Mapping the Protein Kinome: Current Strategy and Future Direction
Abstract
:1. Introduction
2. Technologies for Kinome Analysis
2.1. Kinome Substrate Peptide Library
2.2. Kinase Inhibitor Conjugated Beads
2.3. Chemical Reactive Probe
2.4. Kinome Activity-Representing Phosphorylation Sites
3. Potential Strategies in Kinase Spatial Assay
3.1. Proximity Labeling
3.2. Low Cell Numbers Proteomics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Kanev, G.K.; de Graaf, C.; de Esch, I.J.P.; Leurs, R.; Wurdinger, T.; Westerman, B.A.; Kooistra, A.J. The Landscape of Atypical and Eukaryotic Protein Kinases. Trends Pharmacol. Sci. 2019, 40, 818–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Li, L.; Voss, C.; Wang, F.; Liu, J.; Li, S.S. A Comprehensive Immunoreceptor Phosphotyrosine-based Signaling Network Revealed by Reciprocal Protein-Peptide Array Screening. Mol. Cell. Proteom. MCP 2015, 14, 1846–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettencourt-Dias, M.; Giet, R.; Sinka, R.; Mazumdar, A.; Lock, W.G.; Balloux, F.; Zafiropoulos, P.J.; Yamaguchi, S.; Winter, S.; Carthew, R.W.; et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 2004, 432, 980–987. [Google Scholar] [CrossRef]
- Krahn, A.I.; Wells, C.; Drewry, D.H.; Beitel, L.K.; Durcan, T.M.; Axtman, A.D. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem. Neurosci. 2020, 11, 1871–1886. [Google Scholar] [CrossRef]
- Fleuren, E.D.; Zhang, L.; Wu, J.; Daly, R.J. The kinome ‘at large’ in cancer. Nature 2016, 16, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Yesilkanal, A.E.; Johnson, G.L.; Ramos, A.F.; Rosner, M.R. New strategies for targeting kinase networks in cancer. J. Biol. Chem. 2021, 297, 101128. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2022, 187, 106552. [Google Scholar] [CrossRef]
- Ferguson, F.M.; Gray, N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov. 2018, 17, 353–377. [Google Scholar] [CrossRef]
- Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E.; Campbell, B.T.; Chan, K.W.; Ciceri, P.; Davis, M.I.; Edeen, P.T.; et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schioth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov. 2021, 20, 839–861. [Google Scholar] [CrossRef]
- Shen, C.; Xia, X.; Hu, S.; Yang, M.; Wang, J. Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal. Chem. 2015, 87, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sylvester, J.E.; Parker, L.L.; Zhou, G.; Kron, S.J. Peptide reporters of kinase activity in whole cell lysates. Biopolymers 2010, 94, 475–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenault, R.; Griebel, P.; Napper, S. Peptide arrays for kinome analysis: New opportunities and remaining challenges. Proteomics 2011, 11, 4595–4609. [Google Scholar] [CrossRef]
- Zetterqvist, O.; Ragnarsson, U.; Humble, E.; Berglund, L.; Engstrom, L. The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem. Biophys. Res. Commun. 1976, 70, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Houseman, B.T.; Huh, J.H.; Kron, S.J.; Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 2002, 20, 270–274. [Google Scholar] [CrossRef]
- Houseman, B.T.; Mrksich, M. Towards quantitative assays with peptide chips: A surface engineering approach. Trends Biotechnol. 2002, 20, 279–281. [Google Scholar] [CrossRef]
- Zhou, G.; Sylvester, J.E.; Wu, D.; Veach, D.R.; Kron, S.J. A magnetic bead-based protein kinase assay with dual detection techniques. Anal. Biochem. 2011, 408, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppen, A.; Houtman, R.; Pijnenburg, D.; Jeninga, E.H.; Ruijtenbeek, R.; Kalkhoven, E. Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor gamma cofactor. Mol. Cell. Proteom. MCP 2009, 8, 2212–2226. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, J.E.; Kron, S.J. A bead-based activity screen for small-molecule inhibitors of signal transduction in chronic myelogenous leukemia cells. Mol. Cancer Ther. 2010, 9, 1469–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilhorst, R.; Houkes, L.; van den Berg, A.; Ruijtenbeek, R. Peptide microarrays for detailed, high-throughput substrate identification, kinetic characterization, and inhibition studies on protein kinase A. Anal. Biochem. 2009, 387, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Ellermann, S.F.; Jongman, R.M.; Luxen, M.; Kuiper, T.; Plantinga, J.; Moser, J.; Scheeren, T.W.L.; Theilmeier, G.; Molema, G.; Van Meurs, M. Pharmacological inhibition of protein tyrosine kinases axl and fyn reduces TNF-alpha-induced endothelial inflammatory activation in vitro. Front. Pharmacol. 2022, 13, 992262. [Google Scholar] [CrossRef]
- Krayem, M.; Aftimos, P.; Najem, A.; van den Hooven, T.; van den Berg, A.; Hovestad-Bijl, L.; de Wijn, R.; Hilhorst, R.; Ruijtenbeek, R.; Sabbah, M.; et al. Kinome Profiling to Predict Sensitivity to MAPK Inhibition in Melanoma and to Provide New Insights into Intrinsic and Acquired Mechanism of Resistance. Cancers 2020, 12, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieshout, R.; Faria, A.V.S.; Peppelenbosch, M.P.; van der Laan, L.J.W.; Verstegen, M.M.A.; Fuhler, G.M. Kinome profiling of cholangiocarcinoma organoids reveals potential druggable targets that hold promise for treatment stratification. Mol. Med. 2022, 28, 74. [Google Scholar] [CrossRef]
- Meyer, N.O.; O’Donoghue, A.J.; Schulze-Gahmen, U.; Ravalin, M.; Moss, S.M.; Winter, M.B.; Knudsen, G.M.; Craik, C.S. Multiplex Substrate Profiling by Mass Spectrometry for Kinases as a Method for Revealing Quantitative Substrate Motifs. Anal. Chem. 2017, 89, 4550–4558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, K.; Yang, Q.; Li, H.; Zhang, L.; Aylward, B.; Arsenault, R.J.; Zhang, G. Butyrate and Forskolin Augment Host Defense, Barrier Function, and Disease Resistance without Eliciting Inflammation. Front. Nutr. 2021, 8, 778424. [Google Scholar] [CrossRef]
- Kindrachuk, J.; Wahl-Jensen, V.; Safronetz, D.; Trost, B.; Hoenen, T.; Arsenault, R.; Feldmann, F.; Traynor, D.; Postnikova, E.; Kusalik, A.; et al. Ebola virus modulates transforming growth factor beta signaling and cellular markers of mesenchyme-like transition in hepatocytes. J. Virol. 2014, 88, 9877–9892. [Google Scholar] [CrossRef] [Green Version]
- Creeden, J.F.; Alganem, K.; Imami, A.S.; Brunicardi, F.C.; Liu, S.H.; Shukla, R.; Tomar, T.; Naji, F.; McCullumsmith, R.E. Kinome Array Profiling of Patient-Derived Pancreatic Ductal Adenocarcinoma Identifies Differentially Active Protein Tyrosine Kinases. Int. J. Mol. Sci. 2020, 21, 8679. [Google Scholar] [CrossRef]
- Kunys, A.R.; Lian, W.; Pei, D. Specificity profiling of protein-binding domains using one-bead-one-compound Peptide libraries. Curr. Protoc. Chem. Biol. 2012, 4, 331–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Huang, H.; Voss, C.; Kaneko, T.; Qin, W.T.; Sidhu, S.; Li, S.S. Surface Loops in a Single SH2 Domain Are Capable of Encoding the Spectrum of Specificity of the SH2 Family. Mol. Cell. Proteom. MCP 2019, 18, 372–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topcu, E.; Ridgeway, N.H.; Biggar, K.K. PeSA 2.0: A software tool for peptide specificity analysis implementing positive and negative motifs and motif-based peptide scoring. Comput. Biol. Chem. 2022, 101, 107753. [Google Scholar] [CrossRef]
- Hornbeck, P.V.; Kornhauser, J.M.; Latham, V.; Murray, B.; Nandhikonda, V.; Nord, A.; Skrzypek, E.; Wheeler, T.; Zhang, B.; Gnad, F. 15 years of PhosphoSitePlus(R): Integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res. 2019, 47, D433–D441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinkel, H.; Chica, C.; Via, A.; Gould, C.M.; Jensen, L.J.; Gibson, T.J.; Diella, F. Phospho.ELM: A database of phosphorylation sites—Update 2011. Nucleic Acids Res. 2011, 39, D261–D267. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Wang, M.; Shen, Y.; Liao, J.; Li, A.; Wang, M. PKIS: Computational identification of protein kinases for experimentally discovered protein phosphorylation sites. BMC Bioinform. 2013, 14, 247. [Google Scholar] [CrossRef] [Green Version]
- Trost, B.; Arsenault, R.; Griebel, P.; Napper, S.; Kusalik, A. DAPPLE: A pipeline for the homology-based prediction of phosphorylation sites. Bioinformatics 2013, 29, 1693–1695. [Google Scholar] [CrossRef]
- Trost, B.; Maleki, F.; Kusalik, A.; Napper, S. DAPPLE 2: A Tool for the Homology-Based Prediction of Post-Translational Modification Sites. J. Proteome Res. 2016, 15, 2760–2767. [Google Scholar] [CrossRef]
- Ma, R.; Li, S.; Li, W.; Yao, L.; Huang, H.D.; Lee, T.Y. KinasePhos 3.0: Redesign and expansion of the prediction on kinase-specific phosphorylation sites. Genom. Proteom. Bioinform. 2022. [Google Scholar] [CrossRef]
- Van Baal, J.W.; Diks, S.H.; Wanders, R.J.; Rygiel, A.M.; Milano, F.; Joore, J.; Bergman, J.J.; Peppelenbosch, M.P.; Krishnadath, K.K. Comparison of kinome profiles of Barrett’s esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res. 2006, 66, 11605–11612. [Google Scholar] [CrossRef] [Green Version]
- Denomy, C.; Lazarou, C.; Hogan, D.; Facciuolo, A.; Scruten, E.; Kusalik, A.; Napper, S. PIIKA 2.5: Enhanced quality control of peptide microarrays for kinome analysis. PLoS ONE 2021, 16, e0257232. [Google Scholar] [CrossRef]
- Dussaq, A.M.; Kennell, T., Jr.; Eustace, N.J.; Anderson, J.C.; Almeida, J.S.; Willey, C.D. Kinomics toolbox-A web platform for analysis and viewing of kinomic peptide array data. PLoS ONE 2018, 13, e0202139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentea, E.; Villers, A.; Moore, C.; Funk, A.J.; O’Donovan, S.M.; Verbruggen, L.; Lara, O.; Janssen, P.; De Pauw, L.; Declerck, N.B.; et al. Corticostriatal dysfunction and social interaction deficits in mice lacking the cystine/glutamate antiporter. Mol. Psychiatry 2021, 26, 4754–4769. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, R.J.; Brown, T.R.; Edrington, T.S.; Nisbet, D.J. Kinome Analysis of Cattle Peripheral Lymph Nodes to Elucidate Differential Response to Salmonella spp. Microorganisms 2022, 10, 120. [Google Scholar] [CrossRef]
- Kogut, M.H.; Genovese, K.J.; Byrd, J.A.; Swaggerty, C.L.; He, H.; Farnell, Y.; Arsenault, R.J. Chicken-Specific Kinome Analysis of Early Host Immune Signaling Pathways in the Cecum of Newly Hatched Chickens Infected With Salmonella enterica Serovar Enteritidis. Front. Cell. Infect. Microbiol. 2022, 12, 899395. [Google Scholar] [CrossRef]
- Kindrachuk, J.; Arsenault, R.; Kusalik, A.; Kindrachuk, K.N.; Trost, B.; Napper, S.; Jahrling, P.B.; Blaney, J.E. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol. Cell. Proteom. MCP 2012, 11, M111.015701. [Google Scholar] [CrossRef] [Green Version]
- Catalano, A.; Adlesic, M.; Kaltenbacher, T.; Klar, R.F.U.; Albers, J.; Seidel, P.; Brandt, L.P.; Hejhal, T.; Busenhart, P.; Rohner, N.; et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers 2021, 13, 1852. [Google Scholar] [CrossRef]
- Wegman-Points, L.; Alganem, K.; Imami, A.S.; Mathis, V.; Creeden, J.F.; McCullumsmith, R.; Yuan, L.L. Subcellular partitioning of protein kinase activity revealed by functional kinome profiling. Sci. Rep. 2022, 12, 17300. [Google Scholar] [CrossRef]
- McDonald, I.M.; Grant, G.D.; East, M.P.; Gilbert, T.S.K.; Wilkerson, E.M.; Goldfarb, D.; Beri, J.; Herring, L.E.; Vaziri, C.; Cook, J.G.; et al. Mass spectrometry-based selectivity profiling identifies a highly selective inhibitor of the kinase MELK that delays mitotic entry in cancer cells. J. Biol. Chem. 2020, 295, 2359–2374. [Google Scholar] [CrossRef] [PubMed]
- Oppermann, F.S.; Gnad, F.; Olsen, J.V.; Hornberger, R.; Greff, Z.; Keri, G.; Mann, M.; Daub, H. Large-scale proteomics analysis of the human kinome. Mol. Cell. Proteom. MCP 2009, 8, 1751–1764. [Google Scholar] [CrossRef] [Green Version]
- Daub, H. Quantitative proteomics of kinase inhibitor targets and mechanisms. ACS Chem. Biol. 2015, 10, 201–212. [Google Scholar] [CrossRef]
- Knockaert, M.; Gray, N.; Damiens, E.; Chang, Y.T.; Grellier, P.; Grant, K.; Fergusson, D.; Mottram, J.; Soete, M.; Dubremetz, J.F.; et al. Intracellular targets of cyclin-dependent kinase inhibitors: Identification by affinity chromatography using immobilised inhibitors. Chem. Biol. 2000, 7, 411–422. [Google Scholar] [CrossRef]
- Godl, K.; Wissing, J.; Kurtenbach, A.; Habenberger, P.; Blencke, S.; Gutbrod, H.; Salassidis, K.; Stein-Gerlach, M.; Missio, A.; Cotten, M.; et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc. Natl. Acad. Sci. USA 2003, 100, 15434–15439. [Google Scholar] [CrossRef] [Green Version]
- Duncan, J.S.; Whittle, M.C.; Nakamura, K.; Abell, A.N.; Midland, A.A.; Zawistowski, J.S.; Johnson, N.L.; Granger, D.A.; Jordan, N.V.; Darr, D.B.; et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012, 149, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Stuhlmiller, T.J.; Miller, S.M.; Zawistowski, J.S.; Nakamura, K.; Beltran, A.S.; Duncan, J.S.; Angus, S.P.; Collins, K.A.; Granger, D.A.; Reuther, R.A.; et al. Inhibition of Lapatinib-Induced Kinome Reprogramming in ERBB2-Positive Breast Cancer by Targeting BET Family Bromodomains. Cell Rep. 2015, 11, 390–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, A.M.; Hahne, H.; Wu, Z.; Auer, F.J.; Meng, C.; Wilhelm, M.; Kuster, B. Global proteome analysis of the NCI-60 cell line panel. Cell Rep. 2013, 4, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Kurimchak, A.M.; Shelton, C.; Duncan, K.E.; Johnson, K.J.; Brown, J.; O’Brien, S.; Gabbasov, R.; Fink, L.S.; Li, Y.; Lounsbury, N.; et al. Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer. Cell Rep. 2016, 16, 1273–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Holmes, I.P.; Hochgrafe, F.; Walker, S.R.; Ali, N.A.; Humphrey, E.S.; Wu, J.; de Silva, M.; Kersten, W.J.; Connor, T.; et al. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling. J. Proteome Res. 2013, 12, 3104–3116. [Google Scholar] [CrossRef]
- Pachl, F.; Plattner, P.; Ruprecht, B.; Medard, G.; Sewald, N.; Kuster, B. Characterization of a chemical affinity probe targeting Akt kinases. J. Proteome Res. 2013, 12, 3792–3800. [Google Scholar] [CrossRef] [PubMed]
- Ku, X.; Heinzlmeir, S.; Helm, D.; Medard, G.; Kuster, B. New affinity probe targeting VEGF receptors for kinase inhibitor selectivity profiling by chemical proteomics. J. Proteome Res. 2014, 13, 2445–2452. [Google Scholar] [CrossRef]
- Ku, X.; Heinzlmeir, S.; Liu, X.; Medard, G.; Kuster, B. A new chemical probe for quantitative proteomic profiling of fibroblast growth factor receptor and its inhibitors. J. Proteom. 2014, 96, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Zawistowski, J.S.; Bevill, S.M.; Goulet, D.R.; Stuhlmiller, T.J.; Beltran, A.S.; Olivares-Quintero, J.F.; Singh, D.; Sciaky, N.; Parker, J.S.; Rashid, N.U.; et al. Enhancer Remodeling during Adaptive Bypass to MEK Inhibition Is Attenuated by Pharmacologic Targeting of the P-TEFb Complex. Cancer Discov. 2017, 7, 302–321. [Google Scholar] [CrossRef] [Green Version]
- Bantscheff, M.; Eberhard, D.; Abraham, Y.; Bastuck, S.; Boesche, M.; Hobson, S.; Mathieson, T.; Perrin, J.; Raida, M.; Rau, C.; et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 2007, 25, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Daub, H.; Olsen, J.V.; Bairlein, M.; Gnad, F.; Oppermann, F.S.; Korner, R.; Greff, Z.; Keri, G.; Stemmann, O.; Mann, M. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 2008, 31, 438–448. [Google Scholar] [CrossRef]
- Werth, E.G.; McConnell, E.W.; Gilbert, T.S.; Couso Lianez, I.; Perez, C.A.; Manley, C.K.; Graves, L.M.; Umen, J.G.; Hicks, L.M. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. Plant J. Cell Mol. Biol. 2017, 89, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Urisman, A.; Levin, R.S.; Gordan, J.D.; Webber, J.T.; Hernandez, H.; Ishihama, Y.; Shokat, K.M.; Burlingame, A.L. An Optimized Chromatographic Strategy for Multiplexing In Parallel Reaction Monitoring Mass Spectrometry: Insights from Quantitation of Activated Kinases. Mol. Cell. Proteom. MCP 2017, 16, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Kurimchak, A.M.; Kumar, V.; Herrera-Montavez, C.; Johnson, K.J.; Srivastava, N.; Davarajan, K.; Peri, S.; Cai, K.Q.; Mantia-Smaldone, G.M.; Duncan, J.S. Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target. Mol. Cell. Proteom. MCP 2020, 19, 2068–2090. [Google Scholar] [CrossRef]
- Ruprecht, B.; Zecha, J.; Heinzlmeir, S.; Medard, G.; Lemeer, S.; Kuster, B. Evaluation of Kinase Activity Profiling Using Chemical Proteomics. ACS Chem. Biol. 2015, 10, 2743–2752. [Google Scholar] [CrossRef]
- Kurimchak, A.M.; Herrera-Montavez, C.; Brown, J.; Johnson, K.J.; Sodi, V.; Srivastava, N.; Kumar, V.; Deihimi, S.; O’Brien, S.; Peri, S.; et al. Functional proteomics interrogation of the kinome identifies MRCKA as a therapeutic target in high-grade serous ovarian carcinoma. Sci. Signal. 2020, 13, aax8238. [Google Scholar] [CrossRef] [PubMed]
- Kurimchak, A.M.; Shelton, C.; Herrera-Montavez, C.; Duncan, K.E.; Chernoff, J.; Duncan, J.S. Intrinsic Resistance to MEK Inhibition through BET Protein-Mediated Kinome Reprogramming in NF1-Deficient Ovarian Cancer. Mol. Cancer Res. MCR 2019, 17, 1721–1734. [Google Scholar] [CrossRef]
- Ye, S.; Sharipova, D.; Kozinova, M.; Klug, L.; D’Souza, J.; Belinsky, M.G.; Johnson, K.J.; Einarson, M.B.; Devarajan, K.; Zhou, Y.; et al. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight 2021, 6, 143474. [Google Scholar] [CrossRef]
- Yang, T.; Cuesta, A.; Wan, X.; Craven, G.B.; Hirakawa, B.; Khamphavong, P.; May, J.R.; Kath, J.C.; Lapek, J.D., Jr.; Niessen, S.; et al. Reversible lysine-targeted probes reveal residence time-based kinase selectivity. Nat. Chem. Biol. 2022, 18, 934–941. [Google Scholar] [CrossRef]
- Fischer, J.J.; Graebner Baessler, O.Y.; Dalhoff, C.; Michaelis, S.; Schrey, A.K.; Ungewiss, J.; Andrich, K.; Jeske, D.; Kroll, F.; Glinski, M.; et al. Comprehensive identification of staurosporine-binding kinases in the hepatocyte cell line HepG2 using Capture Compound Mass Spectrometry (CCMS). J. Proteome Res. 2010, 9, 806–817. [Google Scholar] [CrossRef]
- Korovesis, D.; Beard, H.A.; Merillat, C.; Verhelst, S.H.L. Probes for Photoaffinity Labelling of Kinases. Chembiochem Eur. J. Chem. Biol. 2021, 22, 2206–2218. [Google Scholar] [CrossRef]
- Sharma, R.; Fedorenko, I.; Spence, P.T.; Sondak, V.K.; Smalley, K.S.; Koomen, J.M. Activity-Based Protein Profiling Shows Heterogeneous Signaling Adaptations to BRAF Inhibition. J. Proteome Res. 2016, 15, 4476–4489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Wang, Y. Probing adenosine nucleotide-binding proteins with an affinity-labeled nucleotide probe and mass spectrometry. Anal. Chem. 2007, 79, 5547–5556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Guo, L.; Wang, Y. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Mol. Cell. Proteom. MCP 2014, 13, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Hanoulle, X.; Van Damme, J.; Staes, A.; Martens, L.; Goethals, M.; Vandekerckhove, J.; Gevaert, K. A new functional, chemical proteomics technology to identify purine nucleotide binding sites in complex proteomes. J. Proteome Res. 2006, 5, 3438–3445. [Google Scholar] [CrossRef]
- Patricelli, M.P.; Szardenings, A.K.; Liyanage, M.; Nomanbhoy, T.K.; Wu, M.; Weissig, H.; Aban, A.; Chun, D.; Tanner, S.; Kozarich, J.W. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 2007, 46, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Yin, J.; Porter, D.F.; Jiang, X.; Khavari, P.A.; Wang, Y. Targeted Proteomic Approaches for Proteome-Wide Characterizations of the AMP-Binding Capacities of Kinases. J. Proteome Res. 2022, 21, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, C.J.; Chen, G.Y.; Yao, S.Q. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J. Am. Chem. Soc. 2012, 134, 3001–3014. [Google Scholar] [CrossRef]
- Zhao, Q.; Ouyang, X.; Wan, X.; Gajiwala, K.S.; Kath, J.C.; Jones, L.H.; Burlingame, A.L.; Taunton, J. Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes. J. Am. Chem. Soc. 2017, 139, 680–685. [Google Scholar] [CrossRef] [Green Version]
- McCloud, R.L.; Yuan, K.; Mahoney, K.E.; Bai, D.L.; Shabanowitz, J.; Ross, M.M.; Hunt, D.F.; Hsu, K.L. Direct Target Site Identification of a Sulfonyl-Triazole Covalent Kinase Probe by LC-MS Chemical Proteomics. Anal. Chem. 2021, 93, 11946–11955. [Google Scholar] [CrossRef]
- Huang, T.; Hosseinibarkooie, S.; Borne, A.L.; Granade, M.E.; Brulet, J.W.; Harris, T.E.; Ferris, H.A.; Hsu, K.L. Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Chem. Sci. 2021, 12, 3295–3307. [Google Scholar] [CrossRef]
- Worboys, J.D.; Sinclair, J.; Yuan, Y.; Jorgensen, C. Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome. Nat. Methods 2014, 11, 1041–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patricelli, M.P.; Nomanbhoy, T.K.; Wu, J.; Brown, H.; Zhou, D.; Zhang, J.; Jagannathan, S.; Aban, A.; Okerberg, E.; Herring, C.; et al. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 2011, 18, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, M.A.; Fang, B.; Haura, E.B.; Rix, U.; Koomen, J.M. Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer. J. Proteome Res. 2018, 17, 63–75. [Google Scholar] [CrossRef]
- Miao, W.; Guo, L.; Wang, Y. Imatinib-Induced Changes in Protein Expression and ATP-Binding Affinities of Kinases in Chronic Myelocytic Leukemia Cells. Anal. Chem. 2019, 91, 3209–3214. [Google Scholar] [CrossRef] [Green Version]
- Miao, W.; Wang, Y. Quantitative Interrogation of the Human Kinome Perturbed by Two BRAF Inhibitors. J. Proteome Res. 2019, 18, 2624–2631. [Google Scholar] [CrossRef] [PubMed]
- Okerberg, E.S.; Hainley, A.; Brown, H.; Aban, A.; Alemayehu, S.; Shih, A.; Wu, J.; Patricelli, M.P.; Kozarich, J.W.; Nomanbhoy, T.; et al. Identification of a Tumor Specific, Active-Site Mutation in Casein Kinase 1alpha by Chemical Proteomics. PLoS ONE 2016, 11, e0152934. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xiao, Y.; Fan, M.; Li, J.J.; Wang, Y. Profiling global kinome signatures of the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted proteomics. J. Proteome Res. 2015, 14, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Xiao, Y.; Wang, Y. Application of adenosine triphosphate affinity probe and scheduled multiple-reaction monitoring analysis for profiling global kinome in human cells in response to arsenite treatment. Anal. Chem. 2014, 86, 10700–10707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanderley, K.; Sousa, D.; Silva, G.; Maia, J.; Silva, M.; Vidal, M.; Baldani, J.; Meneses, C. Tyrosine Kinase Self-Phosphorylation Controls Exopolysaccharide Biosynthesis in Gluconacetobacter diazotrophicus Strain Pal5. Life 2021, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
- Mooz, J.; Riegel, K.; Ps, H.; Sadanandam, A.; Marini, F.; Klein, M.; Werner, U.; Roth, W.; Wilken-Schmitz, A.; Tegeder, I.; et al. ARAF suppresses ERBB3 expression and metastasis in a subset of lung cancers. Sci. Adv. 2022, 8, eabk1538. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, T.; Debets, D.O.; van Gelder, C.; Stecker, K.E.; Rontogianni, S.; van den Eshof, B.L.; Kemper, K.; Lips, E.H.; van den Biggelaar, M.; Peeper, D.S.; et al. High-Throughput Assessment of Kinome-wide Activation States. Cell Syst. 2019, 9, 366.e365–374.e365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Z.; Meng, C.; Yang, F.; Deng, Y.; Han, X.; Liu, H. Mapping Tyrosine Kinases Based on a TK Activity-Representing Peptide Library Reveals a Role for SRC in H1975 Drug Resistance. J. Proteome Res. 2022, 21, 1105–1113. [Google Scholar] [CrossRef]
- Na, H.W.; Shin, W.S.; Ludwig, A.; Lee, S.T. The cytosolic domain of protein-tyrosine kinase 7 (PTK7), generated from sequential cleavage by a disintegrin and metalloprotease 17 (ADAM17) and gamma-secretase, enhances cell proliferation and migration in colon cancer cells. J. Biol. Chem. 2012, 287, 25001–25009. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Liu, Z.; Zhong, C.Q.; Liu, Y.; Zhang, Z.; Liang, Y.; Li, J.; Han, S.; Han, J. Inactivation of Cyclic AMP Response Element Transcription Caused by Constitutive p38 Activation Is Mediated by Hyperphosphorylation-Dependent CRTC2 Nucleocytoplasmic Transport. Mol. Cell. Biol. 2019, 39, e00554-18. [Google Scholar] [CrossRef] [Green Version]
- Bolado-Carrancio, A.; Lee, M.; Ewing, A.; Muir, M.; Macleod, K.G.; Gallagher, W.M.; Nguyen, L.K.; Carragher, N.O.; Semple, C.A.; Brunton, V.G.; et al. ISGylation drives basal breast tumour progression by promoting EGFR recycling and Akt signalling. Oncogene 2021, 40, 6235–6247. [Google Scholar] [CrossRef]
- Omar, M.H.; Byrne, D.P.; Jones, K.N.; Lakey, T.M.; Collins, K.B.; Lee, K.S.; Daly, L.A.; Forbush, K.A.; Lau, H.T.; Golkowski, M.; et al. Mislocalization of protein kinase A drives pathology in Cushing’s syndrome. Cell Rep. 2022, 40, 111073. [Google Scholar] [CrossRef]
- Mouron, S.; Bueno, M.J.; Lluch, A.; Manso, L.; Calvo, I.; Cortes, J.; Garcia-Saenz, J.A.; Gil-Gil, M.; Martinez-Janez, N.; Apala, J.V.; et al. Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A. Nat. Commun. 2022, 13, 7529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Allen, M.D. FRET-based biosensors for protein kinases: Illuminating the kinome. Mol. Biosyst. 2007, 3, 759–765. [Google Scholar] [CrossRef]
- Van Leene, J.; Eeckhout, D.; Gadeyne, A.; Matthijs, C.; Han, C.; De Winne, N.; Persiau, G.; Van De Slijke, E.; Persyn, F.; Mertens, T.; et al. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. Nat. Plants 2022, 8, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Shahinuzzaman, A.D.A.; Kamal, A.H.M.; Chakrabarty, J.K.; Rahman, A.; Chowdhury, S.M. Identification of Inflammatory Proteomics Networks of Toll-like Receptor 4 through Immunoprecipitation-Based Chemical Cross-Linking Proteomics. Proteomes 2022, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.W.; Urisman, A.; Burlingame, A.L.; Shokat, K.M. Chemically reprogramming the phospho-transfer reaction to crosslink protein kinases to their substrates. Protein Sci. Publ. Protein Soc. 2019, 28, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Cho, K.F.; Cavanagh, P.E.; Ting, A.Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 2021, 18, 133–143. [Google Scholar] [CrossRef]
- Yang, X.; Wen, Z.; Zhang, D.; Li, Z.; Li, D.; Nagalakshmi, U.; Dinesh-Kumar, S.P.; Zhang, Y. Proximity labeling: An emerging tool for probing in planta molecular interactions. Plant Commun. 2021, 2, 100137. [Google Scholar] [CrossRef]
- Kim, D.I.; Birendra, K.C.; Zhu, W.; Motamedchaboki, K.; Doye, V.; Roux, K.J. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl. Acad. Sci. USA 2014, 111, E2453–E2461. [Google Scholar] [CrossRef] [Green Version]
- May, D.G.; Scott, K.L.; Campos, A.R.; Roux, K.J. Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation. Cells 2020, 9, 1070. [Google Scholar] [CrossRef]
- Branon, T.C.; Bosch, J.A.; Sanchez, A.D.; Udeshi, N.D.; Svinkina, T.; Carr, S.A.; Feldman, J.L.; Perrimon, N.; Ting, A.Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018, 36, 880–887. [Google Scholar] [CrossRef]
- El-Mansi, S.; Robinson, C.L.; Kostelnik, K.B.; McCormack, J.J.; Mitchell, T.P.; Lobato-Marquez, D.; Rajeeve, V.; Cutillas, P.R.; Cutler, D.F.; Mostowy, S.; et al. Proximity proteomics identifies septin and PAK2 as decisive regulators of actomyosin expulsion of von Willebrand factor. Blood 2022, 141, 930–944. [Google Scholar] [CrossRef]
- Shkel, O.; Kharkivska, Y.; Kim, Y.K.; Lee, J.S. Proximity Labeling Techniques: A Multi-Omics Toolbox. Chem. Asian J. 2022, 17, e202101240. [Google Scholar] [CrossRef]
- Banerjee, S.L.; Lessard, F.; Chartier, F.J.M.; Jacquet, K.; Osornio-Hernandez, A.I.; Teyssier, V.; Ghani, K.; Lavoie, N.; Lavoie, J.N.; Caruso, M.; et al. EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Rep. 2022, 40, 111031. [Google Scholar] [CrossRef]
- Dumont, A.A.; Dumont, L.; Berthiaume, J.; Auger-Messier, M. p38alpha MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes. Biochim. Biophys. Acta. Mol. Cell Res. 2019, 1866, 118557. [Google Scholar] [CrossRef]
- Prikas, E.; Poljak, A.; Ittner, A. Mapping p38alpha mitogen-activated protein kinase signaling by proximity-dependent labeling. Protein Sci. Publ. Protein Soc. 2020, 29, 1196–1210. [Google Scholar] [CrossRef]
- Perez Verdaguer, M.; Zhang, T.; Surve, S.; Paulo, J.A.; Wallace, C.; Watkins, S.C.; Gygi, S.P.; Sorkin, A. Time-resolved proximity labeling of protein networks associated with ligand-activated EGFR. Cell Rep. 2022, 39, 110950. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lei, P.; Li, Z.; Han, X.; Yang, F.; Su, T.; Meng, C.; Hou, Z.; Liu, H. Proteomic and Phosphoproteomic Analyses Reveal the Oncogenic Role of PTK7-NDRG1 Axis in Non-small-cell Lung Cancer Cell Resistance to AZD9291. ACS Chem. Biol. 2022, 17, 2849–2862. [Google Scholar] [CrossRef] [PubMed]
- Aboulouard, S.; Wisztorski, M.; Duhamel, M.; Saudemont, P.; Cardon, T.; Narducci, F.; Lemaire, A.S.; Kobeissy, F.; Leblanc, E.; Fournier, I.; et al. In-depth proteomics analysis of sentinel lymph nodes from individuals with endometrial cancer. Cell Rep. Med. 2021, 2, 100318. [Google Scholar] [CrossRef]
- Eckert, M.A.; Coscia, F.; Chryplewicz, A.; Chang, J.W.; Hernandez, K.M.; Pan, S.; Tienda, S.M.; Nahotko, D.A.; Li, G.; Blazenovic, I.; et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 2019, 569, 723–728. [Google Scholar] [CrossRef]
- Van der Pan, K.; Kassem, S.; Khatri, I.; de Ru, A.H.; Janssen, G.M.C.; Tjokrodirijo, R.T.N.; Al Makindji, F.; Stavrakaki, E.; de Jager, A.L.; Naber, B.A.E.; et al. Quantitative proteomics of small numbers of closely-related cells: Selection of the optimal method for a clinical setting. Front. Med. 2022, 9, 997305. [Google Scholar] [CrossRef] [PubMed]
- Van Buijtenen, E.; Janssen, W.; Vink, P.; Habraken, M.J.M.; Wingens, L.J.A.; van Elsas, A.; Huck, W.T.S.; van Buggenum, J.; van Eenennaam, H. Integrated single-cell (phospho-)protein and RNA detection uncovers phenotypic characteristics and active signal transduction of human antibody secreting cells. Mol. Cell. Proteom. MCP 2023, 22, 100492. [Google Scholar] [CrossRef]
- Mund, A.; Coscia, F.; Kriston, A.; Hollandi, R.; Kovacs, F.; Brunner, A.D.; Migh, E.; Schweizer, L.; Santos, A.; Bzorek, M.; et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 2022, 40, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Aballo, T.J.; Roberts, D.S.; Melby, J.A.; Buck, K.M.; Brown, K.A.; Ge, Y. Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro. J. Proteome Res. 2021, 20, 4203–4211. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, B.T.; Devisme, A.; Andrieux, G.; Vyas, F.; Aliar, K.; McCloskey, C.W.; Macklin, A.; Jang, G.H.; Denroche, R.; Romero, J.M.; et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 2021, 184, 5577–5592.e18. [Google Scholar] [CrossRef] [PubMed]
- Neset, L.; Takayidza, G.; Berven, F.S.; Hernandez-Valladares, M. Comparing Efficiency of Lysis Buffer Solutions and Sample Preparation Methods for Liquid Chromatography-Mass Spectrometry Analysis of Human Cells and Plasma. Molecules 2022, 27, 3390. [Google Scholar] [CrossRef]
- Griesser, E.; Wyatt, H.; Ten Have, S.; Stierstorfer, B.; Lenter, M.; Lamond, A.I. Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue. Mol. Cell. Proteom. MCP 2020, 19, 839–851. [Google Scholar] [CrossRef] [Green Version]
- Kassem, S.; van der Pan, K.; de Jager, A.L.; Naber, B.A.E.; de Laat, I.F.; Louis, A.; van Dongen, J.J.M.; Teodosio, C.; Diez, P. Proteomics for Low Cell Numbers: How to Optimize the Sample Preparation Workflow for Mass Spectrometry Analysis. J. Proteome Res. 2021, 20, 4217–4230. [Google Scholar] [CrossRef]
- Yang, S.; Xiong, Y.; Du, Y.; Wang, Y.J.; Zhang, L.; Shen, F.; Liu, Y.J.; Liu, X.; Yang, P. Ultrasensitive Trace Sample Proteomics Unraveled the Protein Remodeling during Mesenchymal-Amoeboid Transition. Anal. Chem. 2022, 94, 768–776. [Google Scholar] [CrossRef]
- Stejskal, K.; Jeff, O.B.; Matzinger, M.; Durnberger, G.; Boychenko, A.; Jacobs, P.; Mechtler, K. Deep Proteome Profiling with Reduced Carryover Using Superficially Porous Microfabricated nanoLC Columns. Anal. Chem. 2022, 94, 15930–15938. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, C.; Liang, Z.; Zhang, L.; Zhang, Y. C18-Functionalized Amine-Bridged Hybrid Monoliths for Mass Spectrometry-Friendly Peptide Separation and Highly Sensitive Proteomic Analysis. Anal. Chem. 2022, 94, 6084–6088. [Google Scholar] [CrossRef]
- Van Bentum, M.; Selbach, M. An Introduction to Advanced Targeted Acquisition Methods. Mol. Cell. Proteom. MCP 2021, 20, 100165. [Google Scholar] [CrossRef] [PubMed]
- Cheung, T.K.; Lee, C.Y.; Bayer, F.P.; McCoy, A.; Kuster, B.; Rose, C.M. Defining the carrier proteome limit for single-cell proteomics. Nat. Methods 2021, 18, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Chua, X.Y.; Mensah, T.; Aballo, T.; Mackintosh, S.G.; Edmondson, R.D.; Salomon, A.R. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome. Mol. Cell. Proteom. MCP 2020, 19, 730–743. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Size (kDa) | Labeling Time | Labeling Radius (nm) | Modification Sites | Substrate | Advantages | Limitations |
---|---|---|---|---|---|---|---|
APEX | 28 | 1 min | ~20 | Tyr, Trp, Cys, His | Biotin-phenol H2O2 | High temporal resolution; versatility for both protein and RNA labeling | Limited application in vivo because of the toxicity of H2O2 |
APEX2 | 28 | 1 min | ~20 | Tyr, Trp, Cys, His | Biotin-phenol+H2O2 | ||
BioID | 35 | 18 h | ~10 | Lys | Biotin | Non-toxic for in vivo applications | Poor temporal resolution because of the low activity |
BioID2 | 27 | 18 h | ~10 | Lys | Biotin | ||
TurboID | 35 | 10 min | ~10 | Lys | Biotin | Highest activity biotin ligase; Non-toxic for in vivo applications | Potentially less control of the labeling window because of high biotin affinity |
miniTurbo | 28 | 10 min | ~10 | Lys | Biotin | Lower activity and stability as compared to TurboID. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Liu, H. Mapping the Protein Kinome: Current Strategy and Future Direction. Cells 2023, 12, 925. https://doi.org/10.3390/cells12060925
Hou Z, Liu H. Mapping the Protein Kinome: Current Strategy and Future Direction. Cells. 2023; 12(6):925. https://doi.org/10.3390/cells12060925
Chicago/Turabian StyleHou, Zhanwu, and Huadong Liu. 2023. "Mapping the Protein Kinome: Current Strategy and Future Direction" Cells 12, no. 6: 925. https://doi.org/10.3390/cells12060925
APA StyleHou, Z., & Liu, H. (2023). Mapping the Protein Kinome: Current Strategy and Future Direction. Cells, 12(6), 925. https://doi.org/10.3390/cells12060925