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Abstract: The RUNX transcription factors are frequently dysregulated in human cancers, suggesting
their potential as attractive targets for drug treatment. However, all three transcription factors have
been described as both tumor suppressors and oncogenes, indicating the need to determine their
molecular mechanisms of action. Although RUNX3 has long been considered a tumor suppressor
in human cancers, several recent studies have shown that RUNX3 is upregulated during the de-
velopment or progression of various malignant tumors, suggesting it may act as a “conditional”
oncogene. Resolving this paradox and understanding how a single gene can exhibit both oncogenic
and tumor-suppressive properties is essential for successful drug targeting of RUNX. This review
describes the evidence for the activities of RUNX3 in human cancer and proposes an explanation for
the duality of RUNX3 involving the status of p53. In this model, p53 deficiency causes RUNX3 to
become oncogenic, leading to aberrant upregulation of MYC.
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1. Introduction

Three RUNX transcription factors, RUNX1, RUNX2, and RUNX3, along with their
cofactor CBFβ, exert tumor-related functions in a context-dependent manner [1]. However,
a clear consensus has not yet been reached on the activity of RUNX3, indicating the need
for functional analyses. Initially, the gastric phenotype of Runx3-knockout mice and the
cause-and-effect relationship between loss of RUNX3 and human gastric cancer develop-
ment suggested that RUNX3 acts as a tumor suppressor [2]. RUNX3 has since been shown
to be inactivated by genetic/epigenetic changes [2–5] or protein mislocalization [6–8] in var-
ious human cancers, including gastric, colorectal, lung, pancreatic, breast, liver, and prostate
cancers, as well as leukemia and neuroblastoma [9]. RUNX3 was originally proposed as a
gatekeeper linking oncogenic Wnt and anti-oncogenic TGF-β/BMPs signaling pathways in
gastrointestinal tumorigenesis in mice and humans [10]. RUNX3 has also been recognized
as an important factor in the regulation of proliferation, differentiation, and apoptosis, as
well as in restriction (R)-point, angiogenesis, hypoxic response, epithelial-mesenchymal
transition, and DNA repair [9,11,12].

By contrast, RUNX3 was also found to be upregulated in various human malignancies,
suggesting that RUNX3 promotes oncogenesis [13]. For example, RUNX3 was shown
to enhance tumorigenesis in acute myeloid leukemia [14,15], T-cell acute lymphoblas-
tic lymphoma [16], natural killer/T-cell lymphoma [17], myelodysplastic syndrome [18],
skin [19,20], head and neck [21,22], ovarian [23–26], and pancreatic [27] cancers, and Ew-
ing’s sarcoma [28]. In these tumors, RUNX3 was found to enhance cell proliferation,
inhibit apoptosis, and confer drug resistance, indicating that RUNX3 enhances malignant
properties associated with the progression of malignancy, such as tumor invasion and
metastasis. Most of these studies, however, were unable to determine the precise molecular
mechanisms underlying the oncogenic phenotypes observed, although these phenotypes
can be attributed to aberrant RUNX3 upregulation.
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The ability of RUNX3 to act as both a tumor suppressor gene and an oncogene has
indicated that the activity of this gene is dependent on cellular context. Drugs targeting
RUNX transcription factors may have clinical value in the cancer treatment [29–31], indicat-
ing that the determination of RUNX activities is clinically important. Recent osteosarcoma
(OS) research has shown that RUNX3 acts as an oncogene by upregulating c-MYC (MYC)
in the absence of p53, suggesting that it acts as a tumor suppressor in the presence of intact
p53. The cancer-promoting activity of RUNX3 in the absence of wild-type p53 suggests that
the RUNX transcription factors may be ideal anti-cancer targets.

2. Oncogenic RUNX in the Absence of p53

The ability of Runx3 to act as an oncogene was revealed by a study of OS [32]. The p53
gene is the most important tumor suppressor gene in the majority of human cancers, and
its inactivation and alterations have been widely implicated in tumor development and
malignant transformation [33–36]. OS development is highly dependent on the functional
status of p53. TP53 inactivation is often observed in sporadic OS [32,37,38], and patients
with Li-Fraumeni syndrome possessing germline mutations in TP53 have a high incidence
of OS [39,40]. In mice, systemic p53 deletion is known to cause OS [41], and restrictive
deletion of p53 in osteoprogenitor and mesenchymal stromal cells results in an almost 100%
incidence of OS in Osterix (Osx)/Sp7-Cre; p53fl/fl mice (herein, OS mice), a widely used
animal model of human OS [42–44].

By using OS mice, the root of the tumorigenic process that occurs after p53 inactivation
was shown to be Runx3-induced Myc overexpression via mR1, a Runx consensus site in the
Myc promoter [32]. Specifically, both RUNX3/Runx3 and MYC/Myc were upregulated in
p53-deficient human and mouse OS [32]; heterozygous deletion of Runx3 (OS; Runx3fl/+

mice) or Myc (OS; Mycfl/+ mice) in OS mice prolonged their lifespan and suppressed the
development of OS (Figure 1A,B). Moreover, in the absence of p53, Runx3 enhanced Myc
expression through mR1. Therefore, introduction of a homozygous mutation in mR1 in
OS mice prolonged their lifespan to the same extent as in Runx3-heterozygous OS mice,
suppressing the development of OS (Figure 1A,B). That is, Runx3 heterozygosity, Myc
heterozygosity, and the homozygous mR1 mutation yielded the same results (Figure 1C).
Furthermore, wild-type p53 protein interacted directly with Runx3 protein, inhibiting
Runx3 binding to DNA and suppressing Myc overexpression. However, mutants of p53
(R156P and R273H found in human OS cells) that did not interact with RUNX3 were unable
to suppress MYC overexpression. Furthermore, suppression of Myc expression by p53
did not occur in cells lacking Runx3, showing that suppression of Myc expression was
Runx3-dependent, i.e., p53 directly inhibited Runx3, which has the capacity of upregulating
Myc [32]. Although RUNX3 was found to cooperate with p53 to induce p21WAF1/CIP1

in p53-positive OS (U2OS) cells [45], RUNX3 induced Myc rather than p21WAF1/CIP1 in
p53-negative OS (G292) cells [32] (Figure 2). Thus, the oncogenicity of RUNX3 is dependent
on p53 deficiency during osteosarcomagenesis.

In the presence of p53, however, RUNX3 was found to act as a positive regulator
of p53, the gatekeeper and guardian of the genome, during DNA damage and during
activation of oncogenes [46,47]. RUNX3 acts as a co-activator for p53, regulating the
DNA damage-induced p53 phosphorylation at Ser-15, thereby stabilizing p53 activity and
promoting apoptosis [45,48]. RUNX3 is also activated by oncogenic KRAS and indirectly
stabilizes p53 by upregulating p14ARF (p19Arf in mice) in concert with pRB and BRD2, which
counters the degradation of p53 by MDM2 [49,50]. Importantly, the tumor suppressor
function of RUNX3 appears to be highly dependent on intact p53. Inactivation of p53
is thought to trigger Runx dysregulation, upregulation of Runx3 (and Runx1), and their
conversion to oncogenes. Aberrant upregulation of Runx3 has been observed in pancreatic
cancer metastases, facilitated in KPC mice by loss of heterozygosity (LOH) of p53 [27,51],
and in primary and metastatic gastric cancers, which develop in Pepsinogen C-CreER;
KrasG12D/+Apcfl/flp53fl/fl mice [52]. However, whether Runx3 functions as a driver of
metastasis in these p53-deficient cancer cells remains to be investigated.
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Figure 1. (A,B) Osx-Cre; p53fl/fl (OS) mice with heterozygous deletions of Runx3 (OS; Runx3fl/+ mice) 
or Myc (OS; Mycfl/+ mice) or with mR1 (a Runx consensus site, TGCGGT in the Myc promoter) ho-
mozygous mutation replaced by the Bgl II site, AGATCT (OS; mR1m/m mice) show a significantly 
longer life span (A) and less incidence of OS development than the original OS mice (B). (C) Runx3 
heterozygous, Myc heterozygous, or mR1 homozygous mutations produce a similar result, i.e.,  
suppression of Myc in vivo. (A,B) are modified from Otani et al. (2022) [32]. 

 
Figure 2. Exogenous RUNX3 upregulates p21 but not MYC in p53-positive U2OS cells, but con-
versely upregulates MYC but not p21 in p53-negative G292 cells. The data are modified from Otani 
et al. (2022) [32]. 
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Figure 1. (A,B) Osx-Cre; p53fl/fl (OS) mice with heterozygous deletions of Runx3 (OS; Runx3fl/+

mice) or Myc (OS; Mycfl/+ mice) or with mR1 (a Runx consensus site, TGCGGT in the Myc promoter)
homozygous mutation replaced by the Bgl II site, AGATCT (OS; mR1m/m mice) show a significantly
longer life span (A) and less incidence of OS development than the original OS mice (B). (C) Runx3
heterozygous, Myc heterozygous, or mR1 homozygous mutations produce a similar result, i.e.,
suppression of Myc in vivo. (A,B) are modified from Otani et al. (2022) [32].
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Runx1 showed similar findings in thymic lymphoma [53], a major tumor type caused
by germline p53 deletion in mice [54]. Deletion of Runx1 was found to suppress T-cell lym-
phoma development in p53-deficient mice [55], and RUNX1 was found to have oncogenic
effects on p53-null MEFs [56]. Thus, RUNX1 has oncogenic properties in the absence of p53,
although RUNX1 also forms a complex with p53 in response to DNA damage and activates
the p53 target genes CDKN1A, BAX, NOXA, and PUMA [57]. The oncogenic Runx–Myc
axis has been reported to play a notable role in mouse thymocytes specifically lacking p53
(Lck-Cre; p53fl/fl mouse; herein, LP mouse) [53]. Runx1 and Myc are upregulated in LP
mouse lymphomas, while heterozygous deletions of Runx1 (LP; Runx1fl/+ mice) or Myc
(LP; Mycfl/+ mice) prolong the lifespan of these mice (Figure 3) and suppresses lymphoma
development. LP mice with a homozygous mR1 mutation have a longer lifespan and a
lower incidence of lymphoma [53]. These results, together with the observed oncogenicity
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of the Runx3-Myc axis in OS development [32], indicate the importance of the RUNX–MYC
oncogenic axis acting via mR1 in the absence of p53.
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RUNX2 was shown to have oncogenic activity in OS [58] and lymphomas [59–61], with
the loss of p53 and the oncogenic function of RUNX2 being observed in both [58,62–65].
However, comparative analyses of a recently established Runx2-conditional knockout
mouse line (Runx2-flox) [66] with Runx1- and Runx3-flox lines showed that Runx2 plays
a smaller role as a tumor-promoting factor in p53-deficient OS and T-cell lymphoma
than do Runx3 and Runx1, respectively [32,53]. Although Runx2 binds p53, its binding
activity is weaker than that of Runx3 and Runx1 [32], and unlike Runx3 and Runx1, Runx2
seems to antagonize the tumor-suppressive function of intact p53 [48,67]. These findings
suggest that RUNX2 may not be a p53 deficiency-dependent oncogene. Future studies
using improved materials, comprehensive bioinformatics analyses of human tumors, and
detailed information obtained using high-throughput NGS analyses may provide more
accurate answers.

3. RUNX Regulates MYC

Retroviral insertional mutagenesis screens have shown that all three Runx genes act
as collaborating oncogenes in Myc-driven lymphoma mouse models [13,68–71]. These
findings were supported by results showing that RUNX and MYC expression are positively
correlated in various biological activities [16,17,72–74]. In T-cell acute lymphoblastic lym-
phoma cells, RUNX3 and RUNX1 bind the +1.43 Mb MYC enhancer N-Me and upregulate
MYC expression [16]. In acute myeloid leukemia, however, RUNX1 and its cofactor CBFβ
inhibit MYC expression by binding BDME, another MYC enhancer 0.4 Mb downstream of
N-Me, indicating that RUNX1 has both tumor-suppressive and oncogenic activities depend-
ing on leukemia subtypes [31,75,76]. Thus, the mutual regulation of RUNX and MYC by
enhancers/super-enhancers (SEs) for both reveals their close relationship as well as being
the basis for their context dependence. It is necessary to identify the SEs responsible for
MYC upregulation by RUNX3, especially to determine whether depletion of these genomic
elements suppresses tumorigenesis in animal cancer models. The in vivo identification of
mR1 in the Myc promoter [32,53] is of great value, showing that Runx positively regulates
Myc at its promoter and providing a starting point for a future comprehensive analysis of
the positive regulation of Myc promoter-SE interactions by Runx, especially Runx3.

RUNX3 has also been shown to prevent tumorigenesis in the gastrointestinal tract, pos-
sibly by repressing MYC indirectly. This finding appears to contradict results showing that
MYC is activated by RUNX3. In mechanistic terms, RUNX3 attenuates the DNA-binding
activity of the β-catenin/TCFs complex that induces MYC, the primary oncogene in gas-
trointestinal cancer [10,77–79]. This tumor-suppressive role of Runx3 was observed in
precancerous states using systemic Runx3-depleted mouse lines, regardless of p53 status
in vivo. In fact, conditional activation of oncogenic Wnt signaling by RUNX3 in gastric
cancer cells [10,80] and high expression of Runx3 in p53-deficient malignant gastric can-
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cer cells [52] have been reported. Therefore, it is unclear whether Runx3 can continue
to function as a tumor suppressor by suppressing Myc after p53 inactivation or whether
Runx3 functions as an oncogene by upregulating Myc in these environments. These deter-
minations will require more sophisticated mouse models in which Runx3 and/or p53 are
disrupted in a tissue- or time-specific manner.

RUNX3 protein is a multiple interactor known to interact with many other transcrip-
tion factors, which play dual roles in tumorigenesis by integrating oncogenic signals or
anti-oncogenic responses [81], such as SMADs in TGF-β signaling [82] and activator pro-
tein 1 (AP1) in MAPK signaling [83]. In fact, AP1 transcription factors are prominently
upregulated in human and mouse OS, and the consensus motifs of AP1 and RUNX are
co-enriched in OS cells, genome-wide [32]. Thus, a contextual determinant of the dual
nature of RUNX3 might be affected by other transcription factors in a cancer context. It
will be of great interest to determine how RUNX3, released from p53-mediated inhibition
of its DNA-binding ability, becomes oncogenic and functions in the upregulation of MYC
via its interactions with these transcription factors downstream of cancer-related signals.

4. RUNX3 as a Therapeutic Target

Two main types of RUNX inhibitors have been developed and used experimentally.
One type comprises the inhibitors AI-10-104 and Ro5-3335, which inhibit the interaction of
RUNX with CBFβ [29,84], and the other type comprises pyrrole-imidazole (PI) polyamides,
which target the consensus RUNX-binding sequences TGT/CGGT [30]. Inhibition of
RUNX by the compound AI-10-104 sensitizes myeloma cell lines and primary tumors to
lenalidomide [85] and inhibits the growth of canine OS cells [86]. Combination therapy
with Ro5-3335 and SAHA has been reported as a potentially effective way of clearing
HIV-1 from cells [87]. Runx site-targeting PI polyamides inhibit the growth of p53-negative
glioblastoma [88]. Moreover, AI-10-104 and Ro5-3335 have a p53 deficiency-dependent
tumor-suppressive effect on OS and lymphomas in vivo and in vitro [32,53]. However,
all of these inhibitors are pan-RUNX inhibitors; thus, a potential obstacle to their clinical
application is their potential negative effects on normal RUNXs, although the AI-10-104
dose used in the p53-deficient mouse models did not affect appreciably the physiological
status of wild-type mice [32]. The development of RUNX species-specific inhibitors, such
as middle-molecular compounds that inhibit RUNX3-CBFβ binding, could provide more
targeted therapies in the future.

5. Conclusions and Perspectives

The various findings reported in this review indicated that p53 status is the contex-
tual determinant that determines whether RUNX3 functions as a tumor-suppressor or an
oncogene. Accordingly, p53 inactivation would be the key event resulting in the RUNX3
promotion of cancer development. The two major cancer-promoting events, p53 loss and
increased Myc signaling, could be linked by Runx3 binding to the mR1 Myc-promoter se-
quence, which could provide a rationale for the development of RUNX3-targeted therapies
against cancer [89]. p53 and MYC have been widely regarded as “undruggable” [90,91],
although p53 reactivators exist and have recently entered clinical trials [92]. Rather than
directly activating p53 or inhibiting MYC, we suggest that indirectly targeting RUNX3 or
mR1 would provide a more effective alternative for cancer treatment. Since oncogenic tran-
scription by RUNX3 is dormant in p53-intact normal cells (Figure 4), if CBFβ is not required
for the functional interaction between RUNX3 and p53, the RUNX3-CBFβ interaction is an
attractive and widely applicable target for anti-tumor pharmacotherapy in various human
cancers and would avoid the side effects of directly targeting RUNX3.
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