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Abstract: Analysis of neural encoding and plasticity processes frequently relies on studying spatial
patterns of activity-induced immediate early genes’ expression, such as c-fos. Quantitatively analyzing
the numbers of cells expressing the Fos protein or c-fos mRNA is a major challenge owing to large
human bias, subjectivity and variability in baseline and activity-induced expression. Here, we
describe a novel open-source ImageJ/Fiji tool, called ‘Quanty-cFOS’, with an easy-to-use, streamlined
pipeline for the automated or semi-automated counting of cells positive for the Fos protein and/or
c-fos mRNA on images derived from tissue sections. The algorithms compute the intensity cutoff
for positive cells on a user-specified number of images and apply this on all the images to process.
This allows for the overcoming of variations in the data and the deriving of cell counts registered
to specific brain areas in a highly time-efficient and reliable manner. We validated the tool using
data from brain sections in response to somatosensory stimuli in a user-interactive manner. Here,
we demonstrate the application of the tool in a step-by-step manner, with video tutorials, making it
easy for novice users to implement. Quanty-cFOS facilitates a rapid, accurate and unbiased spatial
mapping of neural activity and can also be easily extended to count other types of labelled cells.

Keywords: quantitative analysis; immunohistochemistry; in situ hybridization; Fos protein; c-fos
mRNA; 2D automated cell counts; open-source ImageJ/Fiji tool

1. Introduction

Analysis of neural circuits frequently relies on the use of immunohistochemistry
assays to identify specific cell types using neurochemical marker proteins or mRNAs target
genes. Similarly, quantitative analyses of cell counts expressing plasticity markers, such
as the activity-induced immediate early gene, c-fos, represent a cornerstone of studying
neural plasticity processes over large cellular networks in histological specimens. However,
reliably counting cells immunohistochemically positive for protein markers or for mRNAs
visualized in in situ hybridization experiments in large histological specimens, such as
brain sections, remains a major challenge. Manual counting is extremely time-consuming,
cumbersome and prone to subjective variations.

Recently, several automated digital image analysis tools have been developed. A major
part of this development has focused on an automated analysis of the expression levels
of proteins over regions of interest in histological specimens, such as tumor or immune
markers, as clinical diagnostic or prognostic tools [1–3]. Despite this progress, availability of
automated tools that enable easy-to-use, reproducible and reliable identification and quan-
titative counting of positive cells in immunohistochemical or mRNA in situ hybridization
experiments on thick slices of tissue remains limited [4,5]. Often, user is required to have
image analysis skills and experience, in-depth coding knowledge or access to expensive
commercial software. Furthermore, automated tools for the identification of positive cells
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need high signal-to-noise levels, thus favoring highly expressed proteins. Signals repre-
senting nuanced differences in expression levels, high background and difficult antibodies,
in contrast, are not suitable for conventional automated tools.

This is particularly relevant to the protooncogene c-fos, the immediate early gene that
is directly induced in expression upon neuronal activation, leading to a rapid and transient
build-up of c-fos mRNA and consequently of the Fos protein, which decays shortly after
cessation of neuronal activity. Over the recent years, mapping Fos expression has emerged
as a technically simple and reliable global marker for analyzing neurons that are activated
by diverse external inputs, such as sensory stimuli [6]. Moreover, because Fos expression is
well-correlated with behavioral readouts in animals, Fos-based mapping enables spatial
analysis of regions and cells recruited during particular behaviors [6–9]. Finally, Fos
expression is frequently used to characterize the effects of diverse therapeutic regimens on
the central nervous system [10,11]. The recent development of Fos-based transgenic tools
for labelling ensembles, i.e., cells that are co-active during particular functional tasks, as
well as approaches that enable the consecutive labelling of two distinct cell populations
with c-fos mRNA and the Fos protein, provide tremendous scope for studying functional
encoding in the nervous system [7]. Thus, although they lack the spatial resolution of direct
electrophysiological measurements, Fos-based mapping approaches represent attractive,
highly useful and popular tools that are delivering unprecedented insights into neural
function. Quantifying Fos-expressing neurons, however, still represents a major problem
owing to high background levels and non-linear expression with different levels of signal-to-
noise within and across samples preparations. Batch-to-batch variability of both antibody-
based signals as well as c-fos mRNA in situ probes leads to several confounding effects. This
has led to the necessary use of experimenter-based manual counting in studies employing
Fos-based mapping in a quantitative manner, which is highly laborious, time-consuming,
not entirely objective and highly subject to experimenter bias.

Here, we report the development of an open-source tool for ImageJ/Fiji [12], called
‘Quanty-cFOS’, with an easy-to-use, streamlined pipeline for automated or semi-automated
quantitative analysis of cells positive for the Fos protein and/or c-fos mRNA on two-
dimensional images (2D) or confocal maximum intensity projections (MIP) derived from
tissue sections. Using example data sets of brain tissue from mice subjected to somatosen-
sory stimuli, we demonstrate the entire process in a step-by-step manner and with the use
of video tutorials, making it easy for novice users to apply on their images. Using manual
counting to establish ground truth, we demonstrate both the fidelity of Quanty-cFOS and
its ability to overcome user-to-user subjective variability. The tool also takes into account
day-to-day and sample-to-sample variations in staining efficiency and enables for the de-
riving of cell counts registered to specific brain areas in a highly time-efficient and reliable
manner. Thus, by delivering reliable and fast automated cell quantification across com-
plex, technically non-optimal data sets, Quanty-cFOS accelerates the use of Fos mapping
for analyses of neural circuits and thus provides an impetus to a wide range of research
fields, including memory, chronic pain, addiction and psychiatric disorders. Importantly,
although this tool was optimized and validated for quantitating Fos-expressing cells, it is
just as readily applicable to any antibody, and is particularly suitable for proteins that show
a variable baseline and induced expression within and across samples.

2. Materials and Methods
2.1. Animals

All experiments were conducted in C57BL/6J male mice (20–30 g) at 8 weeks of age
that were obtained from Janvier Labs. In total 12 animals were used. Mice were housed
individually in separated cages and kept under a 12 h light/dark cycle at a controlled
temperature (22 ± 2 ◦C), humidity (40–50%), with food and water provided ad libitum
according to ARRIVE guidelines. All experimental procedures were approved by the local
governing body (Regierungspräsidium Karlsruhe, Germany, Ref. 35-9185.81/G-184/18),
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and abided to German Law (TierSchG, TierSchVersV) that regulates animal welfare and the
protection of animals used for scientific purpose.

2.2. Application of Sensory Stimuli and Fos/c-fos Induction

A heat stimulus was presented to mice on a hot plate at 50 ◦C for 30 s (Ugo Basile Inc.,
Gemonio, Italy). Mice were exposed only once. To allow sufficient expression of Fos and to
validate the Quanty-cFOS ImageJ/Fiji tool, C57BL/6J mice were kept in a home cage after
stimuli for 20 min, 1 h or 3 h after the application of the stimulus prior to perfusion.

2.3. Tissue Fixation and Immunofluorescence Antibody Staining

Mice were sacrificed with an overdose of carbon dioxide, transcardially perfused with
pre chilled phosphate-buffered saline (PBS) followed by 10% formalin fixative solution
(Merck, Darmstadt, Germany). The brains were extracted and fixed in 10% formalin for
24 h at 4 ◦C. Coronal brain sections were collected at 50 µm with a vibratome (Leica VT100S,
Wetzlar, Germany).

Free-floating sections were incubated in antigen retrieval solution (2.94% Tri-sodium
citrate in dH2O, pH 8.5) for 25 min at 85 ◦C, and after cooling down, washed at room
temperature with 50 mM Glycine (AppliChem, Darmstadt, Germany) for 10 min, followed
by PBS for 5 min and 0.2% Triton X-100 (Carl Roth, Karlsruhe, Germany) in PBS (PBST)
for 15 min. Lastly, sections were treated with 5% horse serum in PBST for 1 h, before
incubating with the rabbit anti-Fos primary antibody (Ab190289, 1:1000 in 5% horse serum
in PBST, Abcam, Cambridge, UK) at 4 ◦C overnight. The next day, sections were washed
with 5% horse serum in PBST 3 times for 10 min and incubated with the donkey anti-rabbit
Alexa 594 secondary antibody (Ab21206, dilution 1:700 in 10% NHS in PBS, Thermo Fischer
Scientific, Waltham, MA, USA) for 2 h. After washing again with 5% horse serum in PBST
3 times for 10 min and in PBS for 10 min, Hoechst (#H367, 1:10,000 in PBS, Thermo Fischer
Scientific, Waltham, MA, USA) was added for 10 min, followed by washing 3 times in
PBST for 10 min each and in 10 mM TRIS-HCl for 10 min before mounting on glass slides
with Mowiol.

2.4. c-fos mRNA In Situ Hybridization and Fos Immunofluorescence Co-Staining

For brain tissue preparation, mice were killed with CO2 at a defined time interval after
the application of the external sensory stimulus and perfused with chilled PBS, followed
by chilled 4% PFA. Brains were removed and held in 4% PFA for 3 h and transferred to
30% sucrose-PBS at 4 ◦C for 18–24 h. Brains were coronally sectioned with a cryotome
(Leica CM1950, Wetzlar, Germany) at 50 µm and slices collected into 24-well plates with
chilled PBS. All equipment was precleaned with RNaseZAP (Sigma RNaseZAP, Darmstadt,
Germany), and all reagents were prepared using diethyl pyrocarbonate (DEPC)-treated
PBS to avoid RNase contamination.

For mRNA in situ hybridization, the c-fos mRNA in situ probe was constructed ac-
cording to the information on the Allen Brain Atlas website (http://www.brain-map.org,
accessed on 15 February 2023). The RNA probe was generated via an in vitro transcription
and labeled using the DIG-RNA-Labeling Mix kit and T7 RNA polymerase (Merck, Darm-
stadt, Germany), dissolved as a 1 µg/mL concentration in the hybridization solution (50%
formamide (v/v), 5× SSC, 0.3 mg/mL Yeast tRNA and 0.5 mg/mL Salmon Sperm DNA).
For c-fos tyramide-amplified in situ hybridization, slides were firstly washed 3-times with
ice-cold PBS for 3 min and treated with acetylation buffer (0.25% acetic anhydride (v/v) in
0.1 M triethanolamine) for 10 min at room temperature. After rinsing once with cold PBS,
cells were permeabilized with 0.3% TX100-PBS for 20 min at 4 ◦C. For in situ hybridiza-
tion, tissues were pre-hybridized in hybridization buffer for 30 min. For hybridization, a
c-fos anti-sense probe (diluted 1:200 in hybridization buffer) was applied and incubated
overnight at 65 ◦C. The sense probe was applied to control slides. Post-hybridization, the
tissue was washed twice with 2 × SSC/0.1% N-Lauroylsarcosine/50% formamide at 60 ◦C,
rinsed in RNAse buffer (10 mM Tris, pH 8.0, 500 mM NaCl, 1 mM EDTA) and then digested

http://www.brain-map.org
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with 20 µg/mL RNaseA in the RNase buffer for 30 min at 37 ◦C. This was followed by
washing with 2 × SSC/0.1% N-Lauroylsarcosine and 0.2 × SSC/0.1% N-Lauroylsarcosine
twice for 20 min at 37 ◦C and then rinsed once again with MABT (Maleic acid buffer with
1% of Tween 20). Tissue was then blocked with MABT++ (MABT with 10% heat-inactivated
goat serum and 1% Blocking reagent) for 1 h at room temperature. Next, the tissue was
incubated in MABT++ solution with the anti-digoxygenin antibody (anti-DIG-POD, 1:1000,
Roche, Basel, Switzerland) at 4 ◦C for 16 h. For signal amplification, the slides were washed
with MABT for 30 min at least 6 times, then rinsed with TSA buffer (10 mM imidazole)
and incubated with TSA staining solution (Dilute Rhodamine tyramide 1:75 in TSA buffer,
add in 0.001% H2O2) for 20 min at room temperature in the dark, followed by washing
with PBST (PBS with 0.1% Tween 20) for 10 min, 5 times at room temperature in the dark.
Tissues were mounted on slides with Mowiol after washing with PBS for single mRNA
staining, or further used for immunofluorescence co-staining.

For immunofluorescence co-staining, the tissue was first washed with T-BST (0.05%
Tween 20 and 0.05 M Tris-HCl in PBS) for 10 min, 5 times at room temperature in the dark
and afterwards incubated with the anti-Fos primary antibody (1:1000, abcam, ab190289) in
T-BST at 4 ◦C overnight. On the second day, the tissue was washed 3 times for 5 min in
T-BST and then incubated with species-specific fluorescent secondary antibodies in T-BST
for 1 h at room temperature. Finally, slides were washed 3 times for 15 min with 0.3%
T-BST, then again with T-BST 3 times for 10 min and finally rinsed with 10 mM Tris-HCl for
10 min before mounting the coverslips with Mowiol.

2.5. Confocal Laser Scanning Microscopy Acquisition Settings

As examples of the region showing robust Fos expression upon somatosensory (cold)
stimulation as well as reasonable baseline activity, coronal sections from the prelimbic and
insula cortex (from 2.4 mm to 0.37 mm anterior to the bregma) were used for analysis. A
confocal microscope (Leica TCS SP8, Wetzlar, Germany) was used to acquire immunoflu-
orescence image stacks with 2 µm-thick planes using the 20× objective (N.A.: 0.75, oil
immersion). Laser diode wavelengths of 405, 488, 552 and 638 nm in combination, respec-
tively, with filters sets for DAPI (ex BP360/403 em LP425), FITC (ex 470/40, em LP515) and
TRITC (ex 540/45, em LP590) were used. This resulted in an average z-optical section of
20 µm. The Fos protein signal showed nuclear staining pattern, whereas the c-fos mRNA
appeared mostly in the cytoplasm.

2.6. Manual Counting of Cells Positive for Fos Protein or c-fos mRNA

For manual counting, the experimenter was blind to the different test groups, and
images from groups were assigned a random number prior to analysis that was decoded
after analysis. All confocal images were overlaid with the corresponding atlas section
to anatomically define the regions of interest. All labeled cells within the boundaries of
the defined sites were marked using a self-developed tool (https://github.com/cberri/
cFOS_ManualAnnotations_ImageJ-Fiji, accessed on 15 February 2023) for ImageJ/Fiji and
manually counted on MIP obtained from confocal stacks [12]. Brightness and contrast were
optimized for each image. Background subtraction was performed by subtracting the mean
intensity value estimated from a single background ROI placed within an unlabeled region
in the same image. The Fos protein and c-fos mRNA signals were analyzed as separate
images taken from the same slice using their respective excitation wavelengths. Positive
cells on the XY boundary were excluded, and Fos protein signals were typically 6–8 µm
in diameter and located in or near the nucleus. Nuclei were identified via DAPI staining.
The c-fos mRNA signals were located in the cytoplasm as regions of 8–16 µm diameter
surrounding the nucleus. In order to be counted positive, a cell had to display an intensity
value above the intensity threshold of the background.

https://github.com/cberri/cFOS_ManualAnnotations_ImageJ-Fiji
https://github.com/cberri/cFOS_ManualAnnotations_ImageJ-Fiji
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2.7. Quantification of Fos Protein and c-fos mRNA Intensity Features for Development of
Quanty-cFOS

Image intensity features were extracted from 60 images acquired by 4 experimenters for
the anti-Fos antibody staining and from 63 images acquired by 2 experimenters for the c-fos
mRNA in situ using a customized ImageJ/Fiji script (https://github.com/cberri/Quanty-
cFOS/blob/main/scripts/Extract-ImageProperties_V0.ijm, accessed on 15 February 2023).
The script extracts intensity features to measure Fos staining variability between different
preparations and image acquisition settings. The following features were computed for
each image: mean intensity, standard deviation intensity, minimum intensity, maximum
intensity, mode intensity and mean background intensity.

2.8. Development of Quanty-cFOS, an ImageJ/Fiji Tool to Count Fos/c-fos Positive Cells in an
Unbiased Meter

Here, we developed Quanty-cFOS.ijm as an ImageJ/Fiji tool to semi-automatically
or automatically count in an unbiased manner cells expressing the Fos protein or c-fos
mRNA in fixed stained brain slices. It can be extended to generally count cell markers in 2D
fluorescent images or on MIP. For flexibility reasons, this tool is developed as a macro-set
(IJ1) for ImageJ/Fiji (tested on ImageJ version 1.53s and later) [12]. The proposed workflow
consists of two major steps:

- Automated cell segmentation,
- Cell counting using the automated or the manual optimization method.

The Quanty-cFOS tool can be downloaded from https://github.com/cberri/Quanty-
cFOS (accessed on 15 February 2023) and we provide a detailed step-by-step documentation
of how to use it, including supplementary videos and several scripts to validate the cell
counting (the GitHub validation folder).

2.9. Automated Cell Detection with Quanty-cFOS

Quanty-cFOS cell detection is implemented using two different state-of-the-art seg-
mentation strategies, based on deep learning and machine learning. The first uses the
StarDist 2D Versatile (Fluorescent-Nuclei) inference available in the StarDist ImageJ/Fiji
plugin and applies it on the raw images to segment convex shape structures [13]. The
second uses the ilastik software pixel classification machine learning workflow to generate
a probability map image using manual user annotations for different classes of pixels in an
image [14]. In this case, the corresponding probability map image is loaded in addition to
the raw input image in the Quanty-cFOS and intensity-thresholded to segment the cells.
The user can decide which method is more suitable to process the images depending on
the signal-to-noise ratio and on the shape of the cells that need to be segmented. The ilastik
pixel classification workflow needs to be trained in ilastik software before to run the Quanty-
cFOS tool (https://www.ilastik.org/documentation/pixelclassification/pixelclassification,
accessed on 15 February 2023).

2.10. Automated Intensity Optimization Method in Quanty-cFOS

A key feature defining the novelty of the Quanty-cFOS counting method is the z-score
intensity cutoff used for the Automated Optimization. The proposed algorithm computes the
mean intensity value and the intensity standard deviation of each single segmented cell in
the images, averages these two values and computes the z-score (Zi):

Zi =
xi− µ

σ

xi : single cell intensity
µ : mean cell intensity
σ : mean cell intensity standard deviation

https://github.com/cberri/Quanty-cFOS/blob/main/scripts/Extract-ImageProperties_V0.ijm
https://github.com/cberri/Quanty-cFOS/blob/main/scripts/Extract-ImageProperties_V0.ijm
https://github.com/cberri/Quanty-cFOS
https://github.com/cberri/Quanty-cFOS
https://www.ilastik.org/documentation/pixelclassification/pixelclassification
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The intensity values in the significant z-score range (sigma) are averaged and used to
set the intensity thresholds cutoff to count Fos/c-fos-positive (above) or negative (below)
cells. The user can specify the range of standard deviations (sigma) to optimize the cutoff
value for the Fos/c-fos cell counts. The larger the sigma value, the less restricted is the
intensity cutoff value, and vice-versa.

IcS (Zi→ S) =
n

∑
i=1

i
xi
n

IcS : intensity cutoff computed on an image
Zi : z-score
S : significant range of standard deviations (sigma)
xi : single cell intensity
n : number of positive cells in an image

The cutoff optimization is critical to gain an accurate and robust estimation of cell
numbers. To consistently calculate the mean and standard deviation intensity, an arbitrary
number of images can be used as input to compute the intensity cutoff (see Batch Analysis
with Optimization Steps). In this case, the average intensity values of the images used for
the optimization are accounted to calculate the intensity cutoff.

IcA =
f

∑
i=1

i
IcS

f

IcA : intensity cutoff with the optimization steps
IcS : intensity cutoff x image
f : optimization steps

The results of the automated intensity method can be validated by manually counting
cells in fewer images and by running the MATLAB correlation analysis provided together
with the Quanty-cFOS (CorrelationAnalysis.mlx, see also the ValidationTable.xlsx file as
an example). Manual counting can be performed using any favorite tool or by using the
following ImageJ/Fiji IJ1 script that we developed for this purpose (https://github.com/
cberri/cFOS_ManualAnnotations_ImageJ-Fiji, accessed on 15 February 2023).

2.11. Manual Intensity Optimization Method in Quanty-cFOS

The intensity threshold value used for Fos/c-fos cell counting is the key parameter to
decide the cutoff for positive or negative counts. This is rather important if images have
been acquired with different settings or high staining variability occurs between samples.
To optimize this process and to help test different threshold values in a semiautomated
unbiased way, we implemented the Manual Optimization function. By using this method,
images can be previewed, and different intensity values can be tested for Fos/c-fos-positive
cell counting. The Manual Optimization default intensity value displayed in the user setting
dialog box is computed via the Automated Optimization function to help in choosing the
appropriate intensity cutoff value. Moreover, different size filters for the cell area can be
applied to remove small and large detected objects in the images. The number of images
previewed is specified using the Optimization Steps. Indeed, only these images are used for
testing different thresholds and the average intensity value of these thresholds is applied
as an intensity cutoff on all the subsequently listed raw images.

2.12. Cell Batch Analysis without Intensity Optimization in Quanty-cFOS (Optional)

Counting all cells without intensity optimization is also possible as an option and can
be achieved by unchecking the Automated Optimization and the Manual Optimization. In this
way, all the cells in the image are counted without an intensity cutoff. Only a size cutoff
filter (based on the cell area) is applied to exclude cells below the cutoff value and 5 times

https://github.com/cberri/cFOS_ManualAnnotations_ImageJ-Fiji
https://github.com/cberri/cFOS_ManualAnnotations_ImageJ-Fiji
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above the specified cutoff value. This option is supported only with Batch Analysis and the
number of Optimization Steps is ignored.

2.13. Additional Quanty-cFOS Functionalities

Select Multiple Sub-Brain Region was added to select specific regions of interest in the
input images and to count positive cells only inside the selected regions. This option works
only without batch analysis.

Select Allow Preview User Setting was added to preview the intensity threshold and
area cutoff used for the ilastik probability map segmentation (simple method). The intensity
threshold method and cell size filter (area) can be modified to gain the best segmentation
results. Currently, we support simple ImageJ/Fiji thresholding methods to segment cells in
the ilastik probability map.

2.14. Additional Software

Matlab (R2019a) was used for the correlation analysis and statistics. Figures were
prepared using Adobe Photoshop CS6 (Adobe) and Adobe Illustrator CS6 (Adobe). DaVinci
Resolve was used to edit the supplementary movies.

2.15. Statistical Analyses

All statistical analyses were performed in Matlab (R2019a). Box plots were created
using the Matlab box plot function and show the mean intensity value +/− and the standard
deviation (S.D.) of each plotted feature. The black horizontal line in each box represents the
median value z-score. Analysis was computed in Matlab, and a positive correlation was
considered in the range of two standard deviations. Box plots were generated for each time
point for c-fos mRNA and Fos protein counts. Each box shows the mean intensity counts,
the vertical lines show the S.D. (+/−).

3. Results
3.1. Fos/c-fos Staining Can Lead to Biased Results Depending on Sample Preparation and
Microscopy Acquisition Settings

Our past experience has shown that quantifying Fos-expressing cells is challenging,
not only because major differences exist in expression levels across cells as well as across
samples, but also owing to technical aspects of sample preparation and imaging param-
eters. This was again observed when we acquired Confocal Laser Scanning Microscopy
(CLSM) z-stacks after Fos protein immunostaining and c-fos mRNA in situ hybridization,
as described under methods. To address differences in the image acquisition, four different
experimenters prepared the samples, optimized the confocal settings and acquired the
images (Figure 1A–D,A’–D’). We quantified Fos protein expression by extracting intensity
features along the different staining and acquisition settings (ImageJ/Fiji Set Measurement
plugin) [12]. Our analysis revealed major differences between the different extracted fea-
tures across samples and experimenters. Indeed, we observed a high variability for the
mean image intensity, mode intensity and mean background intensity features (Figure 1E).
Intriguingly, the maximum intensity feature also showed a large dynamic range, suggest-
ing fluctuation in the signal-to-noise ratio between acquired images. Moreover, for the
minimum and the mode intensity, several data points were detected outside the whiskers
in box-and-whisker plots, highlighting the differences between stained images (Figure 1E,
+ symbol).
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Figure 1. Intensity variability in Fos protein immunohistochemistry and mRNA in situ hybridiza-
tion. (A–D) Confocal maximum intensity projections of neurons immunostained for expression of
Fos protein in mouse brain sections (prefrontal cortex shown here), which were acquired by four
experimenters. The representative images show staining variability and different confocal settings
for image acquisition (images were acquired at different resolutions). (A’–D’) Confocal maximum
intensity projections of c-fos mRNA after in situ hybridization on mouse brain sections, which were
acquired by two experimenters (prefrontal cortex and S1 shown here). Representative images show
differences in mRNA in situ hybridization efficiency and image acquisition settings. Scale bar was
added using ImageJ/Fiji on the right bottom corner of each image. (E,E’) Intensity features box plot
comparisons, in which intensity features were extracted using the Extract-ImageProperties_V0.ijm
ImageJ/Fiji script. The extracted intensity features are shown plotted on the x-axis. Data points
outside the whiskers are marked with the plus symbol. Data are represented as mean ± standard
deviation (S.D.).

The c-fos mRNA was evaluated in the same way on two different sets of samples
prepared by two experimenters. The analysis revealed an even larger variability in terms
of the mean image intensity, mode intensity and mean background intensity features
(Figure 1E’). Differently from the Fos protein, the maximum intensity value is set to 255 for
an 8-bit dynamic range (0–255), indicating that all the images have been saturated while
being acquired. This is indicative of a low signal-to-noise ratio for the c-fos mRNA that
required a high confocal gain or/and laser power during image acquisition. Considering
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the extracted intensity variability between the tested images, fewer data points were
detected outside the whiskers (Figure 1E, plus symbol). Intensity fluctuations between
different staining rounds, acquisition settings and in between images acquired to investigate
a specific physiological problem can lead to bias, especially if cell counting is the main
readout. These experiments thus demonstrate the need to reduce bias in manual counts,
which served as the starting point of our efforts toward developing the Quanty-cFOS
ImageJ/Fiji tool for the automated/semiautomated counting of cells positive for the Fos
protein and c-fos mRNA.

3.2. Fos/c-fos Cell Counting Workflow with Quanty-cFOS

The Quanty-cFOS was developed to be a user-friendly, unbiased ImageJ/Fiji tool for
Fos protein and c-fos mRNA counts. The workflow consists of four major steps: input,
detection, quantification and results (Figure 2, Fos protein and c-fos mRNA workflow). An
input directory containing all the Fos protein images to process can be chosen. For the
Fos protein detection, we used the StarDist 2D versatile fluorescent nuclei model in the
Quanty-cFOS (Figures 2A and S1A, Movies S2–S5) [13]. This method generated labeled
images (Figure 2B) and it was optimized to segment convex objects in two dimensions
(2D). The cell detection can be easily improved in the Quanty-cFOS tool by training a
custom StarDist 2D model [15]. For the c-fos mRNA counts, we used two input directories.
The detection method uses pre-processed images obtained from ilastik pixel classification
workflow [14] in combination with the raw images (Figure 2A1′,A2′; Movie S4). We
implemented this method to detect any cell shape, from convex to more elongated shapes.
Moreover, this option allows us to choose any pre-processed method in case cell detection is
inefficient and upload the pre-processed images in the tool. MIP are automatically created
using the Quanty-cFOS tool or can be generated by the user prior to the cell counting.
The Quanty-cFOS tool supports three methods for cell counting: ‘automated optimization’,
‘manual optimization’ and ‘all cells counts’–‘with batch analysis’ and ‘without batch analysis’
(Figures S1B and S2; Movies S1–S4). The option ‘with batch analysis’ has been implemented
to help the user in choosing the detection parameters and the intensity cutoff to batch
process all the images in the input source directory by applying the same settings. This
modality allows us to apply the ‘automated optimization’, the ‘manual optimization’ and ‘all
cells counting’ methods (Figure S1B left; Movies S1–S4).

Choosing the detection parameters can be difficult, in particular when the images are
different from each other, or the counting method settings needs to be changed during
the processing. Therefore, to simplify cell counting, we developed the option ‘without
batch analysis’ (Figure S1B right; Movie S5). Optimization methods and parameters can
be changed for each image to achieve the best counts. This method is recommended if
the images to process are very different from each other, or different parameters need to
be tested for the cell counting. Chosen parameters are thereby saved in the root output
directory to document the analysis (output Log.txt file). This modality can be used only for
the ‘automated’ and the ‘manual optimization’ methods. Moreover, the option ‘without batch
analysis’ supports the multiple ‘sub-brain regions selection’ function to count Fos-positive
cells in selected subregions of an image (Figure S3, Movie S5).
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Figure 2. Step-by-step counting of cells expressing Fos protein and c-fos mRNA using the Quanty-
cFOS ImageJ/Fiji tool. Top to bottom, Quanty-cFOS workflow steps: number of input directories
containing the images to process (INPUT), detection method for image segmentation (DETECTION),
positive cell counting (QUANTIFICATION, automated or manual optimization method) and output
results (RESULTS). (A–C) Quanty-cFOS workflow to count Fos protein-positive neurons in confocal
maximum intensity projections. (A) Representative input raw image, (B) StarDist segmented labeled
image and (C) image showing output of positive and negative cells counted in Quanty-cFOS. Fos-
positive cells (Fos+) are labeled in blue and Fos-negative cells (Fos-) are labeled in red. (A′–C′) Quanty-
cFOS workflow to count c-fos mRNA-positive neurons in confocal maximum intensity projection
images. (A1′) raw input image, (A2′) pre-processed ilastik pixel classification probability map input
image. (B′) Thresholded ilastik pixel classification binary image (0, 255) generated via the Quanty-
cFOS tool using the ImageJ/Fiji default threshold method. (C′) c-fos mRNA-positive cells (c-fos+)
are labeled in blue and c-fos negative cells (c-fos-) are labeled in red. Red squares show a region of
interest magnified on the right side of each image for Fos protein and c-fos mRNA. The output results
folder structure is shown at the bottom (SF1, subfolder 1). (A,A1′,A2′) Scale bar was added using
ImageJ/Fiji on the right bottom corner of each image.
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The ‘automated optimization’ method is used to compute the intensity threshold cutoff
on a predefined number of images specified via the ‘optimization steps’ and applies this
cutoff to all the following images listed in the input directory (Figure S2, Movie S2). The
cutoff intensity threshold is computed on the optimization images by calculating the z-
score. Only cell intensity values in the range of the specified z-score sigma (number of
standard deviations) are averaged and contribute to the final intensity cutoff. The ‘manual
optimization’ method allows the user to choose the intensity cutoff by previewing a selected
number of images specified via the ‘optimization steps’. These values are averaged and used
as an intensity cutoff for cell counting (Figure S2; Movie S3). For both methods, an area
filter is applied. For the ‘automated optimization option’, the area is set two times above and
below the area standard deviation. In the ‘manual optimization’, the area can be measured
on the previewed images and the cutoff value can be specified. The option ‘All cells counts’
can be used to count all the positive cells in the images without any ‘optimization steps’
(Figure S2, Movie S1). This has been included to count in 2D all the cells in an image
independently of an intensity cutoff.

To simplify further analysis and statistics, the Quanty-cFOS output consists of an
output root directory created outside the input path with subdirectories named as the input
processed images. Each subdirectory saves the labeled image for positive and negative
cells (Figure 2C,C’), the ImageJ/Fiji ROI Manager ROIs and a comma separator values (csv)
file with the coordinates of the center of mass of each detected cell. Moreover, the output
root directory contains the summary of the counts as an csv file and the Log.txt file with the
analysis steps and the chosen parameters (Figures 2 and S1). An additional subdirectory
with all the labeled images for positive and negative cells is created in the main output
path for further analysis.

3.3. Quanty-cFOS Validation for Fos Protein Cell Counting

After establishing the methodology, cell counting results generated using Quanty-
cFOS on cells expressing the Fos protein were compared to manual counts of Fos-expressing
cells using a test data set of randomly selected images from mouse brain sections (Figure 3).
Fos-expressing cells were manually annotated in the validation images by four different
experimenters (Figure 3A–D) and the results compared with the Quanty-cFOS output
(Figure 3E). For the manual counting, we developed an ImageJ/Fiji tool that allows the user
to select positive and negative cells by clicking the left and right mouse button. Positive
cells can be counted by clicking the left mouse button, negative cells with the right mouse
button (https://github.com/cberri/cFOS_ManualAnnotations_ImageJ-Fiji, accessed on
15 February 2023). By comparing the manual counts from the four experimenters, we
observed consistent results between the single human counts in certain ROIs but also
miscounted cells in other parts of the images (Figure 3A’–D’). Indeed, the single counts
analysis of Fos protein-expressing cells over 30 images showed a discrepancy in the absolute
number of positive cells counted manually (Figure 3F, Manual Count: experimenter one,
experimenter two, experimenter three, experimenter four). The discrepancy in counts was
also seen when the absolute single counts from manual counting were compared with
the Quanty-cFOS output (Figure 3E’,F, automated Quanty-cFOS counts). To evaluate the
relation between the two methods, we compared the manual counts average slope with the
Quanty-cFOS slope. The slope for both, the manual average and Quanty-cFOS, showed
a similar distribution in the number of positive cells counted, suggesting a consistent
relation between the manual and the Quanty-cFOS counts (Figure 3G). To further verify
this observation, we computed the correlation analysis between the manual and Quanty-
cFOS counts using the z-score method. The analysis showed a significant correlation
in two standard deviations range (sigma) between the manual and the Quanty-cFOS
counts (Figure 3H). These results support the accuracy of the automated Quanty-cFOS
method. Furthermore, the large differences in the absolute manual counts between the four
experimenters further revealed the need of an unbiased algorithm for cell counting.

https://github.com/cberri/cFOS_ManualAnnotations_ImageJ-Fiji
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Figure 3. Fos protein: analysis and comparison of cells counted manually vs. Quanty-cFOS.
(A–D) Representative maximum intensity projection images for Fos-positive cells manually counted
by four experimenters. (A–E) Scale bar was added using ImageJ/Fiji on the right bottom corner of
each image. (E) Quanty-cFOS automated Fos-positive cell counting using the ‘Automated Optimization’
method. (A–E) Fos-positive cells are highlighted with a green outline. (A–E,A’–E’) Green rectangular
ROI shows cells counted manually by the 4 experimenters to be positive for Fos or counted as positive
using the Quanty-cFOS automated method. Red rectangular ROI shows Fos-positive cells counted
differentially between the four experimenters and the Quanty-cFOS tool. (A’–E’) Highlighted red
and green rectangular ROIs; white arrowheads point to a miscounted cell in red rectangular ROIs.
(F) Comparison between automated Quanty-cFOS and human manual counts over 30 images; blue
line shows the automated Fos-positive cell counts; orange, yellow, purple and green lines represent
the manual counts performed by the four experimenters. (G) Automated Quanty-cFOS counts and
average of manually counted Fos-positive neurons; blue circular markers show the automated counts,
red circular markers the average values of manual counts. Single manual Fos-positive cell counts
performed by each of the four experimenters are shown by the orange, yellow, purple and green
triangular markers. The dashed lines show the counting slope for the automated Quanty-cFOS (blue)
and the human manual counts (red). (H) z-score analysis with a significant counting correlation in
the two standard deviations (S.D.) range between the automated and human manual counts. Blue
and red circles plot the individual correlation values for the automated and the manual counts. Black
dashed line shows the correlation slope.
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3.4. Quanty-cFOS Validation for c-fos mRNA Cell Counting

In Quanty-cFOS, we developed a similar approach for counting cells positive for c-fos
mRNA in in situ hybridization experiments, as was used for the Fos protein. First, we
compared the manual counting results performed by four experimenters on 30 images from
the mouse brain with the output of the automated Quanty-cFOS algorithm (Figure 4A–E).
The manual counts were obtained as described for the Fos protein. The automated counts
were achieved by using the combination of raw and ilastik pixel classification probability
map as pre-processing step. Ilastik pixel classification workflow was trained using 15 raw
c-fos mRNA images and all the images were batch processed in ilastik [14]. A larger
amount of training data or different pre-processing methods can be used to gain higher
accuracy in the segmentation results, e.g., ilastik Autocontex [16], image denoising with
noise2void [17], image restoration with CARE [18] and a suitable deep learning model
from BioImage Model Zoo [19]. The manual counts comparison showed consistent results
between the experimenters’ counts in certain ROIs but also revealed miscounted cells in
other parts of the images (Figure 4A’–D’). Similar results are observed for the automated
c-fos mRNA counts (Figure 4A’–E’). Manual cell counts showed differences in the absolute
number of c-fos-positive cell counts (Figure 4F: manual counts: H1, H2, H3, H4). This was
also seen when comparing the c-fos manual counts with the automated counting results
(Figure 4F: automated Quanty-cFOS counts). However, the discrepancy within the absolute
counts, within the manual counts and in between the manual and the automated counts was
smaller in comparison to what we observed for Fos protein counts (Figure 3F). We evaluated
the counts relation by comparing the manual counts average slope with the mRNA Quanty-
cFOS slope. Both slopes, manual and automated, showed the same distribution with
many overlapping data points (Figure 4G). We further tested the counts for significance by
computing the z-scores in two S.D. ranges. Manual and automated counts showed a strong
correlation. As with the Fos protein counts, these analyses demonstrate the validity and
accuracy of the Quanty-cFOS automated method for counting c-fos mRNA-positive cells in
complex tissues (Figure 4H).

3.5. Hot Plate Analysis of Fos Protein and c-fos mRNA Expression Using Quanty-cFOS

Having established the Quanty-cFOS automated method, we then demonstrate its
utility for studying activation in neuronal networks in the rodent brain by applying it to
follow changes in both c-fos mRNA and Fos protein expression after sensory stimulation.
In mice subjected to a heat stimulus of 50 ◦C applied to the hindpaw, c-fos mRNA levels
started to increase in the prefrontal cortex within 20 min, peaked at 1 h and the mRNA
was degraded by 3 h after stimulation (Figure 5A–C). In contrast, Fos protein increased
only after 1 h and strong expression was evident 3 h after stimulation (Figure 5D–F). The
automated counts were compared with manual counts performed by four experimenters,
as described above. Both automated and manual counts for mRNA and protein show
the expected c-fos expression. Indeed, c-fos mRNA could be seen at 20 min, reached a
peak after 1 h and was degraded after 3 h, while protein expression was evident at 1 h
and not seen at 20 min post-stimulation (Figure 5G, blue and red dash lines). Thus, we
validated the Quanty-cFOS method, showing that it can be reliably used to automate
the Fos protein and c-fos mRNA cell counts. This is an important prerequisite for using
Quanty-cFOS for the automated quantification of positive cell counts in methods involving
dual counting of mRNA and protein within the same specimen. While this can apply to
any biological marker mRNAs or proteins, the ability to reliably count cells expressing
c-fos mRNA and protein within the same specimen in the context of the different time
course of their expression using Quanty-cFOS will allow for the implementation of this
tool in dual-epoch labelling methods, such as TAI-FISH, that involve an analysis of cells
responding in an activity-dependent manner to different stimuli (e.g., two distinct sensory
stimuli, such as heat and cold) applied with a temporal gap [7]. The variability of manual
cell counts can affect the final experiment outcome depending on how an experimenter
visually counts cells (Figure 5G, orange and green arrowheads). Instead, the Quantity-cFOS
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tool can be used to obtain unbiased cell counts making analysis reproducible and objective,
as shown in our results.
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(A–D) Representative maximum intensity projection images for c-fos-positive cells manually counted
by four experimenters. Scale bar was added using ImageJ/Fiji on the right bottom corner of each
image. (E) Quanty-cFOS automated c-fos-positive cell counting using the ‘Automated Optimization’
method. (A–E) c-fos-positive cells are highlighted with a green outline. (A–E,A’–E’) Green rectangular
ROI shows cells counted manually by the four experimenters to be positive for c-fos mRNA or counted
as positive using the Quanty-cFOS automated method. Red rectangular ROI shows Fos-positive cells
counted differentially between the four experimenters and the Quanty-cFOS tool. (A’–E’) Highlighted
red and green rectangular ROIs; white arrowheads point to a miscounted cell in red rectangular ROIs.
(F) Comparison between automated Quanty-cFOS and human manual counts over 30 images; blue
line shows the automated c-fos-positive cell counts; orange, yellow, purple and green lines represent
the manual counts performed by the four experimenters. (G) Automated Quanty-cFOS counts and
average of manually counted c-fos-positive neurons; blue circular markers show the automated
counts, red circular markers the average values of manual counts. Single manual c-fos-positive cell
counts performed by each of the four experimenters are shown by the orange, yellow, purple and
green triangular markers. The dashed lines show the counting slope for the automated Quanty-cFOS
(blue) and the human manual counts (red). (H) z-score analysis with a significant counting correlation
in the two standard deviations (S.D.) range between the automated and human manual counts. Blue
and red circles plot the individual correlation values for the automated and the manual counts. Black
dashed line shows the correlation slope.
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Figure 5. Using Quanty-cFOS to study Fos protein and c-fos mRNA expression in the brain over time
following sensory stimulation of the hindpaw. Analysis of cells expressing Fos protein (A–C) and
mRNA (D–F) at three different time points after hindpaw exposure to a 50 ◦C heat stimulus is
shown. Representative images at 20 min (A,D), 1 h (B,E) and 3 h (C,F) after heat stimulation of the
paw are shown. The gamma was adjusted to 0.6 in ImageJ/Fiji for the purpose of representation.
(G) Statistical analysis of mean Fos protein and c-fos mRNA expression. Red circles show the Quanty-
cFOS protein automated counts on 16 images for each time point; the red rectangular boxes highlight
the mean Fos-positive automated counts. The green left arrowheads indicate the protein manual
counts performed at the 3 time points. Blue circles show the c-fos-positive counts using Quanty-cFOS
automated counting on 16 images for each time point; the blue diamond boxes highlight the mean
c-fos-positive automated counts 20 min, 1 h and 3 h after heat plate stimulation and the orange right
arrowheads show the mRNA manual counts. Dash lines highlight the changes in positive cells counts
over time. Data are represented as mean ± S.D.
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4. Discussion

This study introduces an open-source, novel and fully validated ImageJ/Fiji tool for
the unbiased counting of cells expressing Fos protein or c-fos mRNA. The main advantages
of this tool are its objectivity and lack of human bias in cell counting, consistence of
methodology and analyses across different experiments and its ability to set thresholds
objectively in experiments with inter- and intra-experiment variability. Further, Quanty-
cFOS allows for higher speed and efficiency in analyzing a large number of images and
applicability to antibodies or RNA probes that yield high experimental variability as well as
graded nuances in expression levels which can lead to large errors when viewed subjectively.
Importantly, the study provides an easy-to-use tool, including in-depth step-by-step videos
for different cell counting applications that can be quickly learned and efficiently applied
by non-experts in image analysis.

Analysis of the activity-induced expression of the immediate early gene c-fos has
rapidly established itself into a major surrogate for addressing activity in neurons [11].
While levels of expression of the gene can be measured quantitatively in terms of quan-
titative PCR analyses for the mRNA transcript or Western blot analyses for the protein
product, they lack spatial and cellular resolution. Therefore, immunohistochemistry and in
situ hybridization of the c-fos gene expression is critical in yielding information on activity-
induced changes in distinct regions, pathways and individual cells of the brain. Although
it lacks the fine temporal resolution of electrophysiology, analysis of spatial profiling of Fos
expression is technically much easier, faster and can be carried out simultaneously across
the whole brain, making it a broadly applicable method. Cells that induce and express Fos
simultaneously following a particular external stimulus, such as painful sensory stimuli, or
in association with a particular internal function, such as establishment or recall of particu-
lar memories, have been considered to be part of assemblies or ensembles that subserve
particular functions. A very recent study has employed simultaneous Fos monitoring
and in vivo calcium imaging of the hippocampus in mice to demonstrate that neurons
with high Fos induction form cellular ensembles which show highly correlated activity
and play an important functional role in spatial memory, thus leading further credence
to the use of Fos mapping for identifying functionally relevant cells [20]. Thus, spatial
profiling of the Fos protein is a valuable and widely employed method in the neurosciences.
Unfortunately, quantitative analysis of Fos-expressing neurons has not evolved at the same
rate, and most studies have relied on manual counting, which is not only highly cumber-
some and time-consuming, but also prone to subjectivity, bias and variability within and
across groups and experiments. While an automated algorithm was successfully developed
for counting Fos-expressing cells in light sheet microscopy on cleared whole brains [21],
analysis of thick brain slices or sections has proven to be more complex, owing to the high
background from the brain parenchyma as well as difficulties in estimating cells that are
cut out of the section in the z dimension. Fewer, automated solutions for cell counting
on tissue sections are available as open-source standing alone software or as ImageJ/Fiji
plugins. For instance, Cellpose and CellProfiler can be used to automatically count the
number of cells in microscopy sections; however, these tools lacked specific thresholding
optimization methods essential for mapping immunoreactive cells [4,5]. Basal expression of
Fos/c-fos in neurons requires the development of ad hoc optimization algorithms necessary
to count only reactive cells. Therefore, to cover this gap, we developed the Quanty-cFOS
tool, optimized to count cells above an automated computed intensity or manual intensity
cutoff. The option to count only cells above a specific cutoff, in a step-by-step designed
workflow, is the major novelty of the Quanty-cFOS tool in comparison to the tools publicly
available. To the best of our knowledge, there is no other open-source tool that is easily
accessible and usable by non-experts, can run in a standard image analysis program such
as ImageJ/Fiji, is accompanied by detailed video tutorials and which has been validated
and optimized for both the Fos protein and c-fos mRNA. Currently, Quanty-cFOS can be
used to count cells only on two-dimensional images and this could limit its application if
cells need to be counted in three-dimensional stacks. Indeed, extending the Quanty-cFOS
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to count cells in three-dimensional stacks will be part of the future development of this
open-source tool.

Here, we took care to include human experimenters and manual counting in an itera-
tive process while developing and optimizing the Quanty-cFOS tool. Moreover, emphasis
was placed on collecting data sets showing a high level of inter-experimenter variability to
challenge and optimize Quanty-cFOS. Furthermore, an important challenge in counting
Fos-positive cells in response to a given stimulus or function is given by the fact that
natural, spontaneous activity yields background Fos expression and stimulus-derived
Fos expression can vary in strength across cells within the sample and across samples,
rendering it difficult to set a threshold. This aspect is dealt efficiently in Quanty-cFOS
using the automated and manual optimization methods. Nevertheless, the experimenter
can choose to either employ the automated optimization method, which represents the
most unbiased option, or to use the manual optimization method, or to count all stained
cells without any intensity cutoff, as required per experimental conditions, thus providing
maximum flexibility.

Although in situ mRNA hybridization represents a more cumbersome method of
spatially testing activity-induced expression of c-fos, requiring stringent control of RNA
degradation, methods such as RNAscope have led to widespread use in recent times.
Counting c-fos-positive cells harbors the same difficulties as discussed above for the Fos
protein while carrying the additional hindrance that mRNA is diffusely distributed in a
spotty, dotted appearance across the cytoplasm in contrast to nuclear localization of the
Fos protein, rendering it harder to distinguish between neighboring cells. In Quanty-cFOS,
using image preprocessing with ilastik pixel classification enabled us to circumvent this
problem and facilitate the segmentation and the counting of mRNA-positive cells. This
will not only foster the use of the c-fos mRNA as a spatial marker of activity-induced
changes in networks, but also support methodologies in which analyses of the c-fos mRNA
and Fos protein are combined with the same samples to identify differentially-activated
cohorts, such as TaiFISH [7]. This method applies sequentially given stimuli and it takes
advantage of the early expression and short lifespan of the c-fos mRNA in comparison with
the later induction and longer expression of the Fos protein. Methods such as these are
becoming increasingly prominent in yielding insights into the differential cellular encoding
of distinct functions within the same region in the nervous system, e.g., aversion vs. reward
processing in the prefrontal networks.

Furthermore, it deserves to be noted that emphasis was placed on making Quanty-
cFOS user-friendly by developing several workflow options and leaving control in the
hands of the user. Additionally, with the tool we provide in-depth video tutorials to make
it easily useable by scientists without expertise in image processing and image analysis.
This is of critical importance since the lack of bioimage analysis and computing skills often
limits stringent standards fundamental for reproducibility in image quantification.

Finally, the efficiency of using Quanty-cFOS to quantitate activity-dependent changes
in cellular responses deserves to be discussed. Having conducted and published a number
of in-depth studies with c-fos-based activity mapping using manual counting that required
several weeks to months of work [8,9], frequently leading to experimenter fatigue, we are
confident that automated counting via Quanty-cFOS can achieve the same goals in the
fraction of time required for manual analyses.

In conclusion, making this fully validated tool freely available to the scientific com-
munity will help overcome human bias in spatial activity mapping and foster unbiased,
efficient and rapid analyses. Moreover, although the tool was designed and optimized for
quantitating cells expressing the Fos protein or c-fos mRNA in the nervous system, it is in
principle applicable to any antibody or mRNA being investigated and to any type of tissue,
thus rendering its multiple applications.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12050704/s1, Figure S1: Step-by step workflow description
and applications of Quanty-cFOS.; Figure S2: Automated Quanty-cFOS with batch analysis.; Figure
S3: Semi-automated Quanty-cFOS without batch analysis; Movie S1: Quanty-cFOS all cells counting
with batch processing without intensity cutoff.; Movie S2: Quanty-cFOS automated intensity cutoff
workflow using StarDist segmentation method for Fos protein cell counting.; Movie S3: Quanty-cFOS
manual intensity cutoff workflow using StarDist segmentation method for Fos protein cell counting.;
Movie S4: Quanty-cFOS automated intensity cutoff workflow using raw images and ilastik pixel
classification probability map images for c-fos mRNA cell counting.; Movie S5: Quanty-cFOS without
batch analysis with multiple brain sub-regions selection. The manuscript is accompanied by three
supplementary figures describing aspects of the methodology and accessory information on the
results, and five videos which demonstrate the use of the Quanty-cFOS tool in a systematic manner
and which can be used by readers as a basis to run their own analyses using the tool uploaded in the
public repository.
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