COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection and Study Design
2.2. Blood Withdrawal
2.3. Data Collection
2.4. NGF and BDNF Serum Evaluation
2.5. NFL Serum Evaluation
2.6. MMP-2 and MMP-9 Serum Evaluation Using Zymography
2.7. Laboratory Examination
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ceci, F.M.; Fiore, M.; Gavaruzzi, F.; Angeloni, A.; Lucarelli, M.; Scagnolari, C.; Bonci, E.; Gabanella, F.; Di Certo, M.G.; Barbato, C.; et al. Early Routine Biomarkers of SARS-CoV-2 Morbidity and Mortality: Outcomes from an Emergency Section. Diagnostics 2022, 12, 176. [Google Scholar] [CrossRef]
- Yoshimoto, F.K. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020, 39, 198–216. [Google Scholar] [CrossRef]
- Pillay, T.S. Gene of the month: The 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J. Clin. Pathol. 2020, 73, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Sallard, E.; Halloy, J.; Casane, D.; Decroly, E.; van Helden, J. Tracing the origins of SARS-CoV-2 in coronavirus phylogenies: A review. Environ. Chem. Lett. 2021, 19, 769–785. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, F.; Cambria, F.; Colizza, A.; Ralli, M.; Greco, A.; de Vincentiis, M.; Petrella, C.; Fiore, M.; Minni, A.; Barbato, C. Sudden Sensorineural Hearing Loss after Third Dose Booster of COVID-19 Vaccine Administration. Diagnostics 2022, 12, 2039. [Google Scholar] [CrossRef] [PubMed]
- Ortaliza, J.; Amin, K.; Cox, C. COVID-19 Leading Cause of Death Ranking—Peterson-KFF Health System Tracker n.d. Available online: https://www.healthsystemtracker.org/brief/covid-19-leading-cause-of-death-ranking/ (accessed on 25 January 2023).
- Forchette, L.; Sebastian, W.; Liu, T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Curr. Med. Sci. 2021, 41, 1037–1051. [Google Scholar] [CrossRef]
- Hassine, I.H. COVID-19 vaccines and variants of concern: A review. Rev. Med. Virol. 2022, 32, e2313. [Google Scholar] [CrossRef]
- Araf, Y.; Akter, F.; Tang, Y.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef]
- Safari, I.; Elahi, E. Evolution of the SARS-CoV-2 genome and emergence of variants of concern. Arch. Virol. 2022, 167, 293–305. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Zhao, S.; Lin, Q.; Zhuang, Z.; Cao, P.; Wang, M.H.; Yang, L. The relative transmissibility of asymptomatic COVID-19 infections among close contacts. Int. J. Infect. Dis. 2020, 94, 145–147. [Google Scholar] [CrossRef]
- Barbato, C.; Di Certo, M.G.; Gabanella, F.; Petrella, C.; Fiore, M.; Passananti, C.; Colizza, A.; Cavalcanti, L.; Ralli, M.; Greco, A.; et al. Staying tuned for post-COVID-19 syndrome: Looking for new research to sniff out. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5318–5321. [Google Scholar] [CrossRef]
- Niu, S.; Tian, S.; Lou, J.; Kang, X.; Zhang, L.; Lian, H.; Zhang, J. Clinical characteristics of older patients infected with COVID-19: A descriptive study. Arch. Gerontol. Geriatr. 2020, 89, 104058. [Google Scholar] [CrossRef]
- Lian, J.; Jin, X.; Hao, S.; Cai, H.; Zhang, S.; Zheng, L.; Jia, H.; Hu, J.; Gao, J.; Zhang, Y.; et al. Analysis of epidemiological and clinical features in older patients with coronavirus disease 2019 (COVID-19) outside Wuhan. Clin. Infect. Dis. 2020, 71, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.J.; Crooks, C.; Naja, M.; Ledlie, A.; Goulden, B.; Liddle, T.; Khan, E.; Mehta, P.; Martin-Gutierrez, L.; Waddington, K.E.; et al. COVID-19-associated hyperinflammation and escalation of patient care: A retrospective longitudinal cohort study. Lancet Rheumatol. 2020, 2, e594–e602. [Google Scholar] [CrossRef]
- Gustine, J.N.; Jones, D. Immunopathology of Hyperinflammation in COVID-19. Am. J. Pathol. 2021, 191, 4–17. [Google Scholar] [CrossRef]
- Petrella, C.; Nenna, R.; Petrarca, L.; Tarani, F.; Paparella, R.; Mancino, E.; Di Mattia, G.; Conti, M.G.; Matera, L.; Bonci, E.; et al. Serum NGF and BDNF in Long-COVID-19 Adolescents: A Pilot Study. Diagnostics 2022, 12, 1162. [Google Scholar] [CrossRef] [PubMed]
- Polat, V.; Bostancı, G.İ. Sudden death due to acute pulmonary embolism in a young woman with COVID-19. J. Thromb. Thrombolysis 2020, 50, 239–241. [Google Scholar] [CrossRef] [PubMed]
- West, A.E.; Pruunsild, P.; Timmusk, T. Neurotrophins: Transcription and translation. Handb. Exp. Pharmacol. 2014, 220, 67–100. [Google Scholar] [CrossRef] [PubMed]
- Dechant, G.; Neumann, H. Neurotrophins. Adv. Exp. Med. Biol. 2002, 513, 303–334. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R Soc. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelucci, F.; Piermaria, J.; Gelfo, F.; Shofany, J.; Tramontano, M.; Fiore, M.; Caltagirone, C.; Peppe, A. The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Can. J. Physiol. Pharmacol. 2016, 94, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirassa, P.; Triaca, V.; Amendola, T.; Fiore, M.; Aloe, L. EGF and NGF injected into the brain of old mice enhance BDNF and ChAT in proliferating subventricular zone. J. Neurosci. Res. 2003, 72, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, J.; Chaldakov, G.N.; Vinciguerra, M. Cardio- and Neurometabolic Adipobiology: Consequences and Implications for Therapy. Int. J. Mol. Sci. 2021, 22, 4137. [Google Scholar] [CrossRef] [PubMed]
- Carito, V.; Ceccanti, M.; Tarani, L.; Ferraguti, G.N.; Chaldakov, G.; Fiore, M. Neurotrophins’ Modulation by Olive Polyphenols. Curr. Med. Chem. 2016, 23, 3189–3197. [Google Scholar] [CrossRef] [PubMed]
- Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Aloe, L. Neuroadipology: A novel component of neuroendocrinology. Cell Biol. Int. 2010, 34, 1051–1053. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, B.; Bariohay, B.; Moyse, E.; Jean, A. Brain-derived neurotrophic factor (BDNF) and food intake regulation: A minireview. Auton. Neurosci. 2006, 126–127, 30–38. [Google Scholar] [CrossRef]
- Cohen-Cory, S.; Kidane, A.H.; Shirkey, N.J.; Marshak, S. Brain-Derived Neurotrophic Factor and the Development of Structural Neuronal Connectivity. Dev. Neurobiol. 2011, 70, 271–288. [Google Scholar] [CrossRef] [Green Version]
- Schulte-Herbruggen, O.; Braun, A.; Rochlitzer, S.; Jockers-Scherubl, M.C.; Hellweg, R. Neurotrophic factors—A tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr. Med. Chem. 2007, 14, 2318–2329. [Google Scholar] [CrossRef]
- Petrella, C.; Di Certo, M.G.; Gabanella, F.; Barbato, C.; Ceci, F.M.; Greco, A.; Ralli, M.; Polimeni, A.; Angeloni, A.; Severini, C.; et al. Mediterranean Diet, Brain and Muscle: Olive Polyphenols and Resveratrol Protection in Neurodegenerative and Neuromuscular Disorders. Curr. Med. Chem. 2021, 28, 7595–7613. [Google Scholar] [CrossRef]
- Minnone, G.; De Benedetti, F.; Bracci-Laudiero, L. NGF and its receptors in the regulation of inflammatory response. Int. J. Mol. Sci. 2017, 18, 1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carniel, B.P.; da Rocha, N.S. Brain-derived neurotrophic factor (BDNF) and inflammatory markers: Perspectives for the management of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 108, 110151. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, S.; Tang, L. Nerve growth factor: A potential therapeutic target for lung diseases. Int. J. Mol. Sci. 2021, 22, 9112. [Google Scholar] [CrossRef] [PubMed]
- Usai, C.; Gibbons, J.M.; Pade, C.; Li, W.; Jacobs, S.R.M.; McKnight, Á.; Kennedy, P.T.F.; Gill, U.S. The β-NGF/TrkA Signalling Pathway Is Associated With the Production of Anti-Nucleoprotein IgG in Convalescent COVID-19. Front. Immunol. 2022, 12, 813300. [Google Scholar] [CrossRef] [PubMed]
- Minuzzi, L.G.; Seelaender, M.; Silva, B.S.D.A.; Cunha, E.D.B.B.; Deus, M.D.C.; Vasconcellos, F.T.F.; Marqueze, L.F.B.; Gadotti, A.C.; Baena, C.P.; Pereira, T.; et al. COVID-19 Outcome Relates With Circulating BDNF, According to Patient Adiposity and Age. Front. Nutr. 2021, 8, 784429. [Google Scholar] [CrossRef] [PubMed]
- Mehrabani, M.M.; Karvandi, M.S.; Maafi, P.; Doroudian, M. Neurological complications associated with COVID-19; molecular mechanisms and therapeutic approaches. Rev. Med. Virol. 2022, 32, e2334. [Google Scholar] [CrossRef] [PubMed]
- Motaghinejad, M.; Gholami, M. Possible Neurological and Mental Outcomes of COVID-19 Infection: A Hypothetical Role of ACE-2\Mas\BDNF Signaling Pathway. Int. J. Prev. Med. 2020, 11, 84. [Google Scholar] [CrossRef]
- Biamonte, F.; Re, A.; Balzamino, B.O.; Ciasca, G.; Santucci, D.; Napodano, C.; Nocca, G.; Fiorita, A.; Marino, M.; Basile, U.; et al. Circulating and Salivary NGF and BDNF Levels in SARS-CoV-2 Infection: Potential Predictor Biomarkers of COVID-19 Disease—Preliminary Data. J. Pers. Med. 2022, 12, 1877. [Google Scholar] [CrossRef]
- Savic, G.; Stevanovic, I.; Mihajlovic, D.; Jurisevic, M.; Gajovic, N.; Jovanovic, I.; Ninkovic, M. MMP-9/BDNF ratio predicts more severe COVID-19 outcomes. Int. J. Med. Sci. 2022, 19, 1903–1911. [Google Scholar] [CrossRef]
- Hardy, E.; Fernandez-Patron, C. Targeting mmp-regulation of inflammation to increase metabolic tolerance to COVID-19 pathologies: A hypothesis. Biomolecules 2021, 11, 390. [Google Scholar] [CrossRef]
- Zingaropoli, M.A.; Iannetta, M.; Piermatteo, L.; Pasculli, P.; Latronico, T.; Mazzuti, L.; Campogiani, L.; Duca, L.; Ferraguti, G.; De Michele, M.; et al. Neuro-Axonal Damage and Alteration of Blood–Brain Barrier Integrity in COVID-19 Patients. Cells 2022, 11, 2480. [Google Scholar] [CrossRef] [PubMed]
- Erben, Y.; Prudencio, M.; Marquez, C.P.; Jansen-West, K.R.; Heckman, M.G.; White, L.J.; Dunmore, J.A.; Cook, C.N.; Lilley, M.T.; Qosja, N.; et al. Neurofilament light chain and vaccination status associate with clinical outcomes in severe COVID-19. IScience 2022, 25, 105272. [Google Scholar] [CrossRef] [PubMed]
- Bonetto, V.; Pasetto, L.; Lisi, I.; Carbonara, M.; Zangari, R.; Ferrari, E.; Punzi, V.; Luotti, S.; Bottino, N.; Biagianti, B.; et al. Markers of blood-brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front. Immunol. 2022, 13, 1070379. [Google Scholar] [CrossRef] [PubMed]
- Tarani, L.; Carito, V.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Messina, M.P.; Rasio, D.; De Luca, E.; Putotto, C.; et al. Neuroinflammatory Markers in the Serum of Prepubertal Children with down Syndrome. J. Immunol. Res. 2020, 2020, 6937154. [Google Scholar] [CrossRef] [PubMed]
- Amendola, T.; Fiore, M.; Aloe, L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci. Lett. 2003, 345, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Triaca, V.; Amendola, T.; Tirassa, P.; Aloe, L. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol. Behav. 2002, 77, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzano, G.; Zingaropoli, M.A.; Costanzo, M.; Belvisi, D.; Dominelli, F.; Pasculli, P.; Ciardi, M.R.; Fabbrini, G.; Defazio, G.; Berardelli, A.; et al. Neurofilament assessment in patients with cervical dystonia. Park. Relat. Disord. 2022, 98, 70–71. [Google Scholar] [CrossRef]
- Iannetta, M.; Zingaropoli, M.A.; Latronico, T.; Pati, I.; Pontecorvo, S.; Prezioso, C.; Pietropaolo, V.; Cortese, A.; Frontoni, M.; D’Agostino, C.; et al. Dynamic changes of MMP-9 plasma levels correlate with JCV reactivation and immune activation in natalizumab-treated multiple sclerosis patients. Sci. Rep. 2019, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Payán-Pernía, S.; Pérez, L.G.; Sevilla, Á.F.R.; Gil, J.S.; Canales, S.N. Absolute Lymphocytes, Ferritin, C-Reactive Protein, and Lactate Dehydrogenase Predict Early Invasive Ventilation in Patients With COVID-19. Lab. Med. 2021, 52, 141–145. [Google Scholar] [CrossRef]
- Aloe, L.; Fiore, M. TNF-α expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci. Lett. 1997, 238, 65–68. [Google Scholar] [CrossRef]
- Aloe, L.; Fiore, M.; Probert, L.; Turrini, P.; Tirassa, P. Overexpression of tumour necrosis factor alpha in the brain of transgenic mice differentially alters nerve growth factor levels and choline acetyltransferase activity. Cytokine 1999, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; et al. Nerve Growth Factor in Alcohol Use Disorders. Curr. Neuropharmacol. 2020, 19, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Durany, N.; Thome, J. Neurotrophic factors and the pathophysiology of schizophrenic psychoses. Eur. Psychiatry 2004, 19, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.C.; Fatima, M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: Role of antidepressants treatment. Int. J. Neurosci. 2019, 129, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Ferraguti, G.; Terracina, S.; Micangeli, G.; Lucarelli, M.; Tarani, L.; Ceccanti, M.; Spaziani, M.; D’Orazi, V.; Petrella, C.; Fiore, M. NGF and BDNF in pediatrics syndromes. Neurosci. Biobehav. Rev. 2023, 145, 105015. [Google Scholar] [CrossRef] [PubMed]
- Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Vitali, M.; Ceccanti, M.; Chaldakov, G.N.; et al. Nerve Growth Factor, Stress and Diseases. Curr. Med. Chem. 2020, 28, 2943–2959. [Google Scholar] [CrossRef]
- Asgarzadeh, A.; Fouladi, N.; Asghariazar, V.; Sarabi, S.F.; Khiavi, H.A.; Mahmoudi, M.; Safarzadeh, E. Serum Brain-Derived Neurotrophic Factor (BDNF) in COVID-19 Patients and its Association with the COVID-19 Manifestations. J. Mol. Neurosci. 2022, 72, 1820–1830. [Google Scholar] [CrossRef]
- Demir, B.; Beyazyüz, E.; Beyazyüz, M.; Çelikkol, A.; Albayrak, Y. Long-lasting cognitive effects of COVID-19: Is there a role of BDNF? Eur. Arch. Psychiatry Clin. Neurosci. 2022, 1–9. [Google Scholar] [CrossRef]
- Marchegiani, F.; Recchioni, R.; Marcheselli, F.; Di Rosa, M.; Sabbatinelli, J.; Matacchione, G.; Giuliani, A.; Ramini, D.; Stripoli, P.; Biscetti, L.; et al. Association of admission serum levels of neurofilament light chain and in-hospital mortality in geriatric patients with COVID-19. J. Neurol. 2022, 270, 37–43. [Google Scholar] [CrossRef]
- da Silva-Neto, P.V.; Do Valle, V.B.; Fuzo, C.A.; Fernandes, T.M.; Toro, D.M.; Fraga-Silva, T.F.C.; Basile, P.A.; de Carvalho, J.C.S.; Pimentel, V.E.; Pérez, M.M.; et al. Matrix Metalloproteinases on Severe COVID-19 Lung Disease Pathogenesis: Cooperative Actions of MMP-8/MMP-2 Axis on Immune Response through HLA-G Shedding and Oxidative Stress. Biomolecules 2022, 12, 604. [Google Scholar] [CrossRef]
- Duda, I.; Krzych, Ł.; Jędrzejowska-Szypułka, H.; Lewin-Kowalik, J. Plasma matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 as prognostic biomarkers in critically ill patients. Open Med. 2020, 15, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Benlarbi, M.; Laroche, G.; Fink, C.; Fu, K.; Mulloy, R.P.; Phan, A.; Ariana, A.; Stewart, C.M.; Prévost, J.; Beaudoin-Bussières, G.; et al. Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. IScience 2022, 25, 105316. [Google Scholar] [CrossRef] [PubMed]
- Springall, R.; González-Flores, J.; García-Ávila, C.; Juárez-Vicuña, Y.; Hernández-Diazcouder, A.; Márquez-Velasco, R.; Cásares-Alvarado, S.; Sánchez-Muñoz, F.; Basilio-Gálvez, E.; Castillo-Salazar, M.; et al. Elevated Levels of Soluble CD147 are Associated with Hyperinflammation and Disease Severity in COVID-19: A Proof-of-Concept Clinical Study. Arch. Immunol. Ther. Exp. 2022, 70, 18. [Google Scholar] [CrossRef] [PubMed]
- Hazra, S.; Chaudhuri, A.G.; Tiwary, B.K.; Chakrabarti, N. Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci. 2020, 257, 118096. [Google Scholar] [CrossRef] [PubMed]
- D’Avila-Mesquita, C.; Couto, A.E.S.; Campos, L.C.B.; Vasconcelos, T.F.; Michelon-Barbosa, J.; Corsi, C.A.C.; Mestriner, F.; Petroski-Moraes, B.C.; Garbellini-Diab, M.J.; Couto, D.M.; et al. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients. Biomed. Pharmacother. 2021, 142, 112067. [Google Scholar] [CrossRef] [PubMed]
- Davey, A.; McAuley, D.F.; O’Kane, C.M. Matrix metalloproteinases in acute lung injury: Mediators of injury and drivers of repair. Eur. Respir. J. 2011, 38, 959–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, C.R.; Mudd, P.A.; West, C.P.; Wilber, E.; Wilber, S.T. Diagnosing COVID-19 in the Emergency Department: A Scoping Review of Clinical Examinations, Laboratory Tests, Imaging Accuracy, and Biases. Acad. Emerg. Med. 2020, 27, 653–670. [Google Scholar] [CrossRef]
- Vakili, S.; Savardashtaki, A.; Jamalnia, S.; Tabrizi, R.; Nematollahi, M.H.; Jafarinia, M.; Akbari, H. Laboratory Findings of COVID-19 Infection are Conflicting in Different Age Groups and Pregnant Women: A Literature Review. Arch. Med. Res. 2020, 51, 603–607. [Google Scholar] [CrossRef]
- Bivona, G.; Agnello, L.; Ciaccio, M. Biomarkers for prognosis and treatment response in COVID-19 patients. Ann. Lab. Med. 2021, 41, 540–548. [Google Scholar] [CrossRef]
Hospital Ward | ICU | Deceased | |
---|---|---|---|
Symptoms | n = 10 | n = 10 | n = 10 |
Fever | 6 | 5 | 4 |
Cough | 5 | 1 | 2 |
Dyspnea | 2 | 8 | 7 |
Nausea | 3 | 1 | 0 |
Dysgeusia | 1 | 0 | 0 |
Anosmia | 1 | 1 | 0 |
Arthralgia | 0 | 0 | 0 |
Diseases | |||
Cardiovascular Diseases | 6 | 4 | 2 |
Heart Failure | 2 | 2 | 2 |
Diabetes | 2 | 3 | 4 |
Chronic Renal Failure | 1 | 0 | 0 |
COPD | 1 | 1 | 0 |
Chronic Liver Diseases | 1 | 1 | 1 |
Solid Neoplasm | 1 | 1 | 0 |
Hematological Neoplasm | 1 | 0 | 0 |
Transplant | 0 | 0 | 0 |
Deceased vs. Controls | ICU vs. Controls | |||
---|---|---|---|---|
The Area under the Curve (AUC) | 95% CI for AUC | The Area under the Curve (AUC) | 95% CI for AUC | |
MMP-2/NGF | 0.85 | 0.675–1 | 0.620 | 0.358–0.882 |
MMP-2/BDNF | 0.940 | 0.848–1 | 0.755 | 0.499–1 |
MMP-2/NFL | 1 | 1–1 | 0.835 | 0.620–1 |
MMP-9/NGF | 0.710 | 0.467–0.953 | 0.620 | 0.333–0.907 |
MMP-9/BDNF | 0.990 | 0.962–1 | 0.755 | 0.499–1 |
MMP-9/NFL | 1 | 1–1 | 0.835 | 0.62–1 |
Controls | All COVID-19 Groups | Deceased | |||||||
---|---|---|---|---|---|---|---|---|---|
SSD | Rho | p-Value | SSD | Rho | p-Value | SSD | Rho | p-Value | |
NGF | 267.000 | −0.618 | 0.063 | 4229.500 | 0.059 | 0.750 | 150.500 | 0.088 | 0.792 |
BDNF | 234.500 | −0.421 | 0.206 | 6018.500 | −0.338 | 0.0680 | 148.500 | 0.100 | 0.7642 |
NFL | 42.500 | 0.742 | 0.025 | 3067.000 | 0.318 | 0.0871 | 160.500 | 0.027 | 0.082 |
MMP-2 | 96.500 | 0.415 | 0.213 | 4338.000 | 0.035 | 0.850 | 127.500 | 0.227 | 0.495 |
MMP-9 | 165.500 | −0.003 | 0.992 | 4264.000 | 0.051 | 0.782 | 146.500 | 0.112 | 0.7366 |
Deceased | ICU | Hospital Ward | Controls | p | F, dF | |
---|---|---|---|---|---|---|
Amylase in U/L | 99.6 ± 36.74 | 91.20 ± 9.77 | 51.10 ± 5.30 | 62.30 ± 6.61 | 0.25 | (3,36) = 1.40 |
Lipase in U/L | 50.80 ± 9.00 | 42.50 ± 5.82 | 35.20 ± 5.52 | 34.60 ± 3.51 | 0.24 | (3,36) = 1.46 |
AST in U/L | 39.80 ± 12.36 | 22.80 ± 3.38 | 30.60 ± 4.47 | 17.25 ± 1.25 | 0.16 | (3,36) = 1.80 |
ALT in U/L | 36.70 ± 11.36 * | 29.5 ± 5.25 | 38.90 ± 8.11 * | 6.12 ± 0.51 | 0.033 | (3,36) = 3.32 |
GGT in U/L | 73.60 ± 17.39 * | 46.90 ± 11.09 | 26.40 ± 5.34 | 17.20 ± 2.32 | 0.003 | (3,36) = 5.44 |
LDH in U/L | 367.00 ± 80.37 * | 242.90 ± 26.18 | 245.70 ± 27.33 | 133.40 ± 6.01 | 0.008 | (3,36) = 4.56 |
MGB in µg/L | 54.20 ± 7.66 | 77.59 ± 23.31 | 50.50 ± 8.69 | 57.36 ± 7.53 | 0.50 | (3,36) = 0.78 |
CK in U/L | 103.20 ± 27.74 | 100.80 ± 28.44 | 102.80 ± 46.55 | 84.70 ± 8.58 | 0.96 | (3,36) = 0.08 |
CK-MB | 3.39 ± 0.34 | 2.42 ± 0.20 | 3.12 ± 0.18 | 2.77 ± 0.25 | 0.062 | (3,36) = 2.66 |
TnT in µg/L | 0.039 ± 0.018 | 0.042 ± 0.017 | 0.021 ± 0.013 | 0.013 ± 0.002 | 0.39 | (3,36) = 1.03 |
IL-6 in pg/L | 65.54 ± 21.33 | 157.19 ± 70.13 * | 71.32 ± 20.09 | 3.71 ± 0.39 | 0.056 | (3,36) = 2.75 |
Ferritin in µg/L | 1890.80 ± 733.13 * | 656.30 ± 149.31 | 1029.40 ± 337.89 | 130.00 ± 50.66 | 0.033 | (3,36) = 3.24 |
CRP in µg/L | 53277 ± 14763 * | 38542 ± 14890 | 39440 ± 15520 | 1560 ± 361.23 | 0.049 | (3,36) = 2.88 |
PCT in ng/L | 0.841 ± 0.423 | 2.120 ± 1.935 | 4.332 ± 2.559 | 0.046 ± 0.003 | 0.277 | (3,36) = 1.33 |
D-dimer in µg/L | 2389 ± 513.44 | 2091 ± 406.04 | 2041 ± 476.70 | 1078 ± 258.6 | 0.166 | (3,36) = 1.79 |
PLT in n/L | 202.90 ± 25.54 | 227.10 ± 26.28 | 199.30 ± 24.43 | 195.90 ± 12.45 | 0.766 | (3,36) = 0.38 |
PT in sec | 12.41 ± 0.46 | 13.16 ± 1.47 | 11.60 ± 0.034 | 13.28 ± 1.89 | 0.756 | (3,36) = 0.39 |
INR in (patient’s PT/control PT) | 1.06 ± 0.04 | 1.16 ± 0.14 | 1.00 ± 0.03 | 1.22 ± 0.19 | 0.620 | (3,36) = 0.59 |
aPTT in sec | 33.13 ± 1.65 | 34.07 ± 6.67 | 34.79 ± 2.61 | 34.36 ± 3.43 | 0.992 | (3,36) = 0.03 |
FBG in g/L | 3.85 ± 0.35 | 4.51 ± 0.43 | 4.03 ± 0.36 | 3.92 ± 0.46 | 0.667 | (3,36) = 0.52 |
WBC | 9114 ± 2060 | 6389 ± 1073 | 7232 ± 1555 | 7791 ± 1145 | 0.636 | (3,36) = 0.57 |
Spearman Correlation Data | Deceased Patients | |||||
---|---|---|---|---|---|---|
NGF | BDNF | NFL | MMP-2 | MMP-9 | ||
Amylase | SSD Rho p-value | 156.00 | 88.00 | 194.00 | 125.50 | 118.00 |
0.055 | 0.467 | −0.176 | 0.239 | 0.285 | ||
0.870 | 0.161 | 0.598 | 0.472 | 0.392 | ||
Lipase | SSD Rho p-value | 154.00 | 124.00 | 138.00 | 128.50 | 102.00 |
0.067 | 0.248 | 0.164 | 0.221 | 0.382 | ||
0.841 | 0.456 | 0.623 | 0.506 | 0.252 | ||
AST | SSD Rho p-value | 247.50 | 102.50 | 181.50 | 201.50 | 118.50 |
−0.500 | 0.379 | −0.100 | −0.221 | 0.282 | ||
0.133 | 0.255 | 0.764 | 0.506 | 0.397 | ||
ALT | SSD Rho p-value | 255.00 | 202.00 | 110.00 | 262.50 | 205.00 |
−0.545 | −0.224 | 0.333 | −0.591 | −0.242 | ||
0.101 | 0.501 | 0.317 | 0.076 | 0.467 | ||
GGT | SSD Rho p-value | 250.00 | 162.00 | 152.00 | 226.50 | 216.00 |
−0.515 | 0.018 | 0.079 | −0.373 | −0.309 | ||
0.122 | 0.956 | 0.813 | 0.263 | 0.353 | ||
LDH | SSD Rho p-value | 226.00 | 216.00 | 150.00 | 202.50 | 180.00 |
−0.370 | −0.309 | 0.091 | −0.227 | −0.091 | ||
0.267 | 0.353 | 0.785 | 0.495 | 0.785 | ||
MGB | SSD Rho p-value | 180.00 | 32.00 | 254.00 | 58.50 | 70.00 |
−0.091 | 0.806 | −0.539 | 0.645 | 0.576 | ||
0.785 | 0.156 | 0.105 | 0.052 | 0.084 | ||
CK | SSD Rho p-value | 210.00 | 60.00 | 306.00 | 25.50 | 118.00 |
−0.273 | 0.636 | −0.855 | 0.845 | 0.285 | ||
0.413 | 0.056 | 0.010 | 0.011 | 0.392 | ||
CK-MB | SSD Rho p-value | 194.00 | 104.50 | 182.00 | 112.50 | 136.00 |
−0.176 | 0.370 | −0.103 | 0.318 | 0.176 | ||
0.598 | 0.267 | 0.757 | 0.339 | 0.598 | ||
TNT | SSD Rho p-value | 293 | 137.00 | 242.00 | 118.00 | 192.00 |
−0.448 | 0.170 | −0.467 | 0.285 | −0.164 | ||
0.178 | 0.610 | 0.161 | 0.392 | 0.623 | ||
IL-6 | SSD Rho p-value | 114.00 | 238.00 | 108.00 | 222.50 | 206.00 |
0.309 | −0.442 | 0.345 | −0.348 | −0.248 | ||
0.353 | 0.184 | 0.300 | 0.295 | 0.456 | ||
Ferritin | SSD Rho p-value | 234.00 | 146.00 | 192.00 | 101.50 | 160.00 |
−0.418 | 0.115 | −0.164 | 0.385 | 0.030 | ||
0.209 | 0.729 | 0.623 | 0.248 | 0.927 | ||
CRP | SSD Rho p-value | 138.00 | 206.00 | 212.00 | 168.50 | 224.00 |
0.164 | −0.248 | −0.285 | −0.021 | −0.358 | ||
0.623 | 0.456 | 0.392 | 0.941 | 0.283 | ||
PCT | SSD Rho p-value | 122.00 | 124.00 | 222.00 | 95.50 | 128.00 |
0.261 | 0.248 | −0.345 | 0.421 | 0.224 | ||
0.434 | 0.456 | 0.300 | 0.206 | 0.501 | ||
PLT | SSD Rho p-value | 180.00 | 158.00 | 138.00 | 212.50 | 170.00 |
−0.091 | 0.042 | 0.164 | −0.288 | −0.030 | ||
0.785 | 0.898 | 0.623 | 0.387 | 0.927 | ||
PT | SSD Rho p-value | 107.50 | 161.50 | 118.50 | 189.00 | 111.50 |
0.348 | 0.021 | 0.282 | −0.145 | 0.324 | ||
0.295 | 0.949 | 0.397 | 0.662 | 0.330 | ||
INR | SSD Rho p-value | 188.00 | 174.00 | 100.00 | 171.50 | 114.00 |
−0.139 | −0.055 | 0.394 | −0.039 | 0.309 | ||
0.675 | 0.870 | 0.237 | 0.905 | 0.353 | ||
aPTT | SSD Rho p-value | 150.00 | 156.00 | 176.00 | 141.50 | 146.00 |
0.091 | 0.055 | −0.067 | 0.142 | 0.115 | ||
0.785 | 0.870 | 0.841 | 0.669 | 0.729 | ||
FBG | SSD Rho p-value | 158.00 | 282.00 | 90.00 | 238.50 | 276.00 |
0.042 | −0.709 | 0.455 | −0.718 | −0.673 | ||
0.898 | 0.033 | 0.172 | 0.031 | 0.043 | ||
D-dimer | SSD Rho p-value | 200.50 | 231.50 | 154.50 | 171.00 | 215.50 |
−0.215 | −0.430 | 0.064 | −0.036 | −0.306 | ||
0.518 | 0.226 | 0.848 | 0.913 | 0.358 | ||
WBC | SSD Rho p-value | 122.00 | 196.00 | 114.00 | 225.50 | 206.00 |
0.261 | −0.188 | 0.309 | −0.367 | −0.248 | ||
0.434 | 0.573 | 0.353 | 0.271 | 0.456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrella, C.; Zingaropoli, M.A.; Ceci, F.M.; Pasculli, P.; Latronico, T.; Liuzzi, G.M.; Ciardi, M.R.; Angeloni, A.; Ettorre, E.; Menghi, M.; et al. COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality. Cells 2023, 12, 655. https://doi.org/10.3390/cells12040655
Petrella C, Zingaropoli MA, Ceci FM, Pasculli P, Latronico T, Liuzzi GM, Ciardi MR, Angeloni A, Ettorre E, Menghi M, et al. COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality. Cells. 2023; 12(4):655. https://doi.org/10.3390/cells12040655
Chicago/Turabian StylePetrella, Carla, Maria Antonella Zingaropoli, Flavio Maria Ceci, Patrizia Pasculli, Tiziana Latronico, Grazia Maria Liuzzi, Maria Rosa Ciardi, Antonio Angeloni, Evaristo Ettorre, Michela Menghi, and et al. 2023. "COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality" Cells 12, no. 4: 655. https://doi.org/10.3390/cells12040655
APA StylePetrella, C., Zingaropoli, M. A., Ceci, F. M., Pasculli, P., Latronico, T., Liuzzi, G. M., Ciardi, M. R., Angeloni, A., Ettorre, E., Menghi, M., Barbato, C., Ferraguti, G., Minni, A., & Fiore, M. (2023). COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality. Cells, 12(4), 655. https://doi.org/10.3390/cells12040655