellini, V.; Gomes, A.P.; Barbosa, M.T.; O’Neil, L.; White, T.A.; Sinclair, D.A.; Chini, E.N. Flavonoid Apigenin Is an Inhibitor of the NAD+ Ase CD38: Implications for Cellular NAD+ Metabolism, Protein Acetylation, and Treatment of Metabolic Syndrome. Diabetes 2013, 62, 1084–1093. [Google Scholar] [CrossRef]
- Tarragó, M.G.; Chini, C.C.S.; Kanamori, K.S.; Warner, G.M.; Caride, A.; de Oliveira, G.C.; Rud, M.; Samani, A.; Hein, K.Z.; Huang, R.; et al. A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metab. 2018, 27, 1081–1095.e10. [Google Scholar] [CrossRef]
- Belenky, P.A.; Moga, T.G.; Brenner, C. Saccharomyces Cerevisiae YOR071C Encodes the High Affinity Nicotinamide Riboside Transporter Nrt1. J. Biol. Chem. 2008, 283, 8075–8079. [Google Scholar] [CrossRef]
- Kropotov, A.; Kulikova, V.; Nerinovski, K.; Yakimov, A.; Svetlova, M.; Solovjeva, L.; Sudnitsyna, J.; Migaud, M.E.; Khodorkovskiy, M.; Ziegler, M.; et al. Equilibrative Nucleoside Transporters Mediate the Import of Nicotinamide Riboside and Nicotinic Acid Riboside into Human Cells. Int. J. Mol. Sci. 2021, 22, 1391. [Google Scholar] [CrossRef]
- Mathialagan, S.; Bi, Y.-A.; Costales, C.; Kalgutkar, A.S.; Rodrigues, A.D.; Varma, M.V.S. Nicotinic Acid Transport into Human Liver Involves Organic Anion Transporter 2 (SLC22A7). Biochem. Pharmacol. 2020, 174, 113829. [Google Scholar] [CrossRef]
- Grozio, A.; Mills, K.F.; Yoshino, J.; Bruzzone, S.; Sociali, G.; Tokizane, K.; Lei, H.C.; Cunningham, R.; Sasaki, Y.; Migaud, M.E.; et al. Slc12a8 Is a Nicotinamide Mononucleotide Transporter. Nat. Metab. 2019, 1, 47–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.S.; Brenner, C. Absence of Evidence That Slc12a8 Encodes a Nicotinamide Mononucleotide Transporter. Nat. Metab. 2019, 1, 660–661. [Google Scholar] [CrossRef]
- Bieganowski, P.; Brenner, C. Discoveries of Nicotinamide Riboside as a Nutrient and Conserved NRK Genes Establish a Preiss-Handler Independent Route to NAD+ in Fungi and Humans. Cell 2004, 117, 495–502. [Google Scholar] [CrossRef]
- Nikiforov, A.; Kulikova, V.; Ziegler, M. The Human NAD Metabolome: Functions, Metabolism and Compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 284–297. [Google Scholar] [CrossRef]
- Kline, N.S. Diphosphopyridine Nucleotide in the Treatment of Schizophrenia. JAMA 1967, 200, 881. [Google Scholar] [CrossRef]
- Dizdar, N.; Kågedal, B.; Lindvall, B. Treatment of Parkinson’s Disease with NADH. Acta Neurol. Scand. 1994, 90, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Birkmayer, W.; Birkmayer, G.J.; Vrecko, K.; Mlekusch, W.; Paletta, B.; Ott, E. The Coenzyme Nicotinamide Adenine Dinucleotide (NADH) Improves the Disability of Parkinsonian Patients. J. Neural Transm. Park. Dis. Dement. Sect. 1989, 1, 297–302. [Google Scholar] [CrossRef]
- Canto, C. NAD+ Precursors: A Questionable Redundancy. Metabolites 2022, 12, 630. [Google Scholar] [CrossRef] [PubMed]
- Pirinen, E.; Auranen, M.; Khan, N.A.; Brilhante, V.; Urho, N.; Pessia, A.; Hakkarainen, A.; Kuula, J.; Heinonen, U.; Schmidt, M.S.; et al. Niacin Cures Systemic NAD+ Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab. 2020, 31, 1078–1090.e5. [Google Scholar] [CrossRef]
- Scheibye-Knudsen, M.; Mitchell, S.J.; Fang, E.F.; Iyama, T.; Ward, T.; Wang, J.; Dunn, C.A.; Singh, N.; Veith, S.; Hasan-Olive, M.M.; et al. A High-Fat Diet and NAD(+) Activate Sirt1 to Rescue Premature Aging in Cockayne Syndrome. Cell Metab. 2014, 20, 840–855. [Google Scholar] [CrossRef]
- Okur, M.N.; Mao, B.; Kimura, R.; Haraczy, S.; Fitzgerald, T.; Edwards-Hollingsworth, K.; Tian, J.; Osmani, W.; Croteau, D.L.; Kelley, M.W.; et al. Short-Term NAD+ Supplementation Prevents Hearing Loss in Mouse Models of Cockayne Syndrome. npj Aging Mech. Dis. 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Goody, M.F.; Henry, C.A. A Need for NAD+ in Muscle Development, Homeostasis, and Aging. Skelet. Muscle 2018, 8, 9. [Google Scholar] [CrossRef]
- Khan, N.A.; Auranen, M.; Paetau, I.; Pirinen, E.; Euro, L.; Forsström, S.; Pasila, L.; Velagapudi, V.; Carroll, C.J.; Auwerx, J.; et al. Effective Treatment of Mitochondrial Myopathy by Nicotinamide Riboside, a Vitamin B 3. EMBO Mol. Med. 2014, 6, 721–731. [Google Scholar] [CrossRef]
- Goody, M.F.; Kelly, M.W.; Reynolds, C.J.; Khalil, A.; Crawford, B.D.; Henry, C.A. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy. PLoS Biol. 2012, 10, e1001409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ryu, D.; Wu, Y.; Gariani, K.; Wang, X.; Luan, P.; D’Amico, D.; Ropelle, E.R.; Lutolf, M.P.; Aebersold, R.; et al. NAD + Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice. Science 2016, 352, 1436–1443. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Fu, C.; Li, F. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits. Asian Australas. J. Anim. Sci. 2016, 29, 1748–1755. [Google Scholar] [CrossRef]
- Ganji, S.H.; Kukes, G.D.; Lambrecht, N.; Kashyap, M.L.; Kamanna, V.S. Therapeutic Role of Niacin in the Prevention and Regression of Hepatic Steatosis in Rat Model of Nonalcoholic Fatty Liver Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G320–G327. [Google Scholar] [CrossRef]
- Williams, A.S.; Koves, T.R.; Pettway, Y.D.; Draper, J.A.; Slentz, D.H.; Grimsrud, P.A.; Ilkayeva, O.R.; Muoio, D.M. Nicotinamide Riboside Supplementation Confers Marginal Metabolic Benefits in Obese Mice without Remodeling the Muscle Acetyl-Proteome. iScience 2022, 25, 103635. [Google Scholar] [CrossRef]
- Gensler, H.L.; Williams, T.; Huang, A.C.; Jacobson, E.L. Oral Niacin Prevents Photocarcinogenesis and Photoimmunosuppression in Mice. Nutr.Cancer 1999, 34, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, E.L.; Kim, H.; Kim, M.; Williams, J.D.; Coyle, D.L.; Coyle, W.R.; Grove, G.; Rizer, R.L.; Stratton, M.S.; Jacobson, M.K. A Topical Lipophilic Niacin Derivative Increases NAD, Epidermal Differentiation and Barrier Function in Photodamaged Skin. Exp. Dermatol. 2007, 16, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.K.; Kim, H.; Coyle, W.R.; Kim, M.; Coyle, D.L.; Rizer, R.L.; Jacobson, E.L. Effect of Myristyl Nicotinate on Retinoic Acid Therapy for Facial Photodamage. Exp. Dermatol. 2007, 16, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Katsyuba, E.; Mottis, A.; Zietak, M.; De Franco, F.; van der Velpen, V.; Gariani, K.; Ryu, D.; Cialabrini, L.; Matilainen, O.; Liscio, P.; et al. De Novo NAD+ Synthesis Enhances Mitochondrial Function and Improves Health. Nature 2018, 563, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Pellicciari, R.; Liscio, P.; Giacchè, N.; De Franco, F.; Carotti, A.; Robertson, J.; Cialabrini, L.; Katsyuba, E.; Raffaelli, N.; Auwerx, J. α-Amino-β-Carboxymuconate-ε-Semialdehyde Decarboxylase (ACMSD) Inhibitors as Novel Modulators of De Novo Nicotinamide Adenine Dinucleotide (NAD+) Biosynthesis. J. Med. Chem. 2018, 61, 745–759. [Google Scholar] [CrossRef]
- Yang, Y.; Borel, T.; de Azambuja, F.; Johnson, D.; Sorrentino, J.P.; Udokwu, C.; Davis, I.; Liu, A.; Altman, R.A. Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway. J. Med. Chem. 2021, 64, 797–811. [Google Scholar] [CrossRef]
- Campagna, R.; Mateuszuk, Ł.; Wojnar-Lason, K.; Kaczara, P.; Tworzydło, A.; Kij, A.; Bujok, R.; Mlynarski, J.; Wang, Y.; Sartini, D.; et al. Nicotinamide N-Methyltransferase in Endothelium Protects against Oxidant Stress-Induced Endothelial Injury. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119082. [Google Scholar] [CrossRef]
- Hong, S.; Moreno-Navarrete, J.M.; Wei, X.; Kikukawa, Y.; Tzameli, I.; Prasad, D.; Lee, Y.; Asara, J.M.; Fernandez-Real, J.M.; Maratos-Flier, E.; et al. Nicotinamide N-Methyltransferase Regulates Hepatic Nutrient Metabolism through Sirt1 Protein Stabilization. Nat. Med. 2015, 21, 887–894. [Google Scholar] [CrossRef]
- Schmeisser, K.; Mansfeld, J.; Kuhlow, D.; Weimer, S.; Priebe, S.; Heiland, I.; Birringer, M.; Groth, M.; Segref, A.; Kanfi, Y.; et al. Role of Sirtuins in Lifespan Regulation Is Linked to Methylation of Nicotinamide. Nat. Chem. Biol. 2013, 9, 693–700. [Google Scholar] [CrossRef]
- Kraus, D.; Yang, Q.; Kong, D.; Banks, A.S.; Zhang, L.; Rodgers, J.T.; Pirinen, E.; Pulinilkunnil, T.C.; Gong, F.; Wang, Y.; et al. Nicotinamide N-Methyltransferase Knockdown Protects against Diet-Induced Obesity. Nature 2014, 508, 258–262. [Google Scholar] [CrossRef] [PubMed]
- van Haren, M.J.; Gao, Y.; Buijs, N.; Campagna, R.; Sartini, D.; Emanuelli, M.; Mateuszuk, L.; Kij, A.; Chlopicki, S.; Escudé Martinez de Castilla, P.; et al. Esterase-Sensitive Prodrugs of a Potent Bisubstrate Inhibitor of Nicotinamide N-Methyltransferase (NNMT) Display Cellular Activity. Biomolecules 2021, 11, 1357. [Google Scholar] [CrossRef]
- Kannt, A.; Rajagopal, S.; Kadnur, S.V.; Suresh, J.; Bhamidipati, R.K.; Swaminathan, S.; Hallur, M.S.; Kristam, R.; Elvert, R.; Czech, J.; et al. A Small Molecule Inhibitor of Nicotinamide N-Methyltransferase for the Treatment of Metabolic Disorders. Sci. Rep. 2018, 8, 3660. [Google Scholar] [CrossRef]
- Gao, Y.; van Haren, M.J.; Buijs, N.; Innocenti, P.; Zhang, Y.; Sartini, D.; Campagna, R.; Emanuelli, M.; Parsons, R.B.; Jespers, W.; et al. Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics. J. Med. Chem. 2021, 64, 12938–12963. [Google Scholar] [CrossRef]
- Neelakantan, H.; Vance, V.; Wetzel, M.D.; Wang, H.-Y.L.; McHardy, S.F.; Finnerty, C.C.; Hommel, J.D.; Watowich, S.J. Selective and Membrane-Permeable Small Molecule Inhibitors of Nicotinamide N-Methyltransferase Reverse High Fat Diet-Induced Obesity in Mice. Biochem. Pharmacol. 2018, 147, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Nikiforov, A.A. NAD on the Rise Again. Nat. Metab. 2020, 2, 291–292. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feuz, M.B.; Meyer-Ficca, M.L.; Meyer, R.G. Beyond Pellagra—Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease. Cells 2023, 12, 500. https://doi.org/10.3390/cells12030500
Feuz MB, Meyer-Ficca ML, Meyer RG. Beyond Pellagra—Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease. Cells. 2023; 12(3):500. https://doi.org/10.3390/cells12030500
Chicago/Turabian StyleFeuz, Morgan B., Mirella L. Meyer-Ficca, and Ralph G. Meyer. 2023. "Beyond Pellagra—Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease" Cells 12, no. 3: 500. https://doi.org/10.3390/cells12030500
APA StyleFeuz, M. B., Meyer-Ficca, M. L., & Meyer, R. G. (2023). Beyond Pellagra—Research Models and Strategies Addressing the Enduring Clinical Relevance of NAD Deficiency in Aging and Disease. Cells, 12(3), 500. https://doi.org/10.3390/cells12030500