Multiple Roles of cAMP in Vertebrate Retina
Abstract
:1. Introduction
2. cAMP Turnover in the Retina
2.1. cAMP Synthesis
2.2. Mechanisms of cAMP Degradation by Cyclic Nucleotide Phosphodiesterases
3. Targets of cAMP Regulation
3.1. cAMP Impact on Phototransduction Cascade
3.2. cAMP Changes with a Circadian Period
3.3. The Role of EPAC in Retinal Neuron Survival
3.4. cAMP in Retinal Neurite Outgrowth
Photoreceptors and Outer Retina | Ganglion Cells and Inner Retina | Retinal Endothelial Cells | |
---|---|---|---|
PKA | PKA-dependent phosphorylation of GRK1 and GRK7 [47,48,49,50,51,55] | PKA-dependent modulation of ipRGC photoresponse [68,70]. Inhibition of PKA prevents spontaneous wave activity in amacrine retinal ganglion cells [89] | PKA inhibits the activation of inflammasome [73] |
EPAC | EPAC1 and EPAC2 (horizontal and bipolar cells [38]), EPAC2 (cone photoreceptors [38], inner segments of rods [39]) | EPAC2 mediates a regulatory effect on presynaptic glycine exocytosis in mouse amacrine cells [75]; EPAC1 induces RGC death in a model of ocular hypertension [76] | EPAC1 protects endothelial cells and neurons [39], regulates inflammatory regulators [72], and inhibits activation of inflammasome [73] |
AC | AC1, AC2 (mouse cones [16], fish photoreceptors [17]), AC8 (mouse photoreceptors [14], low level of expression AC6,7 and 9 | AC1, AC10 (human retina [19])Inhibition of sAC or its knockdown by siRNA reduces RGC survival and axonal growth [21] | |
PDE | PDE1 (photoreceptors outer segments [29], outer retina [28]), PDE4 (photoreceptors [31]), PDE6 (photoreceptors [26]) | PDE4 (inner retina [31]) | |
AKAP | AKAP is required for RGC survival and axon growth [87]; AKAP coordinates cAMP signaling and enables RGC axonal growth [85] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamazaki, A.; Sen, I.; Bitensky, M.W.; Casnellie, J.E.; Greengard, P. Cyclic GMP-specific, high affinity, noncatalytic binding sites on light-activated phosphodiesterase. J. Biol. Chem. 1980, 255, 11619–11624. [Google Scholar] [CrossRef] [PubMed]
- Pellicone, C.; Cook, N.; Nullans, G.; Virmaux, N. Light-induced conformational change in rhodopsin detected by modification of G-protein binding, GTPγS binding and cGMP phosphodiesterase activation. FEBS Lett. 1985, 181, 184–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovchinnikov, Y.A.; Gubanov, V.; Khramtsov, N.; Ischenko, K.; Zagranichny, V.; Muradov, K.; Shuvaeva, T.; Lipkin, V. Cyclic GMP phosphodiesterase from bovine retina Amino acid sequence of the α-subunit and nucleotide sequence of the corresponding cDNA. FEBS Lett 1987, 223, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astakhova, L.A.; Kapitskii, S.V.; Govardovskii, V.I.; Firsov, M.L. Cyclic AMP as a Regulator of the Phototransduction Cascade. Neurosci. Behav. Physiol. 2014, 44, 664–671. [Google Scholar] [CrossRef]
- Charish, J. cAMP and Photoreceptor Cell Death in Retinal Degeneration. Adv. Exp. Med. Biol. 2019, 1185, 301–304. [Google Scholar]
- Steinle, J.J. Review: Role of cAMP signaling in diabetic retinopathy. Mol. Vis. 2020, 26, 355–358. [Google Scholar]
- Rajendram, R.; Rao, N.A. Neuroglobin in normal retina and retina from eyes with advanced glaucoma. Br. J. Ophthalmol. 2007, 91, 663–666. [Google Scholar] [CrossRef] [Green Version]
- Dessauer, C.W.; Watts, V.J.; Ostrom, R.S.; Conti, M.; Dove, S.; Seifert, R. International union of basic and clinical pharmacology. CI. Structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacol. Rev. 2017, 69, 93–139. [Google Scholar] [CrossRef]
- Devasani, K.; Yao, Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 2022, 19, 1–18. [Google Scholar] [CrossRef]
- Wayman, G.A.; Wei, J.; Wong, S.; Storm, D.R. Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol. Cell. Biol. 1996, 16, 6075–6082. [Google Scholar] [CrossRef] [Green Version]
- Kawabe, J.; Iwami, G.; Ebina, T.; Ohno, S.; Katada, T.; Ueda, Y.; Homcy, C.J.; Ishikawa, Y. Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J. Biol. Chem 1994, 269, 16554–16558. [Google Scholar] [CrossRef]
- Chen, J.; Iyengar, R. Inhibition of cloned adenylyl cyclases by mutant-activated Gi-alpha and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J. Biol. Chem. 1993, 268, 12253–12256. [Google Scholar] [CrossRef]
- Saxena, K.; Rutar, M.V.; Provis, J.M.; Natoli, R.C. Identification of miRNAs in a Model of Retinal Degenerations. Investig. Ophthalmol. Vis. Sci 2015, 56, 1820–1829. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Tan, G.; Levenkova, N.; Li, T.; Pugh, E.N., Jr.; Rux, J.J.; Speicher, D.W.; Pierce, E.A. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteom. 2007, 6, 1299–1317. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, D.; Halls, M.L.; Everett, K.L.; Ciruela, A.; Skroblin, P.; Klussmann, E.; Cooper, D.M. A key phosphorylation site in AC8 mediates regulation of Ca(2+)-dependent cAMP dynamics by an AC8-AKAP79-PKA signalling complex. J. Cell. Sci. 2012, 125, 5850–5859. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Mears, A.J.; Friedman, J.S.; Carter, T.; He, S.; Oh, E.; Jing, Y.; Farjo, R.; Fleury, G.; Barlow, C.; et al. Expression profiling of the developing and mature Nrl−/− mouse retina: Identification of retinal disease candidates and transcriptional regulatory targets of Nrl. Hum. Mol. Genet. 2004, 13, 1487–1503. [Google Scholar] [CrossRef]
- Nakao, T.; Tsujikawa, M.; Notomi, S.; Ikeda, Y.; Nishida, K. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS ONE 2012, 7, e32472. [Google Scholar] [CrossRef] [Green Version]
- Recchia, F.M.; Xu, L.; Penn, J.S.; Boone, B.; Dexheimer, P.J. Identification of genes and pathways involved in retinal neovascularization by microarray analysis of two animal models of retinal angiogenesis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1098–1105. [Google Scholar] [CrossRef]
- Lee, Y.S.; Marmorstein, L.Y.; Marmorstein, A.D. Soluble adenylyl cyclase in the eye. Biochim. Biophys. Acta 2014, 1842, 2579–2583. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cann, M.J.; Litvin, T.N.; Iourgenko, V.; Sinclair, M.L.; Levin, L.R.; Buck, J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 2000, 289, 625–628. [Google Scholar] [CrossRef] [Green Version]
- Corredor, R.G.; Trakhtenberg, E.F.; Pita-Thomas, W.; Jin, X.; Hu, Y.; Goldberg, J.L. Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 7734–7744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khodair, M.A.; Zarbin, M.A.; Townes-Anderson, E. Cyclic AMP prevents retraction of axon terminals in photoreceptors prepared for transplantation: An in vitro study. Investig. Ophthalmol. Vis. Sci. 2005, 46, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Beavo, J.A. Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol. Rev. 1995, 75, 725–748. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Ladilov, Y. Emerging Role of cAMP/AMPK Signaling. Cells 2022, 11, 308. [Google Scholar] [CrossRef]
- Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol. Ther. 2006, 109, 366–398. [Google Scholar] [CrossRef]
- Tcheudji, J.F.K.; Lebeau, L.; Virmaux, N.; Maftei, C.G.; Cote, R.H.; Lugnier, C.; Schultz, P. Molecular organization of bovine rod cGMP-phosphodiesterase 6. J. Mol. Biol. 2001, 310, 781–791. [Google Scholar] [CrossRef]
- Cote, R.H.; Gupta, R.; Irwin, M.J.; Wang, X. Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. Adv. Exp. Med. Biol. 2022, 1371, 33–59. [Google Scholar]
- Beavo, J.; Francis, S.H.; Houslay, M.D. Cyclic Nucleotide Phosphodiesterases in Health and Disease; CRC Press; Taylor and Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Santone, R.; Giorgi, M.; Maccarone, R.; Basso, M.; Deplano, S.; Bisti, S. Gene expression and protein localization of calmodulin-dependent phosphodiesterase in adult rat retina. J. Neurosci. Res. 2006, 84, 1020–1026. [Google Scholar] [CrossRef]
- Bolger, G.B.; Rodgers, L.; Riggs, M. Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterases. Gene 1994, 149, 237–244. [Google Scholar] [CrossRef]
- Whitaker, C.M.; Cooper, N.G. The novel distribution of phosphodiesterase-4 subtypes within the rat retina. Neuroscience 2009, 163, 1277–1291. [Google Scholar] [CrossRef] [Green Version]
- Fimia, G.M.; Sassone-Corsi, P. Cyclic AMP signalling. J. Cell Sci. 2001, 114, 1971–1972. [Google Scholar] [CrossRef]
- Taylor, S.S.; Soberg, K.; Kobori, E.; Wu, J.; Pautz, S.; Herberg, F.W.; Skalhegg, B.S. The Tails of Protein Kinase, A. Mol. Pharmacol. 2022, 101, 219–225. [Google Scholar] [CrossRef]
- Bauman, A.L.; Scott, J.D. Kinase-and phosphatase-anchoring proteins: Harnessing the dynamic duo. Nat. Cell Biol. 2002, 4, E203–E206. [Google Scholar] [CrossRef]
- Roa, J.N.; Ma, Y.; Mikulski, Z.; Xu, Q.; Ilouz, R.; Taylor, S.S.; Skowronska-Krawczyk, D. Protein Kinase A in Human Retina: Differential Localization of Cbeta, Calpha, RIIalpha, and RIIbeta in Photoreceptors Highlights Non-redundancy of Protein Kinase A Subunits. Front. Mol. Neurosci. 2021, 14, 782041. [Google Scholar] [CrossRef]
- Lee, K. Epac: New emerging cAMP-binding protein. BMB Rep. 2021, 54, 149. [Google Scholar] [CrossRef]
- Naz, S.; Mahmood, T.; Ahsan, F.; Rizvi, A.A.; Shamim, A. Repercussion of cAMP and EPAC in Memory and Signaling. Drug Res. 2022, 72, 65–71. [Google Scholar] [CrossRef]
- Whitaker, C.M.; Cooper, N.G. Differential distribution of exchange proteins directly activated by cyclic AMP within the adult rat retina. Neuroscience 2010, 165, 955–967. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.; Zhou, J.; Schwede, F.; Ekstrom, P. Enhanced cGMP Interactor Rap Guanine Exchange Factor 4 (EPAC2) Expression and Activity in Degenerating Photoreceptors: A Neuroprotective Response? Int. J. Mol. Sci. 2022, 23, 4619. [Google Scholar] [CrossRef]
- Hasegawa, M.; Cahill, G.M. Cyclic AMP resets the circadian clock in cultured Xenopus retinal photoreceptor layers. J. Neurochem. 1998, 70, 1523–1531. [Google Scholar] [CrossRef] [Green Version]
- Astakhova, L.A.; Kapitskii, S.V.; Firsov, M.L. cAMP Level in Outer Segments of Retinal Rods of the Frog, R. ridibunda. Sens. Syst. 2010, 24, 99–103. [Google Scholar]
- Chaurasia, S.S.; Haque, R.; Pozdeyev, N.; Jackson, C.R.; Iuvone, P.M. Temporal coupling of cyclic AMP and Ca/calmodulin-stimulated adenylyl cyclase to the circadian clock in chick retinal photoreceptor cells. J. Neurochem. 2006, 99, 1142–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glonek, T.; Snogren, T.; Schmidt, S.Y.; Hearn, S.L.; Isreb, M.A.; Greiner, J.V. Phosphatic metabolism in dark- and light-adapted rat retinas. Exp. Eye Res. 2022, 221, 109141. [Google Scholar] [CrossRef] [PubMed]
- De Azeredo, F.A.; Lust, W.D.; Passonneau, J.V. Guanine nucleotide concentrations in vivo in outer segments of dark and light adapted frog retina. Biochem. Biophys. Res. Commun. 1978, 85, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.I.; Blazynski, C. Light-induced losses and dark recovery rates of guanosine 3′,5′-cyclic monophosphate in rod outer segments of intact amphibian photoreceptors. J. Gen. Physiol. 1988, 92, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cote, R.H. cGMP signaling in vertebrate retinal photoreceptor cells. Front. Biosci.-Landmark 2005, 10, 1191–1204. [Google Scholar] [CrossRef] [Green Version]
- Horner, T.J.; Osawa, S.; Schaller, M.D.; Weiss, E.R. Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. J. Biol. Chem. 2005, 280, 28241–28250. [Google Scholar] [CrossRef] [Green Version]
- Osawa, S.; Jo, R.; Weiss, E.R. Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light. J. Neurochem. 2008, 107, 1314–1324. [Google Scholar] [CrossRef] [Green Version]
- Osawa, S.; Jo, R.; Xiong, Y.; Reidel, B.; Tserentsoodol, N.; Arshavsky, V.Y.; Iuvone, P.M.; Weiss, E.R. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. J. Biol. Chem. 2011, 286, 20923–20929. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, A.V.; Chrispell, J.D.; Osawa, S.; Kefalov, V.J.; Weiss, E.R. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors. FASEB J. 2020, 34, 2677–2690. [Google Scholar] [CrossRef] [Green Version]
- Chrispell, J.D.; Xiong, Y.; Weiss, E.R. Grk7 but not Grk1 undergoes cAMP-dependent phosphorylation in zebrafish cone photoreceptors and mediates cone photoresponse recovery to elevated cAMP. J. Biol. Chem. 2022, 102636. [Google Scholar] [CrossRef]
- Astakhova, L.A.; Samoiliuk, E.V.; Govardovskii, V.I.; Firsov, M.L. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade. J. Gen. Physiol. 2012, 140, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Astakhova, L.A.; Nikolaeva, D.A.; Fedotkina, T.V.; Govardovskii, V.I.; Firsov, M.L. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors. J. Gen. Physiol. 2017, 149, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Besharse, J.C.; McMahon, D.G. The retina and other light-sensitive ocular clocks. J. Biol. Rhythm. 2016, 31, 223–243. [Google Scholar] [CrossRef]
- Sato, S.; Yamashita, T.; Matsuda, M. Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells. Proc. Natl. Acad. Sci. USA 2020, 117, 26996–27003. [Google Scholar] [CrossRef]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 2020, 21, 67–84. [Google Scholar] [CrossRef]
- Reid, K.J. Assessment of circadian rhythms. Neurol. Clin. 2019, 37, 505–526. [Google Scholar] [CrossRef]
- Depner, C.M.; Stothard, E.R.; Wright, K.P. Metabolic consequences of sleep and circadian disorders. Curr. Diabetes Rep. 2014, 14, 1–9. [Google Scholar] [CrossRef]
- Dannerfjord, A.A.; Brown, L.A.; Foster, R.G.; Peirson, S.N. Light input to the mammalian circadian clock. Methods Mol. Biol. 2021, 2130, 233–247. [Google Scholar]
- Green, C.B.; Besharse, J.C. Retinal circadian clocks and control of retinal physiology. J. Biol. Rhythm. 2004, 19, 91–102. [Google Scholar] [CrossRef]
- Sakamoto, K.; Liu, C.; Tosini, G. Circadian rhythms in the retina of rats with photoreceptor degeneration. J. Neurochem. 2004, 90, 1019–1024. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Mangel, S.C. A circadian clock regulates the pH of the fish retina. J. Physiol. 2000, 522, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, A.V.; Mangel, S.C. Circadian clock regulation of pH in the rabbit retina. J. Neurosci. 2001, 21, 2897–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiechmann, A.F.; Sherry, D.M. Role of melatonin and its receptors in the vertebrate retina. Int. Rev. Cell Mol. Biol. 2013, 300, 211–242. [Google Scholar] [PubMed]
- Nikolaeva, D.A.; Astakhova, L.A.; Firsov, M.L. The effects of dopamine and dopamine receptor agonists on the phototransduction cascade of frog rods. Mol. Vis. 2019, 25, 400–414. [Google Scholar]
- Li, H.; Chuang, A.Z.; O’Brien, J. Regulation of photoreceptor gap junction phosphorylation by adenosine in zebrafish retina. Vis. Neurosci. 2014, 31, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Deming, J.D.; Shin, J.A.; Lim, K.; Lee, E.J.; Van, C.K.; Craft, C.M. Dopamine receptor D4 internalization requires a beta-arrestin and a visual arrestin. Cell. Signal. 2015, 27, 2002–2013. [Google Scholar] [CrossRef]
- Wirz-Justice, A.; Skene, D.J.; Münch, M. The relevance of daylight for humans. Biochem. Pharmacol. 2021, 191, 114304. [Google Scholar] [CrossRef]
- Santiago, A.R.; Madeira, M.H.; Boia, R.; Aires, I.D.; Rodrigues-Neves, A.C.; Santos, P.F.; Ambrosio, A.F. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol. Ther. 2020, 210, 107513. [Google Scholar] [CrossRef]
- Sodhi, P.; Hartwick, A.T. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway. J. Physiol. 2014, 592, 4201–4220. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Y.; Steinle, J.J. Epac1 protects the retina against ischemia/reperfusion-induced neuronal and vascular damage. PLoS ONE 2018, 13, e0204346. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Y.; Chahine, A.; Curtiss, E.; Steinle, J.J. Epac1 agonist decreased inflammatory proteins in retinal endothelial cells, and loss of Epac1 increased inflammatory proteins in the retinal vasculature of mice. Mol. Vis. 2017, 23, 1. [Google Scholar]
- Liu, L.; Jiang, Y.; Steinle, J.J. Epac1 and PKA regulate of P2X7 and NLRP3 inflammasome proteins in the retinal vasculature. Exp. Eye Res. 2022, 218, 108987. [Google Scholar] [CrossRef]
- Meadows, M.A.; Balakrishnan, V.; Wang, X.; von Gersdorff, H. Glycine Release Is Potentiated by cAMP via EPAC2 and Ca(2+) Stores in a Retinal Interneuron. J. Neurosci. Off. J. Soc. Neurosci. 2021, 41, 9503–9520. [Google Scholar] [CrossRef]
- Da Encarnacao, T.G.; Portugal, C.C.; Nogueira, C.E.; Santiago, F.N.; Socodato, R.; Paes-de-Carvalho, R. Dopamine Promotes Ascorbate Release from Retinal Neurons: Role of D1 Receptors and the Exchange Protein Directly Activated by cAMP type 2 (EPAC2). Mol. Neurobiol. 2018, 55, 7858–7871. [Google Scholar] [CrossRef]
- Liu, W.; Ha, Y.; Xia, F.; Zhu, S.; Li, Y.; Shi, S.; Mei, F.C.; Merkley, K.; Vizzeri, G.; Motamedi, M. Neuronal Epac1 mediates retinal neurodegeneration in mouse models of ocular hypertension. J. Exp. Med. 2020, 217, e20190930. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, N.; Beuve, A.; Townes-Anderson, E. Mislocalized opsin and cAMP signaling: A mechanism for sprouting by rod cells in retinal degeneration. Invest. Ophthalmol. Vis.Sci 2012, 53, 6355–6369. [Google Scholar] [CrossRef] [Green Version]
- Drummond, E.S.; Rodger, J.; Penrose, M.; Robertson, D.; Hu, Y.; Harvey, A.R. Effects of intravitreal injection of a Rho-GTPase inhibitor (BA-210), or CNTF combined with an analogue of cAMP, on the dendritic morphology of regenerating retinal ganglion cells. Restor. Neurol. Neurosci. 2014, 32, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Nicol, X.; Gaspar, P. Routes to cAMP: Shaping neuronal connectivity with distinct adenylate cyclases. Eur. J. Neurosci. 2014, 39, 1742–1751. [Google Scholar] [CrossRef]
- Louail, A.; Sierksma, M.C.; Chaffiol, A.; Baudet, S.; Assali, A.; Couvet, S.; Nedjam, M.; Roche, F.; Zagar, Y.; Duebel, J.; et al. cAMP-Dependent Co-stabilization of Axonal Arbors from Adjacent Developing Neurons. Cell Rep. 2020, 33, 108220. [Google Scholar] [CrossRef]
- Martins, J.R.; Reichhart, N.; Kociok, N.; Stindl, J.; Foeckler, R.; Lachmann, P.; Todorov, V.; Castrop, H.; Strauß, O. Systemic ß adrenergic stimulation/sympathetic nerve system stimulation influences intraocular RAS through cAMP in the RPE. Exp. Eye Res. 2019, 189, 107828. [Google Scholar] [CrossRef]
- Colares, T.G.; de Figueiredo, C.S.; de Oliveira Jesus Souza, L.; Dos Santos, A.A.; Giestal-de-Araujo, E. Increased Retinal Ganglion Cell Survival by Exogenous IL-2 Depends on IL-10, Dopamine D1 Receptors, and Classical IL-2/IL-2R Signaling Pathways. Neurochem. Res. 2021, 46, 1701–1716. [Google Scholar] [CrossRef] [PubMed]
- Averaimo, S.; Gritti, M.; Barini, E.; Gasparini, L.; Mazzanti, M. CLIC1 functional expression is required for cAMP-induced neurite elongation in post-natal mouse retinal ganglion cells. J. Neurochem. 2014, 131, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Cen, L.P.; Li, Y.; Gilbert, H.Y.; Strelko, O.; Berlinicke, C.; Stavarache, M.A.; Ma, M.; Wang, Y.; Cui, Q.; et al. Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells’ response to Pten deletion. Proc. Natl. Acad. Sci. USA 2022, 119, e2113751119. [Google Scholar] [CrossRef] [PubMed]
- Boczek, T.; Cameron, E.G.; Yu, W.; Xia, X.; Shah, S.H.; Castillo Chabeco, B.; Galvao, J.; Nahmou, M.; Li, J.; Thakur, H.; et al. Regulation of Neuronal Survival and Axon Growth by a Perinuclear cAMP Compartment. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 5466–5480. [Google Scholar] [CrossRef] [Green Version]
- Charish, J.; Shabanzadeh, A.P.; Chen, D.; Mehlen, P.; Sethuramanujam, S.; Harada, H.; Bonilha, V.L.; Awatramani, G.; Bremner, R.; Monnier, P.P. Neogenin neutralization prevents photoreceptor loss in inherited retinal degeneration. J. Clin. Invest. 2020, 130, 2054–2068. [Google Scholar] [CrossRef]
- Wang, Y.; Cameron, E.G.; Li, J.; Stiles, T.L.; Kritzer, M.D.; Lodhavia, R.; Hertz, J.; Nguyen, T.; Kapiloff, M.S.; Goldberg, J.L. Muscle A-kinase anchoring protein-α is an injury-specific signaling scaffold required for neurotrophic-and cyclic adenosine monophosphate-mediated survival. EBioMedicine 2015, 2, 1880–1887. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.-C.; Hsiao, Y.-T.; Kao, S.-Y.; Chen, C.-F.; Chen, Y.-C.; Chiang, C.-W.; Lee, C.-f.; Lu, J.-C.; Chern, Y.; Wang, C.-T. Adenosine A2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PLoS ONE 2014, 9, e95090. [Google Scholar] [CrossRef]
- Stellwagen, D.; Shatz, C.J.; Feller, M.B. Dynamics of retinal waves are controlled by cyclic AMP. Neuron 1999, 24, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, J.L.; Espinosa, J.S.; Xu, Y.; Davidson, N.; Kovacs, G.T.; Barres, B.A. Retinal ganglion cells do not extend axons by default: Promotion by neurotrophic signaling and electrical activity. Neuron 2002, 33, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Russo, R.; Adornetto, A.; Cavaliere, F.; Varano, G.P.; Rusciano, D.; Morrone, L.A.; Corasaniti, M.T.; Bagetta, G.; Nucci, C. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury. Mol. Vis. 2015, 21, 718. [Google Scholar]
- Choi, J.-S.; Kim, J.-a.; Joo, C.-K. Activation of MAPK and CREB by GM1 induces survival of RGCs in the retina with axotomized nerve. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1747–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erofeeva, N.; Meshalkina, D.; Firsov, M. Multiple Roles of cAMP in Vertebrate Retina. Cells 2023, 12, 1157. https://doi.org/10.3390/cells12081157
Erofeeva N, Meshalkina D, Firsov M. Multiple Roles of cAMP in Vertebrate Retina. Cells. 2023; 12(8):1157. https://doi.org/10.3390/cells12081157
Chicago/Turabian StyleErofeeva, Natalia, Darya Meshalkina, and Michael Firsov. 2023. "Multiple Roles of cAMP in Vertebrate Retina" Cells 12, no. 8: 1157. https://doi.org/10.3390/cells12081157
APA StyleErofeeva, N., Meshalkina, D., & Firsov, M. (2023). Multiple Roles of cAMP in Vertebrate Retina. Cells, 12(8), 1157. https://doi.org/10.3390/cells12081157