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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide, but
therapeutic strategies to slow down AD pathology and symptoms have not yet been successful. While
attention has been focused on neurodegeneration in AD pathogenesis, recent decades have provided
evidence of the importance of microglia, and resident immune cells in the central nervous system.
In addition, new technologies, including single-cell RNA sequencing, have revealed heterogeneous
cell states of microglia in AD. In this review, we systematically summarize the microglial response to
amyloid-β and tau tangles, and the risk factor genes expressed in microglia. Furthermore, we discuss
the characteristics of protective microglia that appear during AD pathology and the relationship
between AD and microglia-induced inflammation during chronic pain. Understanding the diverse
roles of microglia will help identify new therapeutic strategies for AD.

Keywords: Alzheimer’s disease; microglia; amyloid beta; tau; brain; spinal cord; pain; DAMs; CD11c;
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, memory loss, and
other cognitive disabilities that interfere with daily life [1]. The number of patients with
dementia is estimated to reach 75 million by 2030, and their burden may cause healthcare
systems to collapse [2,3]. Although aggregation of amyloid-β (Aβ) and tau proteins may
play crucial roles in the progression of AD, candidate drugs targeting Aβ or tau have failed
to reach efficacy clinical endpoints for improving cognitive function [4].

As new therapeutic targets for Alzheimer’s disease are being explored, microglia,
which are resident immune cells of the central nervous system (CNS), are attracting in-
creasing attention. Microglia has been reported to contribute to AD pathology through
a variety of mechanisms, including cytokine production and Aβ clearance [5]. The recent
introduction of single-cell or single-nucleus RNA sequencing (scRNA-seq or snRNA-seq,
respectively) analyses has greatly advanced the knowledge regarding microglia in AD
pathogenesis [6]. In addition, genome-wide association studies (GWASs) have reported
a list of risk factor genes expressed in microglia, thus suggesting additional potential
cellular targets for AD treatment [7].

In this review, we have summarized the risk genes expressed in microglia and the
response of microglia to Aβ and tau to argue the importance of microglia in AD. Moreover,
we have summarized the relationship between chronic pain, microglia, and AD to facilitate
a comprehensive understanding of AD, including its complications. Microglial phenotypes
and candidate drugs have also been discussed to explore future therapeutic targets for AD.
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2. Microglia

Microglia are critically involved in many physiological and pathological brain pro-
cesses throughout life (pre- and post-natal development as well as aging). Individual
microglial cells are estimated to be in contact with 2–100 neurons depending on the neu-
ronal density [8]. Microglia are influenced by various factors, including interactions with
other cells. For example, interleukin-34 (IL-34), derived from neurons or retinal ganglion
cells, and colony-stimulating factor 1 (CSF-1), derived from neurons or astrocytes, bind to
microglial CSF-1 receptors which are crucial for microglial development and survival [9,10].
Furthermore, the interaction of C-X3-C motif chemokine ligand 1 (CX3CL1) released from
neurons with its receptor CX3C receptor 1 (CX3CR1) on microglia influences synaptic mat-
uration and plasticity [11]. Through microglial IL-1 receptor-like 1, IL-33 from astrocytes
promotes microglial synapse engulfment [12]. C-C motif chemokine 2 (CCL2) and C-X-C
motif chemokine ligand 10 (CXCL10) modulate microglial recruitment to injured areas [13].

Morphological changes in microglia are one of the features observed in CNS dis-
eases [14]. Microglia in the healthy adult brain usually exhibits a ramified morphology with
complex dendrites and small somas. However, the number, length, and complexity of the
branching of these processes can change under various pathological conditions, including
stress or injury [15,16]. In mouse models of AD, microglia with decreased complexity,
called ameboid microglia, have been observed [17]. In the brains of human patients with
AD, the number of microglia is not affected, but the ramified population is decreased [18].
Aβ removal by immunotherapy in patients with AD leads to increased ramified microglia,
implying that the cells retain plasticity in the aged AD brain [18]. It is paramount to
examine changes in microglial function after drug treatment for AD.

Microglia modulate brain activity through a variety of functions, such as phagocytosis
and cytokine release. Microglia are the brain’s main phagocytes and protect the brain
by phagocytosing bacteria, aggregated proteins, and cellular debris [19,20]. Phagocytic
elimination of synapses by microglia affects the balance between excitatory and inhibitory
synaptic transmission (E/I balance) [21]. Disruption of the E/I balance due to the impaired
synaptic exclusion by microglia can lead to a variety of problems in brain function, including
memory, cognitive function, sleep, movement, social behavior, and thinking [21]. Recent
studies have shown that pro-inflammatory cytokines generally promote healing during the
acute stages of injury but in the chronic condition of the disease, they turn into a detrimental
process, interfering with repair mechanisms and promoting degeneration [22]. Thus,
microglia have a variety of functions and act as a “double-edged sword” both protecting
against and exacerbating CNS diseases. Elucidating the complex functions of microglia
and how they interact with other cells at the molecular and cellular levels may help in the
development of new therapies to more precisely intervene in AD progression.

The microglia are altered in CNS diseases, including AD, but very few studies
have tracked the microglia in vivo. This is due to the difficulty in biopsies of human
brain tissue and the absence of specific positron emission tomography (PET) tracers for
microglia [23,24]. A recent study has indicated that extracellular vesicles (EVs) in the
plasma may non-invasively assess the inflammatory response of microglia in an experimen-
tal stroke model [25]. After inflammation, microglia-derived EVs contain the microglial
protein TMEM119, along with an increased expression of the Toll-like receptor 4 (TLR4)
co-receptor CD14 [25]. Using this technology for AD would lead to the diagnosis of the
disease stage and early treatment.

3. Expression of AD Risk Gene in Microglia

Recently, genomic research has suggested that many single-nucleotide polymorphisms
(SNPs) are correlated with differential AD risk [26]. SNP variants can occur within gene-
coding regions or influence disease risk through promoters and enhancers. It has been
reported that approximately two-thirds of new AD-risk SNPs are most highly or exclusively
expressed in microglia [26]. For example, a recent study of over 300,000 individuals reported
48 AD-risk SNPs (FDR < 10−5), 29 of which were expressed most highly in microglia
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(60.4%) [27,28]. These data suggested that microglia play a greater role in AD development
and progression than previously thought. Several AD risk genes associated with microglia
are described below.

The most common genetic risk factor for developing AD is APOE which encodes
apolipoprotein E. Humans have three variants of the APOE gene: ε2, ε3, and ε4. APOE
genotypes can affect various cellular functions such as Aβ clearance, synaptic integrity,
lipid transport, glucose metabolism, blood–brain barrier (BBB) integrity, and mitochondrial
regulation [29]. While carrying the ε2 allele is protective against AD, carrying the ε4
allele is an AD risk factor for AD [29,30]. The risk of AD increases from 20% to 90%,
and the mean age at onset decreases from 84 to 68 years, with an increasing number
of APOE-ε4 alleles [31]. ApoE immunoreactivity was observed in dense core plaques
as well as in microglial processes around the plaque cores in the brains of 5xFAD mice
and patients with AD [32,33]. It has been suggested that ApoE directly interacts with
Aβ peptides to form an Aβ/ApoE complex [34]. These complexes are phagocytosed
by microglia through interactions with low-density lipoprotein receptor-related protein
1 (LRP1) or triggering receptors expressed on myeloid cells 2 (TREM2) [35,36]. Recent
research has shown that microglia-specific ApoE knockout does not alter senile plaque
pathogenesis or gene expression, including disease-associated microglia (DAM)-associated
genes, but decreases synaptic proteins (post-synaptic marker PSD95 and presynaptic marker
synaptophysin) in 5xFAD mice [37]. In the absence of microglial ApoE, astrocyte-derived
ApoE may be effective, although further research is required.

Another AD risk gene is TREM2 which codes for a cell surface transmembrane gly-
coprotein with a V-immunoglobulin extracellular domain and a cytosolic tail [38]. In the
brain, TREM2 is highly expressed by microglia; however, there is still debate as to whether
TREM2 is expressed only in a specific subset of microglia in mice and humans [39,40].
Heterozygous rare variants of TREM2 are associated with a significant increase in the risk
of AD with an odds ratio similar to that of a single copy of the ApoE ε4 allele [41,42].
TREM2 binds to lipoproteins and apolipoproteins, including ApoE, and Aβ-lipoprotein
complexes are efficiently taken up by microglia in a TREM2-dependent manner [43]. The
level of TREM2 has been reported to be increased in the brains of AD patients and mouse
models [44,45], and TREM2 overexpression is thought to be related to the recruitment of
microglia to Aβ plaques [46]. In addition, recent research has demonstrated that TREM2
drives the microglial response to Aβ via spleen tyrosine kinase (SYK)-dependent and
-independent pathways in the 5xFAD model [47]. SYK plays a critical role in mounting
protective antifungal immune responses downstream of the C-type lectin (CLEC) receptors
expressed on innate immune cells. Furthermore, SYK has been identified as a critical kinase
that directs signaling and effector functions downstream of TREM2, CD33 (Siglec-3), and
CD22 receptors [48–50]. It has also been reported that phagocytic clearance of neurotoxic
materials by microglia is dependent on SYK in 5xFAD mice [51]. Although TREM2-SYK
signaling may be a target for the development of new strategies to treat AD, further re-
search is needed to determine how TREM2 is activated and regulated. In addition, TREM2
is proteolytically cleaved and released into the extracellular space as a soluble variant
(sTREM2) that can be measured in cerebrospinal fluid (CSF). As the sTREM2 levels in
the CSF increase in the early symptomatic phase of AD, it is a potential biomarker for
microglial activity and early-stage AD [52].

CD33 is considered a myeloid-specific immunomodulatory receptor; however, recent
research has shown that CD33 is also expressed by microglia in the normal human brain [53].
CD33 is a sialic acid-binding immunoglobulin-like lectin (Siglecs). Siglecs recognize sialic
acid residues on glycoproteins and glycolipids and have one or more immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) that mediate cell-to-cell interactions that inhibit
or limit immune responses [54]. Common variants of CD33 have been reported to be
associated with AD [55]. In the AD brain, the number of CD33-immunoreactive microglia
is positively correlated with insoluble Aβ42 levels and plaque burden [56]. In addition,
CD33 inactivation reduced insoluble Aβ42 levels in APP/PS1 mice [56]. It is possible that
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the loss of microglial degradative capacity of Aβ in AD can be reversed therapeutically by
inhibition of CD33 activity.

4. Microglial Responses to Aβ Plaques

Although the underlying cause of AD is not fully understood, Aβ plaques and tau
tangles are so far referred to as the key players for disease progression [57]. Under healthy
conditions, amyloid precursor protein (APP) is digested by α- and γ-secretase enzymes [58].
This reaction produces soluble polypeptides which can be broken down and recycled. How-
ever, when β-secretase works with γ-secretase, insoluble Aβ peptide is produced [58]. Aβ
peptide is capable of self-assembling and transforming into soluble oligomeric or insoluble
aggregates which are observed in patients with AD, leading to a loss of synapses and
neurons [59]. This hypothesis has led to the development of novel Aβ-based therapeutic
strategies. In 2021, the FDA approved a new antibody drug for AD called aducanumab
which degrades toxic Aβ forms [60]. Contrary to expectations, clinical trials have, however,
shown little or no functional improvement in AD patients treated with this drug. Currently,
the use of aducanumab is recommended only for AD patients with mild cognitive impair-
ment or dementia [61]. Although many researchers have continued efforts to discover new
AD drugs, there is currently still no effective treatment for AD. It is, therefore, paramount to
gain a greater understanding of the underlying mechanisms of AD pathogenesis, including
the Aβ cascades.

During AD progression, the accumulation of Aβ affects microglia [62]. Aβ induces
various microglial responses, including phagocytosis, cytokine release, and proliferation
(Figure 1) [63]. Aβ can bind to several receptors on the surface of microglia. Examples
include class A scavenger receptor (SR-A1), TLR4, TREM2, the receptor for advanced
glycation end products (RAGE), P2X7 receptor, and formyl peptide receptor-like-1 or N-
formyl peptide receptor 2 (FPRL1). These receptors mediate the adhesion of microglia to
Aβ, leading to phagocytosis [64–68].
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Figure 1. Various responses of microglia to amyloid β. Cytokine release: Aβ directly stimulates
TNF-α production in microglia by activating the transcription factor NF-κB. TNF-α increases the
expression of β- and γ-secretase which generate Aβ from APP.

Aβ causes microglia to secrete pro-inflammatory cytokines and neurotoxic substances,
including tumor necrosis factor-α (TNF-α), IL-1, IL-6, IFN-γ, and reactive oxygen species [69].
First, TNF-α is one of the most important pro-inflammatory cytokines in AD [70].
An in vitro study has shown that Aβ directly stimulates TNF-α production in microglia by
activating the transcription factor NF-κB [71]. TNF-α increases the expression of β- and
γ-secretases which generate Aβ from APP in vitro [72,73]. In healthy adults, the levels of
TNF-α in the cerebrospinal fluid or blood and CNS are very low, but they are significantly
elevated in the blood and CNS of patients with AD [74,75]. It has been reported that the
risk of AD is lower in patients with rheumatoid arthritis and psoriasis who have been
treated with TNF-α blocking agents [76]. IL-1 is also a key factor in AD because this factor
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leads astrocytes to release α1-antichymotrypsin (ACT) which promotes Aβ deposition [77].
IL-1β regulates the synthesis of APP, secretion of APP from glial cells, and amyloidogenic
processing of APP in in vitro experiments [73]. Other microglial inflammatory mediators
also contribute to the progression of AD. For example, overexpression of IL-6 induces
neuroinflammation and impairs learning and memory functions [78]. In addition, IFN-γ
induces lasting microglial priming which includes proliferation and moderate nitric oxide
release, resulting in impairment of cognitive function [79]. As discussed above, Aβ and
microglia interact with each other to accelerate inflammatory responses and neural damage,
leading to the persistent development of AD.

Monocytes were previously thought to be involved in Aβ clearance from brain
parenchyma. Monocytes are a type of immune cells that are produced in the bone marrow
and travel through the blood to tissues in the body where they become macrophages or
dendritic cells. Owing to the difficulty in histologically distinguishing peripherally de-
rived monocytes from resident microglia in human tissues, whether monocytes infiltrate
the brain has long been a matter of debate [80]. Using a panel of bone marrow chimeric
and adoptive transfer experiments, circulating Ly-6Chigh C-C motif chemokine receptor
2 (CCR2)+ monocytes were shown to be preferentially recruited to the lesioned brain and
differentiated into microglia-like cells [81]. However, several studies using bone marrow
chimeras generated by head-protected irradiation or chemotherapy-induced myeloablation
have indicated that Ly6Chi monocytes are not recruited to the brain parenchyma during
AD pathogenesis [82,83]. In addition, despite a nearly complete exchange of resident
microglia with peripheral myeloid cells in CD11b-HSVTK mice, there was no significant
change in Aβ burden or APP processing [84]. These results suggested that either monocyte
do not infiltrate the brain parenchyma in large enough quantities to affect the amount of
Aβ in the brain, or that they are not involved in phagocytosis or clearance of Aβ within
the brain parenchyma.

5. Microglia Responses to Tau Tangles

Tau protein is expressed mainly in neurons, and to a lesser extent oligodendrocytes,
and regulates the assembly and stabilization of microtubules [85]. Tau protein under-
goes various post-translational modifications, including phosphorylation, glycosylation,
acetylation, nitration, methylation, prolyl-isomerization, ubiquitylation, sumoylation, and
glycation [86]. Among these modifications, phosphorylation occurs most frequently. Tau
phosphorylation is regulated throughout life, but hyperphosphorylation occurs in AD
pathology [87]. Tau hyperphosphorylation reduces binding to microtubules and promotes
tau aggregation, resulting in impaired neuronal function [88]. Hyperphosphorylated tau
tends to accumulate in somato-dendritic compartments which impairs the integrity of
microtubules and induces synaptic dysfunction [89].

In a tauopathy mouse model, immunosuppressants inhibited inflammatory responses,
attenuated tau pathology, and increased lifespan [90]. Another study suggested that
microglia are sufficient to drive tau pathology and correlate with the spread of pathological
tau [91]. It has also been demonstrated that tau is phagocytosed by the microglia [92].
Importantly, phosphorylated tau interrupts neuron–microglia interaction [93]. One of the
sensors for neuronal signals is the CX3CL1/CX3CR1 axis. CX3CL1 is produced almost
exclusively by neurons, and its receptor CX3CR1 is expressed almost exclusively on the
surface of microglia [94]. The CX3CL1/CX3CR1 axis is essential for maintaining brain
functions, including synaptic integration of adult-born hippocampal granule neurons and
regulation of emotional behavior, as demonstrated by in vivo experiments [95]. It has
been suggested that the CX3CL1/CX3CR1 axis plays a key role in the phagocytosis of
tau by microglia and is affected as AD progresses (Figure 2) [96]. Tau binding to CX3CR1
triggers phagocytosis of tau by microglia, but S396 phosphorylation of tau decreases the
binding affinity of this protein to CX3CR1 [96]. In addition, the CX3CL1/CX3CR1 axis
may be impaired in the late stages of AD, as the phagocytic capacity of microglia in brain
tissue samples from patients with AD is decreased [96]. Furthermore, the CSF and blood
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levels of CX3CL1 in AD patients are positively associated, suggesting that CX3CL1 may
be a potential blood biomarker [97]. Patients with mild cognitive impairment (MCI) and
AD have higher plasma levels of CX3CL1 than healthy participants [98,99]. In addition,
CX3CL1 levels decreased in severe AD patients [mini mental state examination (MMSE)
scores ≤ 14] than those in mild to moderate AD patients (MMSE scores > 14) [99]. Thus,
the CX3CL1/CX3CR1 axis plays a key role in AD, and CX3CL1 can be used to diagnose
early-phase AD.
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Figure 2. Phagocytosis: The CX3CL1/CX3CR1 axis plays a key role in the phagocytosis of tau by
microglia and is affected as AD progresses. S396 Tau phosphorylation decreases the binding affinity
of this protein to CX3CR1.

6. Pain Is a Risk Factor for AD: Possible Involvement of Microglial CNS Inflammation

Patients with AD often have multiple comorbidities. However, there are very few
studies that have focused on the interaction between AD and other diseases. Particu-
larly, chronic pain, one of the most commonly observed complications, is associated with
increased microglia in the brain and the spinal cord which are involved in pain onset
and intensification [100]. Based on a meta-analysis, the prevalence of chronic pain in
AD patients was 45.8% [101]. A longitudinal cohort of elders also showed an association
between persistent pain and memory decline and dementia [102]. Higher levels of pain
interference are associated with a higher probability of developing dementia [103]. Recently,
Yamada et al. reported that the dementia risk was higher in participants aged 65–79 years
with knee pain and without low back pain than in those without knee and low back pain
[HR:1.73 (95% CI:1.11–2.68)] [104]. Another study showed that a history of migraine was
significantly associated with AD (OR = 4.22; 95% CI = 1.59–10.42), even after adjustment
for confounding and intervening variables [105]. Other conditions, such as fibromyalgia
and irritable bowel syndrome (IBS), have also been suggested as possible risk factors for
AD [106,107]. The tolerance time in the cold pressor test (4 ◦C) was lower in patients with
AD dementia than in controls [108]. It must be considered that pain may be underestimated
in AD patients, as they are not able to communicate and alert to pain compared with
cognitively normal patients [109]. In addition, safety issues exist regarding the use of
non-steroidal anti-inflammatory drugs, opioids, and adjunctive analgesics in patients with
dementia [110]. Further research is needed to provide better methods for pain management
in dementia.

In chronic pain conditions, neuroinflammation induced by microglia is a characteristic
feature in both humans and animal models [69]. A positron emission tomography (PET)
study using [11C] PBR28 showed that microglial inflammatory signals were widely elevated
in certain cortical regions in patients with fibromyalgia [111]. In different types of chronic
pain models, microglial changes in number or morphology have been observed in the spinal
cord [112], prefrontal cortex, hippocampus, amygdala [113], nucleus accumbens, thalamus,
and somatosensory cortex [114,115]. During these chronic pain states, microglia release
pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α, which cause dysfunction in
synaptic remodeling and brain connectivity [100,113,116]. In addition, it has been reported
to increase the mRNA expression of IL-1β and TNF-α and accelerate Aβ deposition in
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5xFAD model mice [117]. Chronic pain-induced microglial inflammation is associated with
AD progression.

Growing evidence suggests that chronic pain may aggravate AD neuropathogenesis
through locus coeruleus-noradrenaline (LC-NA)-induced microglial neuroinflammation [116].
LC is involved in various physiological functions, including stress reactions, attention,
memory, emotion, and pain modulation [118]. Located in the dorsal habenula, the LC
provides descending NAergic inputs to the spinal cord, forming an LC-spinal cord de-
scending pain modulation system [116]. In a rat model of neuropathic pain (chronic pain
occurring after a lesion or disease in the somatosensory system), the expression of tyrosine
hydroxylase, dopamine β-hydroxylase (DβH), the NA transporter, the α2-adrenoceptor,
and burst firing were significantly increased in the LC [119,120]. Increased LC-prefrontal
cortex (PFC) neurotransmission has been reported in chronic pain models which leads
to increased NAergic fiber sprouting and intrinsic excitability in the PFC, mediated in
part by α2-adrenoreceptors and HCN channels [121]. Microglia respond to NA signal-
ing through α1, α2, β1, and β2-adrenergic receptors [122,123]. Morphological changes
in microglia induced by social stress were completely blocked by propranolol which is
an antagonist of β1 and β2 adrenergic receptors [124]. In primary rat microglia, NA
enhances lipopolysaccharide-induced expression of cyclooxygenase-2 and secretion of
prostaglandin E2 via β-adrenoreceptors [125]. These lines of evidence suggest that chronic
pain-induced hyperactivity of LC-NAergic neurons may exacerbate AD by causing microglia-
induced neuroinflammation. Further studies are needed, as NA dysfunction in the co-
morbidity of AD and chronic pain is currently still unknown. If the role of microglia in
the interaction between pain and AD is clarified, microglia may be targeted for treating
both diseases.

7. Microglia Phenotypes, Especially Protective Microglia, as a New Therapeutic Target

A detailed classification of microglia may help in detecting new therapeutic targets.
Since the 2010s, microglia have been categorized as “M1” (pro-inflammatory) and “M2”
(anti-inflammatory) based on the concept established in macrophages [126]. However,
in recent years, researchers have recommended using more nuanced tools (for example,
proteomic, metabolomic, transcriptomic, morphological, and epigenetic tools) to investigate
microglial functions because microglia have more complex responses than simply polarized
responses, such as M1 and M2 [127]. The technologies that have been the basis for the
research field of microglia by revealing heterogeneous cell states are scRNA-seq and snRNA-
seq [128,129]. In 2017, scRNA-seq identified a group of microglia, called DAM, found
around Aβ plaques which is a key microglial phenotype in AD [130]. DAMs upregulate
genes, including ApoE, Trem2, Itgax (encoding integrin alpha X), Igf1 (encoding insulin-like
growth factor-l), Lpl (encoding lipoprotein lipase), and Cst7 (encoding cystatin 7) [130].
DAMs are activated sequentially in two steps as TREM2-independent and -dependent
pathways (Figure 3) [131]. The first step involves TREM2-independent downregulation of
homeostatic markers, such as P2ry12, Cx3cr1, and Tmem119. The second activation state
is TREM2-dependent. It is associated with the overexpression of genes involved in lipid
metabolism and phagocytosis. DAM-like cells have also been observed in other animal
models of diseases, such as amyotrophic lateral sclerosis and multiple sclerosis [132]. In
addition, a recent study characterized a human AD microglia (HAMs) profile from the
postmortem brain [133]. HAMs had profiles similar to those of DAM genes related to
lipid transport and lysosomal biology, such as ApoE. However, it has also been reported
that genes that are unchanged or not expressed in DAMs are upregulated in HAMs [133].
Therefore, the differences between human and animal models should be examined in
more detail.
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Figure 3. DAMs are activated sequentially by two steps. Schematic illustration showing the two
steps by which microglia switch from homeostatic to DAMs. The first step: TREM2-independent
downregulation of homeostatic markers such as P2RY12, CX3CR1, and Tmem119. The second step:
TREM2-dependent overexpression of genes involved in phagocytosis and lipid metabolism. Arrows
indicate up- or down-regulation of the gene.

One of the highly upregulated genes in DAMs is Itgax, encoding integrin αX (ITGAX;
also known as CD11c) [130]. It has been suggested that the subpopulations of microglia in
AD, such as DAMs, reported in many recent studies reflect features of CD11c+ microglia
identified more than a decade ago [134]. Only a small number of CD11c+ cells are present in
mouse brain under normal conditions. In young mice, CD11c+/CD45high macrophages are
present in the juxta-vascular parenchyma and choroid plexus, and CD11c+/CD45dim cells
are observed in the brain parenchyma [135–137]. CD11c+/CD45dim cells are considered to
be microglia as the population expresses the microglial markers CX3CR1, IBA1, and CD11b,
in combination with low expression of MHC class II [136]. It has been reported that CD11c+

cells in the brain increase in models of other CNS pathologies (experimental autoimmune
encephalomyelitis (EAE) and kainic acid administration) and accumulate around injured
sites [135,138]. In addition, recent research has shown that CD11c+ microglia in the spinal
cord are essential for remission of nerve injury-induced chronic pain [139]. Thus, it appears
that CD11c+ microglia play a protective role in CNS disorders [134].

In AD models, including 3xTg, APP/PS1, and 5xFAD, several studies have reported
that CD11c+ cells accumulate around Aβ plaques [140–142]. It was also reported that
in APP/PS1 mice over a period of 9–18 months, 23% of all IBA1+ cells around plaques
were CD11c+ [140]. The transcriptomic signature of CD11c+ microglia indicate a suppres-
sive/tolerizing effect of immune signaling by CD11c+ cells and an enhanced capacity
for uptake and lysosomal degradation of Aβ by CD11c+ cells [140]. Interestingly, CD11c
transcripts increase in APP/PS1 mice along with an age-related increase in plaque load but
decrease in the later stages of AD [140]. These data suggest that CD11c+ microglia may exert
a protective action against AD and that these microglial subsets could open new prospects
as therapeutic targets for AD. CSF1 receptor stimulation promotes neuroprotection in
CD11c+ microglia [143]. IL-34, a CSF1 receptor ligand, enhances the neuroprotective effects
of microglia to attenuate Aβ neurotoxicity [144]. The development and safety evaluation of
drugs that increase CD11c+ microglia are important in the future.

8. Pharmacological or Diet Modulation on Microglial Responses in AD

As many studies have shown the importance of microglia in AD pathology,
a pharmacological approach to modulate microglial function is currently being
developed [145]. Glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase, is
a powerful inflammation regulator [146]. GSK-3 inhibition using the small molecule in-
hibitor SB216763 reduced the LPS-induced elevated proinflammatory cytokine levels in
rat glia-enriched cortical cultures [147]. Recent studies have shown that treatment with
L807mts, a highly selective GSK-3 peptide derivative inhibitor, enhances the clearance of
Aβ loads, reduces inflammation, and improves cognition in 5xFAD mice [148]. However,
clinical studies have failed to identify effective and safe inhibitors of this kinase [149].
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Targeting GSK3-β has many issues because it is ubiquitously expressed and relates to
multiple cellular regulatory functions.

Current evidence suggests that peroxisome proliferator-activated receptor γ (PPAR-γ)
activation may be useful for AD therapy. PPAR-γ is a nuclear receptor and a vital regulator
of lipid metabolism, adipogenesis, and insulin sensitivity [150]. Pioglitazone, a PPAR-γ
agonist, inhibits the production of pro-inflammatory cytokines in an LPS-activated rat
microglial cell line [151]. Unfortunately, pioglitazone did not delay the onset of mild
cognitive impairment in a clinical study (TOMMORROW: a prognostic biomarker study
and a phase three, randomized, double-blind, and placebo-controlled trial) [152]. A phase
IIa study provided some limited indications of T3D-959, a PPAR-γ, and PPAR-δ improving
cognition [153]. The complex role of PPAR, including the metabolism of Aβ, requires
detailed study.

Furthermore, foods and nutrients consumed daily may also modulate microglia [145].
Genistein, an isoflavone found in soy, exerts anti-inflammatory effects on LPS-stimulated
BV-2 microglia [154]. Genistein improves microglial morphology and neuron–microglia
contact in a mouse model of social defeat stress [155]. Clinical research has also indicated
that genistein may play a therapeutic role in delaying AD onset [156]. Lycopene, highly
concentrated in tomatoes, reduces cyclooxygenase-2 expression in BV-2 microglial cell
activation after LPS treatment in vitro [157]. Moreover, lycopene attenuates LPS-induced
cognitive impairments and amyloidogenesis by mediating neuroinflammation and oxida-
tive stress in mice [158]. However, of the four human studies investigating circulating
lycopene and preexisting dementia, only one reported significant association between high
AD mortality rate and low circulating lycopene level [159].

As indicated above, several drugs and foods can be used for modulating microglia;
however, these drugs and foods have diverse effects on different cells. Therefore, selective
therapeutic targets for the treatment of microglial diseases should be identified. Further re-
search on these candidate drugs, including changes in intracellular signaling and microglial
phenotypes, will lead to the development of new therapeutics for AD.

9. Future Perspectives

As stated in this review, accumulating research has provided evidence that microglia
contribute significantly to the pathogenesis of AD. The recent identification of microglial
phenotypes by single-cell analysis will accelerate the investigation of various microglial
functions in AD. Although there have been many studies on the advanced stages of AD,
there is still a lack of research on the pre-onset and early stages of AD. Early detection
and treatment of AD are desirable as there is no curative therapy to halt or reverse the
disease. Clarifying when and how the characteristic states of microglia (e.g., DAMs and
CD11c+) appear in the early phase of AD is of particular importance. The differences in
microglial reactivity between animal models and patients with AD also need to be clarified.
Further studies are needed to elucidate the molecular mechanisms and signaling pathways.
For example, how TREM2 interacts with other molecules to regulate Aβ phagocytosis
and neuroinflammation should be clarified. Furthermore, some individuals retain cogni-
tive function despite high levels of AD pathology, including Aβ deposition, called ‘AD
resilience’ [160]. As many risk factors for AD are expressed in microglia, there is a high
possibility that microglia are involved in AD resilience. Indeed, high levels of sTREM2 in
the CSF of patients have been shown to be associated with a slower decline in memory
and cognition [161]. It would be interesting to further investigate the relationship between
microglia and AD resilience.

Another important point for future research is to generate AD models that mimic the
pathology of sporadic AD patients. One of the reasons why many potential treatments
for AD have not been validated in clinical trials may be the limitations of animal models.
Genetic AD mouse models are widely used as wild-type mice do not develop senile plaques
or neurofibrillary tangles at any age [162]. Although less than 5% of AD cases are caused
by a single genetic variant that is passed on to family members, most AD mouse models
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to date have been generated based on familial AD-related genetic mutations, such as the
Swedish mutation (KM670/671NL) and the Indiana mutation (V717F). Thus, increased
densities and morphological changes of microglia have been reported in the AD mouse
models presented in this review (AppN-L-GF, Tg2576, J20, APP/PS1, 5xFAD, and 3xTg
mice) [163–168]; however, an AD mouse model that induces deposition of both Aβ and tau,
as observed in sporadic AD patients, has not yet been established. While the Aβ protein
sequence is highly conserved across mammals, the microtubule-associated protein tau
(MAPT) sequence appears less conserved with substantial variations in the presence of tau
isoforms [169]. To decipher data from in vivo experiments, it is necessary to understand
the characteristics and shortcomings of each animal model. A greater understanding of the
pathogenesis of Aβ and tau deposition will help to develop more accurate disease models.

Research on the interaction between AD and other diseases is also important. This
review discusses the association between chronic pain and Alzheimer’s disease (AD). For
example, recent clinical research has demonstrated that the risk of dementia is higher in
participants with knee pain; however, the underlying mechanism is unknown. In patients
with knee pain and in animal models, studying AD-related biomarkers or microglia-related
factors in brain regions associated with AD pathogenesis will help further elucidate the
pathological mechanisms. Elucidating these issues will provide great advances in the
understanding of microglia and open new avenues for the development of therapeutics
for AD.
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