Retinoic Acid and Retinoid X Receptors
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drummond, J.C. The nomenclature of the so-called accessory food factors (vitamins). Biochem. J. 1920, 14, 660. [Google Scholar] [CrossRef] [Green Version]
- Giguère, V.; Evans, R.M. Chronicle of a discovery: The retinoic acid receptor. J. Mol. Endocrinol. 2022, 69, T1–T11. [Google Scholar] [CrossRef] [PubMed]
- Petkovich, M.; Chambon, P. Retinoic acid receptors at 35 years. J. Mol. Endocrinol. 2022, 69, T13–T24. [Google Scholar] [CrossRef]
- Semba, R.D. On the ‘discovery’ of vitamin A. Ann. Nutr. Metab. 2012, 61, 192–198. [Google Scholar] [CrossRef]
- Wald, G. Carotenoids and the visual cycle. J. Gen. Physiol. 1935, 19, 351–371. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.L.; Zile, M.; Ahrens, H.; DeLuca, H.F. Liquid-gel partition chromatography of vitamin A compounds; formation of retinoic acid from retinyl acetate in vivo. J. Lipid Res. 1974, 15, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Strickland, S.; Mahdavi, V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 1978, 15, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Giguère, V.; Ong, E.S.; Segui, P.; Evans, R.M. Identification of a receptor for the morphogen retinoic acid. Nature 1987, 330, 624–629. [Google Scholar] [CrossRef]
- Petkovich, M.; Brand, N.J.; Krust, A.; Chambon, P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987, 330, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Le Maire, A.; Teyssier, C.; Balaguer, P.; Bourguet, W.; Germain, P. Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and their combinations. Cells 2019, 8, 1392. [Google Scholar] [CrossRef] [Green Version]
- Leid, M.; Kastner, P.; Lyons, R.; Nakshatri, H.; Saunders, M.; Zacharewski, T.; Chen, J.Y.; Staub, A.; Garnier, J.M.; Mader, S.; et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 1992, 68, 377–395. [Google Scholar] [CrossRef]
- Germain, P.; Rochel, N.; Bourguet, W. Ligands and DNA in the allosteric control of retinoid receptors function. Essays Biochem. 2021, 65, 887–899. [Google Scholar] [CrossRef]
- Le Maire, A.; Rey, M.; Vivat, V.; Guée, L.; Blanc, P.; Malosse, C.; Chamot-Rooke, J.; Germain, P.; Bourguet, W. Design and in vitro characterization of RXR variants as tools to investigate the biological role of endogenous rexinoids. J. Mol. Endocrinol. 2022, 69, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Germain, P.; Chambon, P.; Eichele, G.; Evans, R.M.; Lazar, M.A.; Leid, M.; De Lera, A.R.; Lotan, R.; Mangelsdorf, D.J.; Gronemeyer, H. International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol. Rev. 2006, 58, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Miglioli, A.; Canesi, L.; Gomes, I.D.L.; Schubert, M.; Dumollard, R. Nuclear receptors and development of marine invertebrates. Genes 2021, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Beinsteiner, B.; Markov, G.V.; Bourguet, M.; McEwen, A.G.; Erb, S.; Patel, A.K.M.; El Khaloufi El Khaddar, F.Z.; Lecroisey, C.; Holzer, G.; Essabri, K.; et al. A novel nuclear receptor subfamily enlightens the origin of heterodimerization. BMC Biol. 2022, 20, 217. [Google Scholar] [CrossRef]
- Al Tanoury, Z.; Piskunov, A.; Rochette-Egly, C. Vitamin A and retinoid signaling: Genomic and nongenomic effects. J. Lipid Res. 2013, 54, 1761–1775. [Google Scholar] [CrossRef] [Green Version]
- Rochette-Egly, C. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA. Biochim. Biophys. Acta 2015, 1851, 66–75. [Google Scholar] [CrossRef]
- Polvadore, T.; Maden, M. Retinoic acid receptors and the control of positional information in the regenerating axolotl limb. Cells 2021, 10, 2174. [Google Scholar] [CrossRef]
- Abbou, T.; Bendelac-Kapon, L.; Sebag, A.; Fainsod, A. Enhanced loss of retinoic acid network genes in Xenopus laevis achieves a tighter signal regulation. Cells 2022, 11, 327. [Google Scholar] [CrossRef]
- Schmidt, P.; Leman, E.; Lagadec, R.; Schubert, M.; Mazan, S.; Reshef, R. Evolutionary transition in the regulation of vertebrate pronephros development: A new role for retinoic acid. Cells 2022, 11, 1304. [Google Scholar] [CrossRef]
- Condrea, D.; Souali-Crespo, S.; Féret, B.; Klopfenstein, M.; Faisan, S.; Mark, M.; Ghyselinck, N.B.; Vernet, N. Retinoic acid receptor alpha is essential in postnatal Sertoli cells but not in germ cells. Cells 2022, 11, 891. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y. Action and interaction between retinoic acid signaling and blood-testis barrier function in the spermatogenesis cycle. Cells 2022, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Duester, G. Towards a better vision of retinoic acid signaling during eye development. Cells 2022, 11, 322. [Google Scholar] [CrossRef]
- Yamakawa, S.; Wada, H. Machinery and developmental role of retinoic acid signaling in echinoderms. Cells 2022, 11, 523. [Google Scholar] [CrossRef]
- De Hoog, E.; Saba Echezarreta, V.E.; Turgambayeva, A.; Foran, G.; Megaly, M.; Necakov, A.; Spencer, G.E. Molluscan RXR transcriptional regulation by retinoids in a Drosophila CNS organ culture system. Cells 2022, 11, 2493. [Google Scholar] [CrossRef]
- Dahiya, N.R.; Leibovitch, B.A.; Kadamb, R.; Bansal, N.; Waxman, S. The Sin3A/MAD1 complex, through its PAH2 domain, acts as a second repressor of retinoic acid receptor beta expression in breast cancer cells. Cells 2022, 11, 1179. [Google Scholar] [CrossRef]
- Chen, G. The interactions of insulin and vitamin A signaling systems for the regulation of hepatic glucose and lipid metabolism. Cells 2021, 10, 2160. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, N.; Indra, A.K.; Ganguli-Indra, G. Selective ablation of BCL11A in epidermal keratinocytes alters skin homeostasis and accelerates excisional wound healing in vivo. Cells 2022, 11, 2106. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Perri, M.; Jones, J.W.; Pierzchalski, K.; Ceaicovscaia, N.; Cione, E.; Kane, M.A. Altered RBP1 gene expression impacts epithelial cell retinoic acid, proliferation, and microenvironment. Cells 2022, 11, 792. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Pacifici, M. Retinoid agonists in the targeting of heterotopic ossification. Cells 2021, 10, 3245. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Köpke, M.B.; Vilsmaier, T.; Zati Zehni, A.; Kessler, M.; Sixou, S.; Schneider, M.; Ditsch, N.; Cavaillès, V.; Jeschke, U. Cytoplasmic colocalization of RXRα and PPARγ as an independent negative prognosticator for breast cancer patients. Cells 2022, 11, 1244. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schubert, M.; Germain, P. Retinoic Acid and Retinoid X Receptors. Cells 2023, 12, 864. https://doi.org/10.3390/cells12060864
Schubert M, Germain P. Retinoic Acid and Retinoid X Receptors. Cells. 2023; 12(6):864. https://doi.org/10.3390/cells12060864
Chicago/Turabian StyleSchubert, Michael, and Pierre Germain. 2023. "Retinoic Acid and Retinoid X Receptors" Cells 12, no. 6: 864. https://doi.org/10.3390/cells12060864
APA StyleSchubert, M., & Germain, P. (2023). Retinoic Acid and Retinoid X Receptors. Cells, 12(6), 864. https://doi.org/10.3390/cells12060864