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Abstract: The world population is aging rapidly, and increasing lifespan exacerbates the burden
of age-related health issues. On the other hand, premature aging has begun to be a problem, with
increasing numbers of younger people suffering aging-related symptoms. Advanced aging is caused
by a combination of factors: lifestyle, diet, external and internal factors, as well as oxidative stress
(OS). Although OS is the most researched aging factor, it is also the least understood. OS is important
not only in relation to aging but also due to its strong impact on neurodegenerative diseases such
as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer’s disease (AD),
and Parkinson’s disease (PD). In this review, we will discuss the aging process in relation to OS, the
function of OS in neurodegenerative disorders, and prospective therapeutics capable of relieving
neurodegenerative symptoms associated with the pro-oxidative condition.
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1. Introduction

Healthy aging is characterized by a gradual breakdown of physiological systems
leading to a reduction in cognitive functions and brain health, but the timing and extent
of this decline vary among older people. Oxidative stress (OS) is a crucial factor in the
aging process that can cause direct damage to the brain’s cellular architecture, causing
neurodegenerative disease.

Aging is the main lead factor for many diseases, including cancer, metabolic, cardiac
and neurodegenerative diseases. Aging is linked to a loss of homeostasis, involving
degradation of structural components, reduced cellular maintenance and a decrease in
overall physiological function/metabolism. There are two major aging theories: the free
radical theory, which postulates chronological accumulation of defects in gene expression
and environmental damage. According to the free radical theory of aging by Denham
Harman, 1956 [1], alterations in normal metabolic and mitochondrial function are induced
by production of free radicals, which cause damage, aging, and associated aging illnesses.

The second and more recent theory is the mitochondrial theory of aging by J. Miquel
and colleagues in 1980 [2]. This theory posits that the loss of balance between free radical
production and repair mechanisms is responsible for aging.

The redox network is also essential in antioxidant defense. Mitochondria serve a
crucial function by turning stored energy into adenosine triphosphate (ATP) through
oxidative phosphorylation and phospholipid synthesis, buffering calcium, and coordinating
programmed cell death [3]. Free radicals such as reactive oxygen species (ROS), reactive
nitrogen species (RNS), and reactive sulfur species (RSS), which are present in all cells,
but which are restricted by the antioxidant systems that neutralize them, are primarily
produced by oxidative phosphorylation [4]. Free radicals are produced naturally and
modulate cellular processes such as inflammation, cell survival, and stress responses,
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as well as numerous illnesses such as cardiovascular problems, muscular dysfunction,
allergies, and malignancies [5].

Free radicals are most likely formed due to processes involving molecular oxygen that
are catalyzed in the cell by oxidative enzymes and in connective tissues by trace metals
such as iron, cobalt, and manganese.

The primary distinction between healthy aging and accelerated aging is the balance
between free radical elevation and the body’s ability to guard and fight against RNS and
ROS (Figure 1).
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Figure 1. The primary distinction between healthy aging and accelerated aging is the balance between
free radical generation (RNS and ROS) and antioxidation to minimize oxidative stress.

In the event of loss of homeostasis between free radical production and detoxification,
ROS production may overpower antioxidant defenses, resulting in a noxious state known
as OS and general degradation of normal cellular functions. This has been documented in
numerous clinical studies involving mitochondrial malfunction and aging [6].

The brain is especially prone to oxidative damage due to its high oxygen consumption,
limited antioxidant defenses, and high concentration of polyunsaturated fatty acids that
are easily oxidized [7].

Lipid peroxides (LPO) are highly reactive molecules that include malondialdehyde
(MDA), 4-hydroxy-2-nonenal (HNE), acrolein, isoprostanes (IsoPs), and neuroprostanes
(NeuroPs). They can disrupt proteins and DNA structure and functions [8–10]. Increased
MDA, IsoPs, and HNE have been observed in brain tissues of Tg2576 Alzheimer’s dis-
ease (AD) model mice and post-mortem AD brains [11,12]. Oxidative damage to DNA
results in formation of oxidized base adducts, including 8-hydroxyguanosine (8-OHG) and
5,6-diamino-5-formamidopyridine in brains of mild cognitive impairment (MCI) patients.
Despite the brain’s great potential for ROS formation, its defense system against OS remains
restricted and diminishes with age, owing to low amounts of endogenous antioxidants
such as catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and vitamin E,
compared to other tissues, such as liver [13,14]. The limited regenerative ability of postmi-
totic neurons renders OS more damaging to the brain, where the damage accumulates over
time, compared to other organs [15].
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2. Other Sources of Free Radicals Contribute to OS

Even though mitochondrial dysfunction is the primary source of free radicals, there
are several other sources, such as genetic (endogenous), environmental, and lifestyle causes
(exogenous) [16].

2.1. Environmental Factors: Radiation/UV Rays and Pollution

Environmental factors, including smoking, UV radiation, heavy metal ions, ozone,
allergens, drugs or toxins, pollutants, and pesticides, may all contribute to elevated ROS
production in cells [17,18]. Ionizing radiation transforms hydroxyl radicals, superoxides,
and organic radicals into organic hydroperoxides and hydrogen peroxide. Subsequently,
peroxides react with metal ions, particularly Fe and Cu through redox reactions, with
further oxidative activity at the cellular level. Several studies have demonstrated that
exposure of fibroblasts to alpha particles leads to an intracellular increase in oxygen and an
acceleration of peroxide formation [19,20]. Ultraviolet radiation (UVA) induces oxidative
processes by stimulating riboflavin, porphyrins, and NADPH-oxidase, resulting in synthe-
sis of 8-oxo-guanine and a drop in intracellular GSH levels, with a return to normal after
exposure cessation [21]. Heavy metals are crucial to the formation of free radicals [22].

Nickel, arsenic, iron, copper, cadmium and lead can produce free radicals by Fenton
or Haber-Weiss reactions [23,24], as well as through direct reactions between metal ions
and cellular constituents with similar effects, such as generation of thiol-type radicals. In
brain tissue, lead causes lipid peroxidation and raises GPx concentrations. By attaching
to sulfhydryl groups, arsenic generates peroxides, superoxides, and nitric oxide, and
inhibits antioxidant enzymes such as glutathione-S-transferase (GST), GPx, and glutathione
reductase (GR) [25]. Free radicals produced by these reactions can cause substitutions
of DNA bases, including guanine for cytosine, guanine for thymine, and cytosine for
thymine [26]. Even in healthy individuals, ozone exposure can impair lung function by
increasing inflammatory infiltration in the respiratory epithelium [27].

2.2. Lifestyle Related Factors

Lifestyle factors such as smoking, drinking alcohol, diet, exercise, and frequency of
exercise all contribute to OS [28]. Some research has shown that ROS are present at the
skeletal muscle level and help to control how muscle works. Muscle fibers always produce
small quantities of reactive oxygen radicals, which are elevated by muscle contraction [29].
These oxygen radicals have many direct and indirect effects on muscle activity (contractility,
excitability, metabolism, and calcium homeostasis) and are involved in skeletal muscle
fatigue during hard exercise [30].

Long, exhausting exercise and overcoming limits as a phase of overtraining cause a
massive response to OS. Endogenous antioxidant status is improved by moderate exercise,
low-intensity training, and training for a long time.

ROS are an essential part of how cells talk to each other and how antioxidant genes
are turned on and off. Nuclear factor kappa B and mitogen-activated protein kinase are up-
regulated by physical activity [31,32]. These activate gene expression of various enzymes
and proteins that maintain oxidative/antioxidant intracellular homeostasis [33].

Physical exercise is the main non-drug therapy for treating chronic diseases, especially
heart diseases, and lifestyle changes [34]. Relevant studies [35] have shown that autophagy,
a process that breaks down and recycles cellular organs and nutrients, is important for
cardiovascular benefits of training.

Cigarette smoke has oxidants, free radicals, and organic components such as nitric
oxide and nitric superoxide. These cause neutrophils and macrophages to gather in lung
tissues, increasing the production of oxidants in the area [36,37].

2.3. Genetic Factors

Enzymes that are responsible for fighting damage caused by OS and these enzymes
and pathways are prone to free radical damage [38–42]. Oligodendrocytes are susceptible
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to oxidative damage due to their function in maintenance and creation of myelin and
their limited repair mechanisms, suggesting that white matter may be more susceptible
to oxidative activity than gray matter. Antioxidant defense enzymes in the brain, such
as superoxide dismutase (SOD), CAT, GPx, and GST are essential for neutralizing toxic
byproducts of oxidative phosphorylation. Allelic variants of polymorphisms encoding
these antioxidants are associated with anomalies in SOD, CAT, GPx, and GST activity in
the central nervous system [38,43,44].

3. Mechanistic Evolution of Neurodegenerative Diseases Caused by OS

Neurodegenerative disease is an irreversible condition in which neuronal function
declines over time, leading to neuronal death. The incidence of neurodegenerative disease
is increasing every year, especially in countries with aging populations. Common neurode-
generative diseases include Alzheimer’s (AD) and Parkinson’s (PD) diseases. Mitochondria
are the primary source of ROS and are the main cause of neurodegenerative diseases
(Figure 2).
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Figure 2. Illustration showing the impact of oxidative stress on amyotrophic lateral sclerosis,
Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis.

Mitochondrial synthesis of ATP through oxidative phosphorylation, has the substan-
tial disadvantage of producing unpaired electrons [45,46]. The electron transport chain
comprises five multiprotein complexes that mediate interaction of these electrons with
oxygen, resulting in ROS hydrogen peroxide (H2O2), superoxide anions (O2− ), and hy-
droxyl radicals (•OH) [14,47]. Electron transfer from NADH to ubiquinone is catalyzed by
mitochondrial complex I (reduced nicotinamide adenine dinucleotide [NADH] coenzyme
Q reductase) (coenzyme Q). Complex II also provides electrons to ubiquinone (succinate de-
hydrogenase). Electrons from reduced ubiquinone are donated to complex III (cytochrome
bc1), and subsequently, to cytochrome c (CytC). Complex IV (CytC oxidase) is involved
in interactions between molecular oxygen and electrons extracted from CytC, resulting in
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water production [48]. Complexes I, II, and III are most often linked to premature electron
leakage to oxygen and are the primary source of ROS generation [49].

Additionally, elevated ROS levels trigger formation of additional reactive species, such
as RNS, when O2 reacts with other molecules, such as nitric oxide, to generate peroxynitrite
(ONOO−). Furthermore, in addition to ROS and RNS, mitochondria generate RSSs, which
are very reactive. Free oxygen radicals gradually damage proteins, lipids, and nucleic acids,
resulting in inefficient or aberrant cellular functions, inflammation, and cell death [50].

Mitochondrial internal components and mitochondrial DNA (mtDNA) in particular,
are very vulnerable to OS-induced damage, resulting in impaired mitochondrial bioener-
getics, increased ROS generation, and OS [51]. Enzymatic and non-enzymatic mechanisms
safeguard antioxidant systems. SOD, CAT, GPx, GR, and thioredoxin (TRX) are the ma-
jor enzymes involved in catalytic ROS elimination. Non-enzymatic complexes include
vitamins A, C, and E, GSH, and proteins such as albumin and ceruloplasmin [52,53].

4. Major Degenerative Disorders Caused by OS
4.1. OS in Amyotrophic Lateral Sclerosis (ALS)

Despite substantial investigation, the genesis of amyotrophic lateral sclerosis (ALS) is
still not fully clear. Ninety percent of ALS cases are sporadic and appear to lack a genetic
foundation, whereas 10% of patients have familial ALS, mostly an autosomal dominant [54].
ALS has been linked to various occupational and environmental variables, such as exposure
to various chemicals, metals, and pesticides, electromagnetic fields (EMFs), and lifestyle
choices, including smoking and excessive exercise [55–58].

A recognized but poorly understood pathogenic ALS feature is abnormally high free
radical levels and inadequate antioxidation. Undoubtedly, OS is essential for motor neuron
death, but we do not know exactly when oxidative damage occurs [59]. OS biomarkers
have been identified in brain tissue of ALS patients, cerebrospinal fluid (CSF), blood, and
urine [60]. It is challenging to track OS biomarkers over a long period due to the short
lifespans of ALS patients. Further, because of OS’s random start and the present lack
of tools to forecast its progression, it is difficult to be certain whether OS is a cause of
ALS-associated neurodegeneration or a result of other underlying etiologic variables [57].
Investigations using a murine ALS model have revealed altered mitochondrial structures
and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation during early ALS
stages, indicating OS involvement in the disease’s early stages. OS damage is typically
caused by stimulating formation of intracellular antioxidant molecules [61,62].

However, these studies used the murine mutant SOD1 ALS model, and SOD1 muta-
tions only account for 20% of human familial ALS cases. Twenty individuals with sporadic
ALS had significantly higher levels of lipid peroxidation and lower levels of the antioxidant
enzymes CAT, GR, GSH, and glucose-6-phosphate dehydrogenase (G6PD) in their erythro-
cytes [63]. Progression of alterations parallel the pathophysiology of ALS, supporting OS
participation in ALS development. Additionally, the aforementioned environmental and
endoplasmic reticulum stress factors work together to promote pro-oxidative states that
may ultimately harm motor neurons [64].

The intermembrane space (IMS) of mitochondria contains a protein known as Coiled-
Coil-Helix-Coiled-Coil-Helix Domain-Containing Protein 10 (CHCHD10), which has no
known function [65]. However, it is believed to be involved in maintaining mitochondrial
crista morphology and proper oxidative phosphorylation. In particular, in multiprotein
complexes I, II, III, and IV, overexpression of mutant CHCHD10 harboring an allele linked
to ALS alters mitochondrial structure and impairs electron transport chain function [66,67].
In addition, fibroblasts from an ALS patient with a CHCHD10 mutation displayed mito-
chondrial ultrastructural damage and mitochondrial network fragmentation [66,67].

4.2. OS in Alzheimer’s Disease (AD)

The most common neurodegenerative condition, AD, is characterized by a steady
decline in behavior, cognition, and functioning that profoundly affect day-to-day activities.
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AD brains have higher protein, DNA, and lipid oxidation rates, as well as redox-active
metals [51].

Pathological indicators of AD include extracellular senile plaques (SP) and intracellular
neurofibrillary tangles (NFT). Protein aggregation is sporadic, and its molecular mechanism
is poorly understood. Several investigations have revealed that AD brains display elevated
OS, which is crucial to disease development [68]. Amyloid fibril precursors are neurotoxic
owing to OS generated by toxic conformer of amyloid oligomers and additional neurotoxic
effects such as neuronal membrane rupture, microglia and astrocyte activation, and Ca2+

dyshomeostasis [69–71].
Tau protein aggregation is another hallmark of AD although in most cases, it is of late

onset. Several reports have indicated that neurotoxicity caused by beta amyloid alteration
is the main trigger of tau alteration to form tangles. NFTs in the early stages of AD are
intracellular deposits; however, these progress to extracellular deposits in later stages.
NFTs are composed of paired helical filaments (PHFs) in which the major component is tau
protein [72–76].

When tau proteins are hyperphosphorylated, they self-assemble into NFTs and may
be detected in neurons [77,78]. According to recent data, amyloid deposition occurs
15–20 years before dementia manifests itself, and tau pathology appears thereafter [79–83].

Using multiphoton imaging, researchers identified a clear link between free radical
generation and amyloid plaques in AD mouse models and human AD brain tissues,
where fluorogenic free radical markers decreased following administration of a synthetic
antioxidant [84].

4.3. OS in Parkinson’s Disease (PD)

Unlike AD, PD is clinically recognized by four cardinal motor symptoms: bradykine-
sia, stiffness, resting tremors, and trouble with posture and walking [83–85]. In PD brains,
the substantia nigra pars compacta and to a lesser extent, the globus pallidus, putamen,
and caudate nucleus, exhibit selective dopaminergic neuronal loss. The nigrostriatal path-
way’s degenerating neurons release less of the neurotransmitter dopamine [86]. Lewy
bodies are clusters of aberrant proteins seen in neurons of individuals with Parkinson’s
disease. They are components of α-synuclein (α-syn) protein, broadly disseminated in
the neurological system, but activities of which are not well understood [87]. α-syn fibril-
lation creates clumps that take up significant space within cells and ultimately result in
neuronal death [88]. As in AD, pathophysiological pathways underlying PD are strongly
related to OS [89]. Evidence of OS involvement may be seen in the substantia nigra of PD
patients, where oxidized lipids, proteins, and DNA can be found [90,91]. Additionally,
the monoamine oxidase (MAO) that breaks down dopamine creates hydrogen peroxide,
whereas dopamine on its own produces superoxide anion and reactive quinones. These re-
active substances cause other nearby neurons, as well as dopaminergic neurons, to become
cytotoxic [92,93].

4.4. OS in Multiple Sclerosis (MS)

Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central ner-
vous system (CNS), characterized by chronic inflammation, demyelination, and axon and
neuron loss. Depending on the location of the demyelinating lesions, MS patients can
develop almost any neurological sign or symptom, including motor, sensory, and cognitive
impairment [94,95].

OS is heavily involved in several MS pathological hallmarks such as myelin destruc-
tion, axonal degeneration, and inflammation [96]. In MS as in other neurodegenerative
diseases OS triggers activation of autophagy and microglia as well as of the neuroimmune
system. Neurons, astrocytes, and oligodendrocytes produce chemicals that bind to mi-
croglial receptors in healthy settings, suppressing their activated states [97–100]. When
certain molecules (such as myelin CD47) are expressed less, microglial activation is in-
creased, which may cause myelin debris to be phagocytosed and to provide neurotrophic
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factors [101,102]. Microglial physiological functions are transformed into harmful inflam-
matory insults by long-term damage, systemic inflammation, proinflammatory cytokine
release, and ROS signaling [103]. Together, our results imply that during the onset and
development of experimental autoimmune encephalomyelitis (EAE) and MS lesions, ac-
tivated microglia and macrophages are directing tissue damage through their oxidative
burst. Simultaneous activation of a sophisticated antioxidant response is insufficient to
stop the apoptotic and degenerative processes, however.

Due to a combination of circumstances, including high levels of iron and polyunsat-
urated fatty acids, high iron requirements and mitochondrial activity, and restricted cell
regeneration, the CNS is particularly susceptible to OS. Oxidative damage also affects the
immune response that is developing in the periphery and controls MS illness outside of the
CNS. First, by lowering its electrical resistance and thus changing its permeability, elevated
ROS levels harm the brain endothelium [94,104–106].

5. Significance of Non-Coding RNAs in OS

OS readily damages RNA due to its single-stranded structure and high concentra-
tion close to mitochondria, where most intracellular ROS are generated [107,108]. An
overabundance of ROS can cause chemical modification or even separation of RNA bases
and breakage of RNA strands [91,109]. Oxidatively damaged RNA accumulates in cells,
leading to decreased protein synthesis, erroneous protein generation, and ultimately cell
death [110,111].

Non-coding RNAs (ncRNAs), which do not encode proteins, make up the majority of
RNAs in human cells [112,113]. As a category of ncRNAs, regulatory ncRNAs, including
long ncRNAs (lncRNAs) and small ncRNAs, which includes microRNAs (miRNAs), circu-
lar RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs), are involved in regulating
gene expression [114]. Compared to mRNAs, these regulatory ncRNAs persist relatively
longer. Hence, oxidative damage can cause prolonged effects. ncRNAs of several types
have been linked to various neurogenerative diseases [115–118]. However, the direct rela-
tionship between ncRNA oxidation and neuronal diseases is still unclear, except in PD, in
which the interaction between OS and regulatory ncRNAs has been well studied [119]. In
contrast, regulatory small ncRNAs such as miRNAs and lncRNAs help to regulate ROS
production [118]. Their interactions are involved in the pathophysiology of PD [120].

RNA oxidation is not only a hallmark of PD but also a crucial first step in the devel-
opment of the disorder [112,121]. 8-oxo-7, 8-dihydroguanosine (8-oxoG) is one of many
oxidative marks on RNA, and it is possibly the most common and well studied [122].
Guanine’s vulnerability to free radicals means that it can form this base adduct, leading to
mismatched bases [109].

Neuronal apoptosis and autophagy are influenced by lncRNAs; thus, α-syn accu-
mulation and degradation that restricts their function would have deleterious effects on
cellular homeostasis [123]. For instance, free radical damage to miRNAs can cause them to
misidentify their target mRNAs, which can increase expression of specific proteins [124]. A
reduction in α-syn expression was mediated by two miRNAs in an experiment performed
by Je and Kim [123]. High levels of α-syn and subsequent development of PD resulted
from stress-induced oxidative loss of translational inhibition by these two miRNAs.

Furthermore, Chen et al. found that OS triggered modification of circRNA N6-
methyladenosine (m6A). m6A-modified circRNAs can modulate expression of stress re-
sponse genes (UBC and PPP2CA), which may constitute the mechanistic basis for OS-
induced neurodegenerative disorders [125].

The regulatory role of miRNAs in OS is closely linked to α-syn, which is respon-
sible for inducing OS. Both microRNA-141-3p and microRNA-9-5p target the 3′ UTR
of SIRT1 mRNA. Since SIRT1 inhibits formation of α-syn aggregates, knockdown of
microRNA-141-3p and microRNA-9-5p may alleviate OS and boost the viability of in vitro
PD model [126,127].
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SOD, CAT, and GPx are responsible for detoxifying oxidants and repairing oxidative
damage. MicroRNA-137 and microRNA-494-3p aggravate OS by reducing SOD and GPx
activity in PD rats treated with these miRNAs. MicroRNA-335 suppresses expression
of FTH1, thereby promoting release of Fe2+ ions and generation of free radicals [128].
Downregulation of microRNA-410 expression in PD is associated with elevated ROS
production [129].

Regulatory lncRNAs and OS are hallmarks of PD. In PD, mitochondrial dysfunction is
linked to ROS overproduction. α-syn aggregate formation can exacerbate OS by decreasing
complex I activity or by activating microglia. Upregulation of beta-amyloid-cleaving
enzyme-antisense (BACE1-AS), a lncRNA, was also associated with increasing levels of α-
syn in PD [130]. In addition, the lncRNA microRNA-17-92a-1 cluster host gene (MIR17HG)
promotes α-syn expression. MicroRNA-153-5p cannot inhibit α-syn expression because
MIR17HG acts as a sponge for microRNA-153-5p [131]. Inhibition of autophagy by GSK3
promotes α-syn buildup and therefore aggregation. MicroRNA-15b-5p suppressed GSK3
expression, but binding of SNHG1 to microRNA-15b-5p rescued GSK3 expression [132].
Cellular effects of oxidatively damaged RNA and the mechanism by which regulatory
ncRNAs affect OS are just beginning to be explored.

6. Methods to Measure OS in Neurodegenerative Diseases

Although there are peripheral indicators for OS, it is difficult to detect in the human
brain in vivo. The following measures have been used to quantify brain OS (Table 1).

Table 1. Overview of the methods and biomarkers that are used to detect oxidative stress in neurode-
generative diseases.

Biomarker Sample Method Disease Detected References

LPO, GSH, GPx, SOD and
vitamins C and E. Peripheral blood Biochemical analysis

(Blood screening) AD, PD [133–140]

GSH and Vitamin C. using
1H MRS Brain

1H Magnetic
Resonance

Spectroscopy (MRS)
AD, MCI [141–144]

Intracellular over-reductive
state using redox
sensitive probes

Brain Electron Paramagnetic
Resonance (EPR)

AD, Depressive
disorders in

post-stroke patients
[145,146]

Intracellular over-reductive
state using Radiotracer. Brain Positron Emission

Tomography(PET) PD, ALS [147,148]

MCI: Mild cognitive impairment; LPO: lipid peroxidation; GPx: glutathione peroxidase; GSH: glutathione;
SOD: superoxide dismutase.

6.1. Peripheral Blood OS

Several surrogate OS or antioxidant activity indicators, including circulating lipid per-
oxides, GSH, and vitamins C and E, have been examined in peripheral blood [89,133–135].

AD patients display reduced peripheral vitamin A, C, and E levels [136] and SOD and
GPx activity [137]. Lower plasma GSH levels are associated with more severe cognitive
impairment in AD patients [138]. PD patients have inconsistently altered erythrocyte SOD
activity [139,140]. Increased SOD activity may protect against OS damage.

6.2. Magnetic Resonance Spectroscopy (MRS)

GSH is the single antioxidant assessed by 1H (MRS) [149]. GSH content in the hu-
man brain is lower than N-acetyl aspartate, creatine, and choline, making evaluation
difficult. With MRS, it is challenging to discern between GSH and glutamate resonance
peaks [141,150]. GSH-CH2 cysteine’s protons resonate at 2.93 and 2.97 ppm, overlapping
with those of creatine (3.03 ppm) and aspartate (2.82 ppm) [151]. To detect GSH levels in the
brain, spectral editing methods such as MEscher-GArwood-PRESS (MEGA-PRESS) [142]
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are needed to boost GSH signals so as to gather reliable nuclear signals. MEGA-PRESS
combined with a 180◦ editing pulse in the original PRESS pulse sequence [142] may distin-
guish GSH-cysteine signals from other signals, notably creatine signals in the brain [89].
Recent research found that GSH levels are lower in AD patients’ hippocampus and frontal
cortices [143,144].

The concentration of vitamin C (ascorbic acid) in the human brain is around 1.0 mM,
which may be detected by MRS [152]. However, measuring vitamin C using 1H MRS is
problematic owing to the similarities between the resonances of vitamin C (3.73, 4.01, and
4.50 ppm) and glutamate (3.75 ppm) [151]. MEGA-PRESS editing might potentially aid in
measuring vitamin C levels in the human brain. Several earlier research [153] used 1H-MRS
with the MEGA-PRESS to evaluate vitamin C levels in the human brain.

6.3. Electron Paramagnetic Resonance (EPR) Spectroscopy

Electromagnetic radiation absorption often occurs in the microwave region of the
electromagnetic spectrum [154]. As a result, it is influenced by paramagnetic species that
are present in a magnetic field. However, owing to short radical half-lives, compared to the
EPR time scale, EPR spectroscopy cannot detect them directly [155]. To compensate for this,
a stable chemical is frequently used to capture radicals to make them observable [156].

EPR has been implement in detecting neurodegenerative diseases as in AD [145] and
as real time OS marker for post stroke patients [146].

Despite years of research in EPR spectroscopy, one of the main reasons why it has
not been widely employed is presumably poor sensitivity, particularly at the levels of free
radicals usually encountered in biological systems. More research is required before using
EPR in human clinical trials.

6.4. Positron Emission Tomography (PET)

The intracellular over-reactive state can be measured using a radiotracer for positron
emission tomography (PET) [147]. [62Cu] diacetyl-bis (N4-methylthiosemicarbazone)
([62Cu] ATSM) is a radiotracer widely used in PET. Evaluation of striatal OS in patients
with PD using [62Cu]ATSM PET was previously confirmed [147]. In a recent study, this
tracer was utilized to visualize localized OS in PD patients that was mostly caused by
mitochondrial malfunction. In this investigation, deposition of [62Cu] ATSM was detected
in the striatum of PD and ALS patients [147,148], indicating a localized over-reductive
conditions caused by mitochondrial malfunction.

7. Approaches to Slow Aging by Fighting OS

The human body has several lines of defense against OS. Multiple antioxidant defense
pathways are involved in the brain’s ROS detoxification. The metalloproteins SOD, CAT,
and GPx constitute the first line of antioxidant defense against ROS. Age-related accu-
mulation of highly reactive polyunsaturated fatty acids, iron, and ROS is exacerbated by
suboptimal antioxidant levels.

Apart from endogenous antioxidant defense mechanisms in aging brain and given the
importance of OS in neurodegenerative diseases, manipulating ROS levels may be a viable
therapeutic approach to slow neurodegeneration and reduce related symptoms.

Avoiding OS-related causes is at the top of preventative approaches. Diet, exercise, lack
of sleep, sedentary behavior and circadian rhythm abnormalities are all crucial components
in regulating healthy aging. The gut flora is hypersensitive to extrinsic variables linked to
an unhealthy lifestyle [157,158]. Preclinical studies showed that a high-fat diet (HFD) in
mice changes the gut microbiome [159]. Pro-inflammatory bacteria such as Clostridium,
Eubacterium, and Roseburia are positively correlated with hyperglycemic fluctuations
in the brain [160]. The need for gut microbiome therapies is growing, and this area
of research is continually developing. With impressive results, dietary and probiotic
supplementation has been investigated as a possible therapeutic strategy for age-related
disorders via changes in gut microbiota. Recent research has shown that exercise may alter
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gut microbiota, adding to the potential advantages of this strategy for treating disorders
related to aging [161].

Nutraceuticals or natural compounds exist in food have been extensively studied
worldwide due to their neuroprotective effects in vivo and in vitro, attributed to the an-
tioxidative properties [162]. Nutraceuticals that show metal chelation ability and anti-
inflammatory properties such as curcumin [163,164], green tea polyphenols [164], resvera-
trol [165] and vitamin E [166,167] are examples of natural antioxidants from foods and other
sources that show promise as therapeutic agents for OS-related neurodegenerative diseases.

8. Conclusions and Concluding Remarks

Aging is not a disease that needs to be treated but a natural process; however, pre-
mature or unhealthy aging still needs more study to understand mechanisms and leading
causes. There is a controversial view that OS leads to a short life span and is linked to
age-related disease and quality of life. Numerous studies have shown a significant eleva-
tion in OS and free radical concentration as a common cause of aging and accompanying
neurodegenerative diseases. However, in nature, comparative studies indicate long lives of
some animals despite high levels of free radicals in their tissues. This means that there are
many unknown mechanisms to cope with OS. Therefore, a healthy lifestyle to avoid factors
that elevate OS, as well as increased intake of natural antioxidants, can protect against OS
and prevent neurodegenerative diseases before their onset.
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Alterations in the Antioxidant Enzyme Activities in the Neurodevelopmental Rat Model of Schizophrenia Induced by Glutathione
Deficiency during Early Postnatal Life. Antioxidants 2020, 9, 538. [CrossRef] [PubMed]

42. Gusti, A.M.T.; Qusti, S.Y.; Alshammari, E.M.; Toraih, E.A.; Fawzy, M.S. Antioxidants-Related Superoxide Dismutase (SOD),
Catalase (CAT), Glutathione Peroxidase (GPX), Glutathione-S-Transferase (GST), and Nitric Oxide Synthase (NOS) Gene Variants
Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants 2021, 10, 595. [CrossRef] [PubMed]

43. Chiras, D.; Kitsos, G.; Petersen, M.B.; Skalidakis, I.; Kroupis, C. Oxidative Stress in Dry Age-Related Macular Degeneration and
Exfoliation Syndrome. Crit. Rev. Clin. Lab. Sci. 2015, 52, 12–27. [CrossRef] [PubMed]

44. Kowalska, M.; Wize, K.; Prendecki, M.; Lianeri, M.; Kozubski, W.; Dorszewska, J. Genetic Variants and Oxidative Stress in
Alzheimer’s Disease. Curr. Alzheimer Res. 2020, 17, 208–223. [CrossRef]

45. Mailloux, R.J. Teaching the Fundamentals of Electron Transfer Reactions in Mitochondria and the Production and Detection of
Reactive Oxygen Species. Redox Biol. 2015, 4, 381–398. [CrossRef]

46. Glantzounis, G.K.; Salacinski, H.J.; Yang, W.; Davidson, B.R.; Seifalian, A.M. The Contemporary Role of Antioxidant Therapy in
Attenuating Liver Ischemia-Reperfusion Injury: A Review. Liver Transplant. 2005, 11, 1031–1047. [CrossRef]

47. Panov, A.V.; Dikalov, S.I. Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging.
Oxid. Med. Cell. Longev. 2020, 2020, 1323028. [CrossRef]

48. Srinivasan, S.; Avadhani, N.G. Cytochrome c Oxidase Dysfunction in Oxidative Stress. Free Radic. Biol. Med. 2012, 53, 1252–1263.
[CrossRef]

49. Turrens, J.F. Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 2003, 552, 335–344. [CrossRef]
50. Ghosh, N.; Das, A.; Chaffee, S.; Roy, S.; Sen, C.K. Reactive Oxygen Species, Oxidative Damage and Cell Death. In Immunity and

Inflammation in Health and Disease; Chatterjee, S., Jungraithmayr, W., Bagchi, D., Eds.; Academic Press: Cambridge, MA, USA,
2018; pp. 45–55.

51. Jellinger, K.A. Basic Mechanisms of Neurodegeneration: A Critical Update. J. Cell. Mol. Med. 2010, 14, 457–487. [CrossRef]
52. Halliwell, B.; Gutteridge, J.M.C. The Antioxidants of Human Extracellular Fluids. Arch. Biochem. Biophys. 1990, 280, 1–8.

[CrossRef] [PubMed]
53. Aruoma, O.I.; Neergheen, V.S.; Bahorun, T.; Jen, L.-S. Free Radicals, Antioxidants and Diabetes: Embryopathy, Retinopathy,

Neuropathy, Nephropathy and Cardiovascular Complications. Neuroembryol. Aging 2006, 4, 117–137. [CrossRef]
54. Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS Genetics, Mechanisms, and Therapeutics: Where

Are We Now? Front. Neurosci. 2019, 13, 1310. [CrossRef] [PubMed]
55. Ingre, C.; Roos, P.M.; Piehl, F.; Kamel, F.; Fang, F. Risk Factors for Amyotrophic Lateral Sclerosis. Clin. Epidemiol. 2015, 7, 181–193.

[CrossRef]
56. Motataianu, A.; Serban, G.; Barcutean, L.; Balasa, R. Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and

Environmental Factors. Int. J. Mol. Sci. 2022, 23, 9339. [CrossRef]
57. Cunha-Oliveira, T.; Montezinho, L.; Mendes, C.; Firuzi, O.; Saso, L.; Oliveira, P.J.; Silva, F.S. Oxidative Stress in Amyotrophic

Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. Oxid. Med. Cell. Longev. 2020, 2020,
5021694. [CrossRef]

58. Carrì, M.T.; Valle, C.; Bozzo, F.; Cozzolino, M. Oxidative Stress and Mitochondrial Damage: Importance in Non-SOD1 ALS. Front.
Cell. Neurosci. 2015, 9, 41. [CrossRef]

59. Agar, J.; Durham, H. Relevance of Oxidative Injury in the Pathogenesis of Motor Neuron Diseases. Amyotroph. Lateral Scler. Other
Mot. Neuron Disord. 2003, 4, 232–242. [CrossRef]

60. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019,
24, 1583. [CrossRef]

61. Kraft, A.D.; Resch, J.M.; Johnson, D.A.; Johnson, J.A. Activation of the Nrf2–ARE Pathway in Muscle and Spinal Cord during
ALS-like Pathology in Mice Expressing Mutant SOD1. Exp. Neurol. 2007, 207, 107–117. [CrossRef]

62. Velde, C.V.; McDonald, K.K.; Boukhedimi, Y.; McAlonis-Downes, M.; Lobsiger, C.S.; Hadj, S.B.; Zandona, A.; Julien, J.-P.; Shah,
S.B.; Cleveland, D.W. Misfolded SOD1 Associated with Motor Neuron Mitochondria Alters Mitochondrial Shape and Distribution
Prior to Clinical Onset. PLoS ONE 2011, 6, e22031. [CrossRef] [PubMed]

63. Babu, G.N.; Kumar, A.; Chandra, R.; Puri, S.K.; Singh, R.L.; Kalita, J.; Misra, U.K. Oxidant–Antioxidant Imbalance in the
Erythrocytes of Sporadic Amyotrophic Lateral Sclerosis Patients Correlates with the Progression of Disease. Neurochem. Int. 2008,
52, 1284–1289. [CrossRef] [PubMed]

64. Keon, M.; Musrie, B.; Dinger, M.; Brennan, S.E.; Santos, J.; Saksena, N.K. Destination Amyotrophic Lateral Sclerosis. Front. Neurol.
2021, 12, 596006. [CrossRef]

65. Anderson, C.J.; Bredvik, K.; Burstein, S.R.; Davis, C.; Meadows, S.M.; Dash, J.; Case, L.; Milner, T.A.; Kawamata, H.; Zuberi,
A.; et al. ALS/FTD Mutant CHCHD10 Mice Reveal a Tissue-Specific Toxic Gain-of-Function and Mitochondrial Stress Response.
Acta Neuropathol. 2019, 138, 103–121. [CrossRef]

66. Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.;
Serre, V.; Moore, D.G.; et al. A Mitochondrial Origin for Frontotemporal Dementia and Amyotrophic Lateral Sclerosis through
CHCHD10 Involvement. Brain 2014, 137, 2329–2345. [CrossRef]

http://doi.org/10.3390/antiox9060538
http://www.ncbi.nlm.nih.gov/pubmed/32575563
http://doi.org/10.3390/antiox10040595
http://www.ncbi.nlm.nih.gov/pubmed/33924357
http://doi.org/10.3109/10408363.2014.968703
http://www.ncbi.nlm.nih.gov/pubmed/25319011
http://doi.org/10.2174/1567205017666200224121447
http://doi.org/10.1016/j.redox.2015.02.001
http://doi.org/10.1002/lt.20504
http://doi.org/10.1155/2020/1323028
http://doi.org/10.1016/j.freeradbiomed.2012.07.021
http://doi.org/10.1113/jphysiol.2003.049478
http://doi.org/10.1111/j.1582-4934.2010.01010.x
http://doi.org/10.1016/0003-9861(90)90510-6
http://www.ncbi.nlm.nih.gov/pubmed/2191627
http://doi.org/10.1159/000109344
http://doi.org/10.3389/fnins.2019.01310
http://www.ncbi.nlm.nih.gov/pubmed/31866818
http://doi.org/10.2147/CLEP.S37505
http://doi.org/10.3390/ijms23169339
http://doi.org/10.1155/2020/5021694
http://doi.org/10.3389/fncel.2015.00041
http://doi.org/10.1080/14660820310011278
http://doi.org/10.3390/molecules24081583
http://doi.org/10.1016/j.expneurol.2007.05.026
http://doi.org/10.1371/journal.pone.0022031
http://www.ncbi.nlm.nih.gov/pubmed/21779368
http://doi.org/10.1016/j.neuint.2008.01.009
http://www.ncbi.nlm.nih.gov/pubmed/18308427
http://doi.org/10.3389/fneur.2021.596006
http://doi.org/10.1007/s00401-019-01989-y
http://doi.org/10.1093/brain/awu138


Cells 2023, 12, 753 13 of 16

67. Genin, E.C.; Bannwarth, S.; Ropert, B.; Lespinasse, F.; Mauri-Crouzet, A.; Augé, G.; Fragaki, K.; Cochaud, C.; Donnarumma, E.;
Lacas-Gervais, S.; et al. CHCHD10 and SLP2 Control the Stability of the PHB Complex: A Key Factor for Motor Neuron Viability.
Brain 2022, 145, 3415–3430. [CrossRef] [PubMed]

68. Fontana, I.C.; Zimmer, A.R.; Rocha, A.S.; Gosmann, G.; Souza, D.O.; Lourenco, M.V.; Ferreira, S.T.; Zimmer, E.R. Amyloid-β
Oligomers in Cellular Models of Alzheimer’s Disease. J. Neurochem. 2020, 155, 348–369. [CrossRef]

69. Fernandez-Perez, E.J.; Peters, C.; Aguayo, L.G. Membrane Damage Induced by Amyloid Beta and a Potential Link with
Neuroinflammation. Curr. Pharm. Des. 2016, 22, 1295–1304. [CrossRef]

70. Meraz-Ríos, M.A.; Lira-De León, K.I.; Campos-Peña, V.; De Anda-Hernández, M.A.; Mena-López, R. Tau Oligomers and
Aggregation in Alzheimer’s Disease. J. Neurochem. 2010, 112, 1353–1367. [CrossRef]

71. Calvo-Rodriguez, M.; Bacskai, B.J. Mitochondria and Calcium in Alzheimer’s Disease: From Cell Signaling to Neuronal Cell
Death. Trends Neurosci. 2021, 44, 136–151. [CrossRef]

72. Liu, Z.; Li, T.; Li, P.; Wei, N.; Zhao, Z.; Liang, H.; Ji, X.; Chen, W.; Xue, M.; Wei, J. The Ambiguous Relationship of Oxidative Stress,
Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2015, 2015, e352723.
[CrossRef] [PubMed]

73. Rojas Quijano, F.A.; Morrow, D.; Wise, B.M.; Brancia, F.L.; Goux, W.J. Prediction of Nucleating Sequences from Amyloidogenic
Propensities of Tau-Related Peptides. Biochemistry 2006, 45, 4638–4652. [CrossRef] [PubMed]

74. Goedert, M. Tau Protein and the Neurofibrillary Pathology of Alzheimer’s Disease. Trends Neurosci. 1993, 16, 460–465. [CrossRef]
[PubMed]

75. Weaver, C.L.; Espinoza, M.; Kress, Y.; Davies, P. Conformational Change as One of the Earliest Alterations of Tau in Alzheimer’s
Disease. Neurobiol. Aging 2000, 21, 719–727. [CrossRef]

76. Grabowski, T.J.; Cho, H.S.; Vonsattel, J.P.G.; Rebeck, G.W.; Greenberg, S.M. Novel Amyloid Precursor Protein Mutation in an
Iowa Family with Dementia and Severe Cerebral Amyloid Angiopathy. Ann. Neurol. 2001, 49, 697–705. [CrossRef]

77. Hansson, O. Biomarkers for Neurodegenerative Diseases. Nat. Med. 2021, 27, 954–963. [CrossRef]
78. Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the Pathologic Process in Alzheimer Disease: Age Categories

from 1 to 100 Years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [CrossRef]
79. Fleisher, A.S.; Chen, K.; Quiroz, Y.T.; Jakimovich, L.J.; Gomez, M.G.; Langois, C.M.; Langbaum, J.B.; Ayutyanont, N.; Roontiva, A.;

Thiyyagura, P. Florbetapir PET Analysis of Amyloid-β Deposition in the Presenilin 1 E280A Autosomal Dominant Alzheimer’s
Disease Kindred: A Cross-Sectional Study. Lancet Neurol. 2012, 11, 1057–1065. [CrossRef]

80. O’Brien, J.T.; Herholz, K. Amyloid Imaging for Dementia in Clinical Practice. BMC Med. 2015, 13, 163. [CrossRef]
81. Gunasingh Masilamoni, J.; Philip Jesudason, E.; Dhandayuthapani, S.; Ashok, B.S.; Vignesh, S.; Jebaraj, W.C.E.; Paul, S.F.;

Jayakumar, R. The Neuroprotective Role of Melatonin against Amyloid β Peptide Injected Mice. Free Radic. Res. 2008, 42, 661–673.
[CrossRef]

82. Smith, D.G.; Cappai, R.; Barnham, K.J. The Redox Chemistry of the Alzheimer’s Disease Amyloid Beta Peptide. Biochim. Biophys.
Acta 2007, 1768, 1976–1990. [CrossRef] [PubMed]

83. Jankovic, J. Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [CrossRef]
[PubMed]

84. Blandini, F.; Nappi, G.; Tassorelli, C.; Martignoni, E. Functional Changes of the Basal Ganglia Circuitry in Parkinson’s Disease.
Prog. Neurobiol. 2000, 62, 63–88. [CrossRef] [PubMed]

85. Agosta, F.; Weiler, M.; Filippi, M. Propagation of Pathology through Brain Networks in Neurodegenerative Diseases: From
Molecules to Clinical Phenotypes. CNS Neurosci. Ther. 2015, 21, 754–767. [CrossRef] [PubMed]

86. Jansen van Rensburg, Z.; Abrahams, S.; Bardien, S.; Kenyon, C. Toxic Feedback Loop Involving Iron, Reactive Oxygen Species,
α-Synuclein and Neuromelanin in Parkinson’s Disease and Intervention with Turmeric. Mol. Neurobiol. 2021, 58, 5920–5936.
Available online: https://link.springer.com/article/10.1007/s12035-021-02516-5 (accessed on 3 January 2023). [CrossRef]

87. Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325.
[CrossRef]

88. Jenner, P. Oxidative Stress in Parkinson’s Disease. Ann. Neurol. 2003, 53, S26–S38. [CrossRef]
89. Fahn, S.; Cohen, G. The Oxidant Stress Hypothesis in Parkinson’s Disease: Evidence Supporting It. Ann. Neurol. 1992, 32, 804–812.

[CrossRef]
90. Delcambre, S.; Nonnenmacher, Y.; Hiller, K. Dopamine Metabolism and Reactive Oxygen Species Production. In Mitochondrial

Mechanisms of Degeneration and Repair in Parkinson’s Disease; Buhlman, L.M., Ed.; Springer International Publishing: Cham,
Switzerland, 2016; pp. 25–47. ISBN 978-3-319-42139-1.

91. Nunomura, A.; Moreira, P.I.; Castellani, R.J.; Lee, H.; Zhu, X.; Smith, M.A.; Perry, G. Oxidative Damage to RNA in Aging and
Neurodegenerative Disorders. Neurotox. Res. 2012, 22, 231–248. [CrossRef]

92. Li, Z.; Chen, X.; Liu, Z.; Ye, W.; Li, L.; Qian, L.; Ding, H.; Li, P.; Aung, L.H.H. Recent Advances: Molecular Mechanism of RNA
Oxidation and Its Role in Various Diseases. Front. Mol. Biosci. 2020, 7, 184. [CrossRef]

93. Jellinger, K.A. Recent Advances in Our Understanding of Neurodegeneration. J. Neural Transm. 2009, 116, 1111–1162. [CrossRef]
[PubMed]

94. Pegoretti, V.; Swanson, K.A.; Bethea, J.R.; Probert, L.; Eisel, U.L.M.; Fischer, R. Inflammation and Oxidative Stress in Multiple
Sclerosis: Consequences for Therapy Development. Oxid. Med. Cell. Longev. 2020, 2020, e7191080. [CrossRef] [PubMed]

http://doi.org/10.1093/brain/awac197
http://www.ncbi.nlm.nih.gov/pubmed/35656794
http://doi.org/10.1111/jnc.15030
http://doi.org/10.2174/138161282210160304111702
http://doi.org/10.1111/j.1471-4159.2009.06511.x
http://doi.org/10.1016/j.tins.2020.10.004
http://doi.org/10.1155/2015/352723
http://www.ncbi.nlm.nih.gov/pubmed/26171115
http://doi.org/10.1021/bi052226q
http://www.ncbi.nlm.nih.gov/pubmed/16584199
http://doi.org/10.1016/0166-2236(93)90078-Z
http://www.ncbi.nlm.nih.gov/pubmed/7507619
http://doi.org/10.1016/S0197-4580(00)00157-3
http://doi.org/10.1002/ana.1009
http://doi.org/10.1038/s41591-021-01382-x
http://doi.org/10.1097/NEN.0b013e318232a379
http://doi.org/10.1016/S1474-4422(12)70227-2
http://doi.org/10.1186/s12916-015-0404-6
http://doi.org/10.1080/10715760802277388
http://doi.org/10.1016/j.bbamem.2007.02.002
http://www.ncbi.nlm.nih.gov/pubmed/17433250
http://doi.org/10.1136/jnnp.2007.131045
http://www.ncbi.nlm.nih.gov/pubmed/18344392
http://doi.org/10.1016/S0301-0082(99)00067-2
http://www.ncbi.nlm.nih.gov/pubmed/10821982
http://doi.org/10.1111/cns.12410
http://www.ncbi.nlm.nih.gov/pubmed/26031656
https://link.springer.com/article/10.1007/s12035-021-02516-5
http://doi.org/10.1007/s12035-021-02516-5
http://doi.org/10.5607/en.2015.24.4.325
http://doi.org/10.1002/ana.10483
http://doi.org/10.1002/ana.410320616
http://doi.org/10.1007/s12640-012-9331-x
http://doi.org/10.3389/fmolb.2020.00184
http://doi.org/10.1007/s00702-009-0240-y
http://www.ncbi.nlm.nih.gov/pubmed/19707851
http://doi.org/10.1155/2020/7191080
http://www.ncbi.nlm.nih.gov/pubmed/32454942


Cells 2023, 12, 753 14 of 16

95. Compston, A. Genetic Epidemiology of Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 1997, 62, 553–561. [CrossRef] [PubMed]
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