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Abstract: Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine
kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance
of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind
VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation,
migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways.
Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly
encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3
signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states,
including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome,
(4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of
the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the
development of novel strategies to treat these chronic and often debilitating illnesses.

Keywords: lymphatics; endothelial cells; lymphangiogenesis; cancer; inflammation; VEGFR-3;
RTK signaling

1. Introduction
VEGFR3 Signaling in Lymphatic Endothelial Cells

The lymphatic vasculature regulates immune cell trafficking and interstitial fluid
homeostasis [1]. During fetal development, the proper formation of lymphatic networks is
critical for the morphogenesis of nearly all organs [2]. Postnatally, stable lymphatic function
is required to carry out physiologic activities of most organs, including the central nervous,
cardiovascular, gastrointestinal, and integumentary systems [3].

Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is a receptor tyrosine
kinase that plays a critical role in regulating growth of new lymphatic vessels (lymphan-
giogenesis) and new blood vessels (angiogenesis)—two processes that are essential for
the development and maintenance of the vascular system. Binding of VEGF-C ligand
to its cognate receptor VEGFR3 in lymphatic endothelial cells (LECs) triggers receptor
homodimerization (VEGFR3-VEGFR3) or heterodimerization (VEGFR2-VEGFR3) and sub-
sequently autophosphorylation of its cytoplasmic tyrosine kinase domains, which activate
cytoplasmic secondary messengers [4–6]. Key VEGFR3-mediated downstream intracellular
signaling interactions relevant to this review are illustrated in Figure 1. Intracellular adapter
proteins including Src homology and collagen domain (Shc), growth factor receptor-bound
protein 2 (Grb2), and Sh2 domain-containing protein tyrosine phosphatases play important
roles in regulating downstream signaling cascade activation [7,8].
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Figure 1. Intracellular VEGFR3 signaling in LECS in response to the VEGF-C ligand. VEGF-C-me-
diated activation of lymphangiogenic VEGFR3 signaling in lymphatic endothelial cells (LECs) is 
regulated by numerous co-receptors, adapter proteins, and secondary messengers. The PI3K-Akt 
and Raf-ERK pathways serve as the principal downstream effectors of activated membrane 
VEGFR3. Downstream Erk phosphorylation leads to the activation of nuclear transcription factors 
CREB and ETS to promote cellular differentiation and proliferation activities. Downstream activa-
tion of the PI3K-Akt pathways promotes the activation of ribosomal regulatory proteins elF4E and 
p70S6K to promote protein synthesis and cell survival functions. 

2. Lymphedema and Other Lymphatic Anomalies 
2.1. Primary Lymphedema and Other Primary Lymphatic Disorders 

The development of the lymphatic vasculature is a well-defined process during 
which LEC progenitors initially bud from embryonic veins, eventually forming an early 
lymph sac from which all lymphatic vessels originate [40,41]. The VEGF-C/VEGFR3 sig-
naling axis has been shown to play a critical role in the budding of early LECs from the 
cardinal veins [42–45]. Germline and somatic mutations have been linked to dysregulated 
VEGFR3 signaling in LECs, potentially leading to developmental lymphatic defects likely 
underlying a wide spectrum of primary lymphatic disorders (Figure 2a) [41,46]. For ex-
ample, patients with Milroy’s disease, one of the most extensively studied hereditary con-
genital lymphedema disorders, have inactivating autosomal dominant mutations within 
the Fms-related tyrosine kinase 4 (FLT4) gene encoding VEGFR3 expression [47–50]. Some 
patients with Milroy-like hereditary primary lymphedema have inactivating VEGFC gene 
mutations resulting in variable degrees of lymphatic hypoplasia [51,52]. Additionally, col-
lagen and calcium-binding EGF domain-containing protein 1 (CCBE1) mutations contrib-
ute to defective post-translational proteolytic activation of the VEGF-C ligand in 
Hennekam’s syndrome, a heritable disease characterized by congenital lymphedema and 
lymphangiectasia [53–55]. It is important to note, however, that mutations in genes encod-
ing ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3) and the 
atypical cadherin FAT4 have also been associated with Hennekam’s syndrome, thus high-
lighting the complex pathophysiology underlying the development of primary lymphatic 
disorders [56,57]. Missense autosomal recessive FLT4 gene mutations have also been iso-
lated in familial lymphedema patients with dermal lymphatic hypoplasia [58]. More re-
cently, mutations affecting other molecular signaling pathways have been increasingly 

Figure 1. Intracellular VEGFR3 signaling in LECS in response to the VEGF-C ligand. VEGF-C-
mediated activation of lymphangiogenic VEGFR3 signaling in lymphatic endothelial cells (LECs) is
regulated by numerous co-receptors, adapter proteins, and secondary messengers. The PI3K-Akt
and Raf-ERK pathways serve as the principal downstream effectors of activated membrane VEGFR3.
Downstream Erk phosphorylation leads to the activation of nuclear transcription factors CREB and
ETS to promote cellular differentiation and proliferation activities. Downstream activation of the
PI3K-Akt pathways promotes the activation of ribosomal regulatory proteins elF4E and p70S6K to
promote protein synthesis and cell survival functions.

The Ras/mitogen-activated kinase (MAPK) and phosphoinositide-3-kinase (PI3K)
signaling cascades serve as principal downstream VEGFR3 signaling effectors [9–13]. PI3K
promotes downstream phosphorylation of protein kinase B (Akt), which in turn activates en-
dothelial nitric oxide synthase (eNOS) and mammalian target of rapamycin (mTOR) [13–15].
mTOR subsequently mediates the phosphorylation of ribosomal protein S6 kinase beta 1
(p70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) [16,17].
Phosphoinositide-dependent kinase 1 (PDK1) facilitates Akt phosphorylation, while phos-
phatase and tensin homology (PTEN) negatively regulate Akt activity [18,19]. On the other
hand, protein kinase C (PKC)-dependent activation of the Raf1-MEK1/2 cascade results in
downstream p42/p44 MAPK (ERK1/2) phosphorylation, which mediates the activation of
the cAMP-response-element-binding protein (CREB) and Ets-domain 1 and 2 transcription
factor [10,20–22]. Ras-GTPases serve as negative regulators of VEGF-C-mediated activation
of downstream ERK signaling [23]. Classically, PI3K-Akt signaling is thought to promote
the expression of pro-survival and anti-apoptotic genes, while MAPK/ERK signaling is
mainly believed to mediate cellular proliferation [24,25]. Together, these pathways regulate
LEC functions including proliferation, migration, and tubule formation [9,26].

Important molecular regulators of VEGFR3 activation include membrane coreceptors
neuropilin 2 (Nrp2), which can bind either VEGF-C or class III semaphorin ligands to
enhance or diminish VEGFR3 activation, respectively [27–29]. The EphB4 receptor facil-
itates VEGF-C/VEGFR3 complex internalization when stimulated by its cognate ligand
EphrinB2 [30,31]. In the absence of VEGF-C, membrane integrins can transactivate VEGFR3
via recruitment of non-receptor-associated Src tyrosine kinases [32,33]. Other important
modulators of VEGFR3 signal transduction include environmental mechanical forces and
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extracellular matrix (ECM) molecules, including fibronectin (FN), heparan sulfate (HS),
and various other proteoglycans or glycoproteins [34–36].

In mature, healthy adults, the majority of lymphatic vessel networks throughout the
body exist in a growth-quiescent state, with the exception of meningeal and intestinal
lymphatics, which require continuous VEGF-C stimulation [37–39]. VEGFR3-mediated
lymphatic remodeling can be activated as part of the inflammatory response, wound
healing, obesity, tumor growth, and other physiologic or pathologic conditions [37–39].
Dysregulated LEC expression of VEGFR3 or its downstream mediators serves as a poten-
tial mechanism by which excessive or, more commonly, insufficient lymphangiogenesis
contribute to pathological changes.

Over the past two decades, several studies have suggested that lymphatic vessel
growth dysfunction contributes to numerous clinically relevant pathologies such as lym-
phedema; cancer; and autoimmune, metabolic, and inflammatory disorders. Therefore,
understanding VEGFR3-related signaling pathways in LECs is important for developing
therapeutic strategies to treat cancer, lymphedema, and other inflammatory and metabolic
diseases. Targeted interventions aimed at modulating insufficient or excessive VEGFR3
signaling are actively being studied to address many of these lymphatic-associated dis-
eases. While research in this field continues to expand, there currently is a paucity of
literature outlining key pathologic findings related to dysregulated VEGFR3 signaling in
lymphatic-related disorders.

2. Lymphedema and Other Lymphatic Anomalies
2.1. Primary Lymphedema and Other Primary Lymphatic Disorders

The development of the lymphatic vasculature is a well-defined process during which
LEC progenitors initially bud from embryonic veins, eventually forming an early lymph
sac from which all lymphatic vessels originate [40,41]. The VEGF-C/VEGFR3 signaling
axis has been shown to play a critical role in the budding of early LECs from the cardinal
veins [42–45]. Germline and somatic mutations have been linked to dysregulated VEGFR3
signaling in LECs, potentially leading to developmental lymphatic defects likely under-
lying a wide spectrum of primary lymphatic disorders (Figure 2a) [41,46]. For example,
patients with Milroy’s disease, one of the most extensively studied hereditary congenital
lymphedema disorders, have inactivating autosomal dominant mutations within the Fms-
related tyrosine kinase 4 (FLT4) gene encoding VEGFR3 expression [47–50]. Some patients
with Milroy-like hereditary primary lymphedema have inactivating VEGFC gene muta-
tions resulting in variable degrees of lymphatic hypoplasia [51,52]. Additionally, collagen
and calcium-binding EGF domain-containing protein 1 (CCBE1) mutations contribute to
defective post-translational proteolytic activation of the VEGF-C ligand in Hennekam’s
syndrome, a heritable disease characterized by congenital lymphedema and lymphangiec-
tasia [53–55]. It is important to note, however, that mutations in genes encoding ADAM
metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3) and the atypical cad-
herin FAT4 have also been associated with Hennekam’s syndrome, thus highlighting
the complex pathophysiology underlying the development of primary lymphatic disor-
ders [56,57]. Missense autosomal recessive FLT4 gene mutations have also been isolated
in familial lymphedema patients with dermal lymphatic hypoplasia [58]. More recently,
mutations affecting other molecular signaling pathways have been increasingly implicated
in the pathogenesis of several primary lymphedema disorders, which are reviewed in more
detail elsewhere [59–63]. VEGFR3 and neuropilin-2 transcription are elevated in various
lymphovenous overgrowth malformations, suggesting the underlying hyperactivation of
VEGFR3 and/or its downstream signaling pathways, in contrast to primary lymphedema
disorders usually characterized by attenuated VEGFR3 signaling [64]. In experimental
models of cerebral cavernous malformations (CCM), deletion of programmed cell death
10 (CCM3), a molecular regulator of cellular apoptosis, enhances VEGFR3 expression and
ERK1/2 activation in LECs, leading to hyperplastic lymphatic development [65]. Impor-
tantly, the molecular defects associated with various lymphatic overgrowth malformations
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usually occur intracellularly downstream from the membrane VEGFR3 activation com-
plex, which are discussed in subsequent paragraphs. Lastly, recent studies have linked
aberrant VEGFR3 function with congenital heart defect development in both humans and
mice, which are described extensively in a review by Monaghan et al. [66]. For example,
truncating FLT4 gene variants have been identified in large-scale studies of patients with
sporadic, non-syndromic Tetralogy of Fallot (TOF) [66–69]. Currently, there is a limited
understanding of the molecular pathophysiology underlying early lymphatic disorders
commonly associated with congenital heart diseases, including plastic bronchitis, chylopty-
sis, chylopericardium, and chylothorax [70,71]. Recently, variants of unknown significance
(VUS) at the FLT4 locus were isolated in two primary isolated congenital chylothorax
patients, thus highlighting the need for further characterization of VEGFR3 signaling in
these disorders [72].
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Figure 2. Dysregulated VEGFR3 signaling in disease states. (a) VEGFR3 dysregulation in lym-
phedema. Primary LE: defective activation of VEGFR3 is associated with Milroy’s disease. VEGFR3
and neuropilin-2 transcription is elevated in lymphovenous overgrowth malformations. Missense
mutations affecting SHIP-2 protein enhance VEGF-C-induced activation of Akt and ERK in primary
lymphedema. Somatic activating PIK3CA mutations are seen in generalized lymphatic anomaly (GLA)
and congenital lipomatous overgrowth, vascular malformations, epidermal nevi, and spinal/skeletal
anomalies (CLOVES) syndrome. Secondary LE: VEGF-C expression is increased in the plasma of
patients with LE. Expression of micro-RNA-1236 in LECs inhibits lymphangiogenesis by downregu-
lating VEGFR3-mediated Akt and ERK activation. (b) VEGFR3 dysregulation and tumor growth and
metastases. Tumor-derived VEGF-C is a potent chemoattractant and enhances peritumoral lymphatic
access for tumor metastasis. Downregulation of SEMA3F, a NRP2 ligand that negatively regulates
VEGFR3 activation, is downregulated in esophageal SCC. Enhanced integrin β1 signaling increases
peritumoral metastasis in melanoma. Tumor-derived VEGF C-D expression activates intracellular
Akt and ERK signaling to promote peritumoral lymphangiogenesis in breast tumors. (c) VEGFR3
dysregulation in obesity and metabolic syndrome. Increased serum levels of VEGF-C are seen with
metabolic disorders. Haploinsufficiency of PROX-1 is associated with excessive lymph accumulation
and increased insulin and leptin levels in affected tissues. (d)VEGFR-3 dysregulation in transplant
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rejection. Inflammatory lymphangiogenesis and corneal allograft rejection is promoted by galectin-8
mediated podoplanin-VEGFR3 cross-talk. VEGF-C-D elevation promotes increased renal lymphan-
giogenic activity and subsequent renal transplant rejection. (e) VEGFR3 dysregulation in autoim-
mune/autoinflammatory disorders. Single-nucleotide polymorphisms (SNPs) in the gene encoding
VEGF-C are identified as potential risk factors for developing Graves’ disease, Hashimoto’s thyroidi-
tis, and rheumatoid arthritis (RA). Elevated VEGF-C and VEGFR3 mRNA expression is observed in
inflammatory bowel disorders like ulcerative colitis (UC) and Crohn’s disease.

Further downstream in the VEGFR3 transduction cascade, a missense germline INPPL1
mutation affecting Sh2-domain-containing 5’-inositol phosphatase 2 (SHIP-2), an intracellu-
lar adapter protein that negatively regulates PI3K/Akt and MAPK/ERK activation, was
isolated in some patients with primary lymphedema [73]. In vitro transfection of this SHIP-
2 mutant enhances Akt and ERK activation following VEGF-C treatment. However, despite
increased VEGFR3 signaling, mutant LECs have impaired migration, tube formation, and
matrix adhesion, possibly due to increased LEC apoptosis resulting from excessive ERK
activation [73].

Mutations, mostly of somatic origin, in the phosphoinositide-3-kinase (PI3K) pathway
have also been identified in various lymphatic malformations. For example, somatic
PIK3CA mutants have been reported in generalized lymphatic anomaly (GLA), a condition
characterized by the development of multifocal or diffuse lymphatic lesions [74]. In a mouse
model of GLA, hyperactive PI3K signaling resulted in lymphatic hyperplasia and impaired
lymphatic transport [74]. In congenital lipomatous overgrowth, vascular malformations,
epidermal nevi, and spinal/skeletal anomalies/scoliosis (CLOVES) syndrome, a disease
affecting multiple organ systems, somatic activating PI3K mutations elicit pathologic
lymphatic overgrowth anomalies [75,76]. Recently, Martinez-Corral et al. demonstrated that
PIK3CAH1047R mutant-mediated microcystic lymphatic malformation overgrowth depends
on intact VEGF-C/VEGFR3 and mTOR signaling in vivo, suggesting upstream signaling
molecules play distinct roles in upregulating lymphangiogenic activities [77]. Somatic
hyperactivating Akt and somatic inactivating PTEN mutations in Proteus syndrome also
elicit similar phenotypic effects [74,78,79].

Alterations in the Ras signaling pathway may cause familial or sporadic lymphatic
dysfunction, a common feature of ‘Rasopathy’ syndromes. For example, both germline and
somatic inactivating mutations affecting H-Ras, N-Ras, K-Ras, and Son of sevenless ho-
molog 1 (SOS1) have been linked to development of chylothorax and chylous ascites [75,80].
Activating somatic KRAS mutations have been reported in Gorham–Stout disease (GSD),
where ectopic lymphatics destructively infiltrate bony structures [81]. The Dellinger group
recapitulated this ectopic lymphatic growth phenotype in murine bone by generating a hy-
peractive KRASG12D mutant [82]. Functionally, these mutant lymphatics exhibit decreased
in vivo vessel branching, increased vessel diameter, and reduced valve formation that are
hypothesized to contribute to chylothorax-related death in these mice [82]. Blockade of the
downstream Ras effector MEK1/2 using trametinib ameliorated the GSD phenotype, fur-
ther confirming the role of hyperactive Ras signaling in LEC dysfunction. Gain-of-function
Raf mutants commonly seen in central conducting lymphatic anomalies, and Noonan
syndrome, a developmental disorder caused by germline mutations in one of several Ras
pathway members, lead to cutaneous lymphatic malformations and lymphangiectasia
in translational animal models [75,83–86]. Additionally, loss of negative Ras regulators,
such as the GTPase activator p120-RasGAP (RASA1), may result in heritable lymphatic
overgrowth phenotypes [23]. These experimental findings are clinically relevant, given that
altered MEK/ERK RNA expression has been detected in blood samples from lymphatic
malformation patients [87].

Using whole-exome sequencing, a novel variant of the EphB4 receptor, which regulates
VEGFR3 internalization, was isolated in affected family members with central conducting
lymphatic anomalies across four generations [88]. In zebrafish, transfection of this EphB4
mutant results in aberrant lymphatic vessel branching and increased mTORC1 and p70-S6K
phosphorylation [88]. Rather unexpectedly, mTORC1 and MEK blockade both restored
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lymphatic branching morphology, thus also implicating EphB4 crosstalk with MAPK signal-
ing [88]. Previous reports of EphrinB2-EphB4-p120-RasGAP-axis-driven hyperactivation
of the mTORC1 pathway further illustrate the role of non-canonical Ras/MAPK-PI3K
cross-talk in the regulation of downstream VEGFR3 signaling in LECs [89]. Further charac-
terization and identification of dysregulated VEGFR3 molecular effectors may therefore
enable the development of therapies to treat primary lymphedema disorders.

2.2. Secondary Lymphedema

VEGF-C, neuropilin-2, and FOXC2 polymorphisms have been identified in patients
with breast cancer-related lymphedema (BCRL), suggesting that baseline differences in
VEGFR3 activation or lymphatic function may contribute to the risk of developing post-
surgical lymphedema [90,91]. This concept is supported by the finding that Prox-1 hap-
loinsufficient mice with underlying subclinical lymphatic dysfunction have an increased
propensity for developing lymphedema after lymphatic injury [92]. However, BCRL does
not appear to be caused by a deficiency of VEGF-C because VEGF-C expression is increased
in tissue biopsies and in the plasma of patients with lymphedema and in animal mod-
els of the disease [93–95]. Concordantly, VEGF-C overexpression in a mouse model of
lymphedema results in a more rapid onset and more severe swelling due to increased
vascular permeability and inflammation [96]. VEGF-C overexpression to treat BCRL led to
inconclusive effects and has been largely abandoned as a therapeutic approach [97]. Genetic
polymorphisms in inflammatory mediators such as IL-4, IL-10, and NF-κB confer varying
degrees of risk or protection against the development of secondary lymphedema, highlight-
ing the importance of immune responses in regulating lymphatic function [91]. Together,
these findings suggest that dysregulated VEGFR3 signaling or other mechanisms impair
lymphatic regeneration and function in patients who develop secondary lymphedema.

Recent studies have suggested that alterations in regulatory microRNA (miRNA)
expression may mediate the pathophysiologic features of various disease states, such as
dermal inflammation, fibrosis, and immune dysregulation [98]. Expression of miR-1236 in
LECs is associated with the inhibition of lymphangiogenesis via VEGFR3, Akt, and ERK
downregulation [99] (Figure 2a). Similarly, the expression of miR128-3p is associated with
reduced LEC proliferation via the attenuation of intracellular ERK and Ca2+ signaling [100].
A recent study showed that the expression of miR199a-3p and miR151a-3p is increased in the
serum of patients with BCRL compared to serum of breast cancer patients without BCRL
or healthy controls [101]. Interestingly, the expression of these microRNAs temporally
correlates with lymphedema onset and is hypothesized to increase lymphedema risk by
interacting with transforming growth factor-β (TGF-β), PI3K-Akt, and MAPK signaling
cascades [101].

In conclusion, accumulating evidence in mice and humans shows that VEGFR3 dys-
regulation along with increased VEGF-C ligand is observed in secondary lymphedema,
possibly due to accompanying chronic inflammatory conditions. Thus, therapies control-
ling inflammation might hold more potential in reversing VEGFR3 dysregulation and
making use of the excess lymphangiogenic ligands for lymphatic regeneration. More de-
tailed studies are warranted to understand the paradoxical condition of excess VEGF-C in
lymphedema tissues and yet poor lymphatic function. This indirectly implicates that the
problem might be in the dysregulation of VEGFR3 rather than the shortage of VEGF-C.

3. Tumor Growth and Metastatic Environment

Lymphangiogenesis and peritumoral lymphatics are associated with an increased
risk of metastasis in several cancers including squamous cell cancer, breast cancer, and
gastric cancer [102–108]. Tumoral lymphangiogenesis is fostered by tumor-derived VEGF-C
and other lymphangiogenic growth factors such as angiopoietin 2 and fibroblast growth
factor 2, which functionally interact with VEGFR3’s downstream effectors. Peritumoral
lymphatics enhance access to local lymph nodes for tumor metastasis [109–111]. VEGF-C is
also a potent chemoattractant for macrophages and other inflammatory cells that produce
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VEGF-C and modulate the tumor microenvironment [112,113]. Breast tumors also indirectly
stimulate peritumoral lymphangiogenesis by inducing podoplanin expression in nearby
macrophages by activating CLEC2A carbohydrate-binding receptors on LECs [114].

Aberrant expression of key molecular VEGFR3 regulators in malignant tumors further
implicates lymphatic participation in metastasis progression (Figure 2b). In oral squamous
cell carcinoma, elevated neuropilin-2 (Nrp2) expression is positively associated with tumor
stage, lymphovascular invasion, and lymph node metastasis [115]. The expression of
semaphorin 3F (SEMA3F), a Nrp2 ligand that negatively regulates VEGFR3 activation, is
downregulated in esophageal squamous cell carcinoma and is associated with increased
VEGF-C and Nrp2 expression [116]. Decreased semaphorin 3F expression correlates with
nodal metastasis and poorer survival outcomes [116]. In hypopharyngeal cancer specimens,
the elevated expression of eukaryotic translation initiation factor 4E (eIF4E), a downstream
mTOR effector, is associated with increased lymphatic density within metastatic lymph
nodes [117]. Enhanced integrin B1 signaling—a regulator of VEGFR3 transactivation—in
peritumoral lymphatics increases the metastasis of B16 melanoma cells in mice [118].

Tumor cells also mediate lymphatic vessel recruitment by secreting various paracrine
signaling molecules that act in parallel to VEGFR3. For example, tumor VEGF-D synthe-
sis upregulates C-C motif chemokine receptor type 10 (CCR10) expression and increases
LEC migration towards tumor-derived chemokine ligands 27 and 28 (CCL27/28) [119].
Similarly, tumor VEGF-C-mediated stimulation of LEC C-X-C motif chemokine receptor 4
(CXCR4) expression increases chemotactic responsiveness to peritumoral CXCL12 gradi-
ents [120]. In turn, VEGF-C-VEGFR3 signaling cascades induce LEC chemokine production,
which reciprocally influences tumor activity [121–123]. The interaction of LEC-derived
chemokine CCL21 with tumor CCR7 receptors promotes the formation of tumor–lymphatic
interfaces that contribute to metastasis [102]. In in vitro studies of human skin cancers,
IL-6 expression in LECs promotes tumor cell proliferation [109,124]. Breast tumor cells
secrete PGE2 and induce peritumoral lymphangiogenesis in part by promoting autocrine
VEGF-D expression and activating intracellular Akt and ERK signaling in murine and
human LECs [114,125,126].

Although most studies report that lymphatic vessels primarily serve as enhancers
of tumor metastasis, several studies have suggested that lymphatics may promote local
antitumor effects by facilitating the presentation of tumor-associated antigens to the im-
mune system [19]. Using a B16 melanoma model, Kimura et al. showed that mice with
k-Cyclin deletion-mediated lymphatic dysfunction exhibited a decreased number of tumor-
associated antigens in draining lymph nodes and increased primary tumor growth [127].
Transfer of CD8+ T cells from tumor-draining lymph nodes of kCYC+/− mice led to de-
creased immune cytotoxic activity against tumor cells in vitro and in vivo [127]. Despite
increased primary tumor growth, there was a significant decrease in tumor metastasis,
suggesting lymphatics regulate immune cell and tumor cell trafficking via distinct mecha-
nisms [127]. B16 melanoma implantation studies in K14-VEGFR3-Ig and Chy mice further
support these findings and show that abnormal skin lymphatics are associated with de-
creased intratumoral leukocyte infiltration and increased primary tumor growth [128]. Our
research group has shown that the inducible ablation of peritumoral lymphatic vessels
leads to increased peritumoral immunosuppressive cytokine expression, increased tumor
PD-L1 expression, and decreased intratumor CD8+ T cell infiltration, which functionally
correlate with increased tumor growth, suggesting tumor-associated lymphatics play ac-
tive roles in regulating tumor immune responses [129]. Conversely, Song et al. found
that increased VEGF-C-driven meningeal lymphatic drainage leads to improved glioblas-
toma tumor clearance in mice [130]. Zhou and Ma later showed that VEGF-C/VEGFR3-
mediated CCL21 expression promotes dendritic cell trafficking and subsequent CD8+ T
cell activation, leading to attenuated tumor growth in mouse glioma models [131,132]. A
recently developed vaccine that overexpresses VEGF-C induces lymphangiogenesis and
enhances T-cell-mediated antitumor immunity and sustained attenuated tumor growth



Cells 2024, 13, 68 8 of 23

in B16 melanoma mouse models [133]. Of note, some studies have reported that elevated
lymphatic vessel density mediates increased immune tolerance to tumors [134,135].

Despite the evidence supporting the two faces of tumor lymphatic vessels, i.e., promot-
ing tumor growth and progression and accelerating anti-tumor immune responses, it is not
clear what warrants this dual nature. It will be interesting to understand whether tumor
type dictates the pro or anti-tumor lymphatic function. Further research is needed to un-
derstand the dual nature of lymphatic vessels in regulating tumor growth and progression.
Independent of the pro- or anti-tumor nature of tumor lymphatic vessels, it is getting clear
that the dysregulation of VEGFR3 is critical in tumor lymphatics, and targeting VEGFR3 to
regulate tumor lymphatic vessels could be an ideal way going forward.

4. Obesity and Metabolic Syndrome

The negative effects of obesity on lymphatic function have been extensively reported,
but fewer studies have focused on characterizing the reciprocal contribution of dysregulated
lymphangiogenic activity to the development of obesity and metabolic syndrome [136–140].
A link between lymphatic vessel dysfunction and metabolic syndrome is suggested by
case series reporting increased serum levels of VEGF-C in patients with metabolic disor-
ders [141–143]. Recently, the Rockson group published a single-center retrospective cohort
analysis identifying a positive association between the presence of clinically diagnosed
lymphatic disorders (lipedema, secondary lymphedema, or lymphovascular disease) and
diabetes, further strengthening the hypotheses of lymphatic involvement in metabolic
disease pathogenesis [144].

One of the earliest studies to implicate lymphatic dysfunction in the pathogenesis of
adult-onset obesity was the discovery that haploinsufficiency of the multisystem devel-
opmental regulator Prox-1 causes this phenotype, along with the increased incidence of
hepatic steatosis and elevations in circulating insulin and leptin [145] (Figure 2c). Other
studies showed that VEGFR3 haploinsufficent mice (i.e., Chy mice) also have increased
subcutaneous fat deposition [146,147]. Harvey et al. proposed that excessive lymph accu-
mulation in affected tissues enhances lipid storage in existing adipocytes and increases
adipogenesis, ultimately leading to increased ectopic fat deposition [145]. The same re-
search group later validated this interpretation by demonstrating that the restoration of
Prox-1 activity rescues this adult obesity phenotype in mice [148]. Consistent with these
studies, our group showed that lymphatic fluid stasis resulting from surgical lymphatic
disruption in mouse tail skin promotes increased adipose differentiation marker expression
in affected tissues, further implicating lymphatic fluid stasis in adipogenesis [149]. These
experimental studies collectively suggest that insufficient adipose tissue lymphangiogen-
esis or impaired lymphatic function may contribute to increased fat accumulation. In
agreement with the above, Chakraborty et al. showed that adipose-specific transgenic
VEGF-D overexpression in mice fed a high-fat diet (HFD) increases lymphangiogenesis,
decreases macrophage infiltration, and improves systemic glucose and lipid metabolism
markers [150].

Lymphatic VEGFR3 signaling is also a critical regulator of lipid and cholesterol trans-
port in multiple cell types. The genetic deletion of VEGF-C results in lymphatic vessel
regression within the lacteals and intestinal wall and decreases systemic triglyceride and
cholesterol levels [151]. Using Chy mice and anti-VEGFR3 monoclonal antibodies, Martel
et al. demonstrated the role of lymphatic VEGFR3 signaling in regulating macrophage
reverse cholesterol transport from peripheral tissues [152]. In subsequent studies, the
same researchers found that reversing hypercholesterolemia-induced lymphatic transport
dysfunction with exogenous VEGF-C decreases the progression of atherosclerotic plaques
in atherogenic mice on an HFD [153]. Deletion of the fatty acid transporter CD36 in
LECs results in attenuated VEGF-C-induced Akt activation, impaired cellular oxidative
metabolism, junctional VE-cadherin destabilization development of leaky gut lymphatics,
and obesity in mice, suggesting that intracellular VEGFR3 signaling may be an attractive
target for translational studies [154].
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Obesity affects lymphatic function by promoting a chronic low-level inflammatory
state in perivascular lymphatic tissues [136,155,156]. While studying the relationship be-
tween mesenteric lymphatic dysfunction and metabolic syndrome, Cao et al. reported
that both HFD-fed obese mice and humans with obesity had leaky mesenteric lymphat-
ics, along with elevated VEGF-C expression within extravasated lymph and neighboring
visceral adipose tissue [157]. An intestinal lymphatic-targeted COX-2 inhibitor (orally
administered) reduced mesenteric VEGF-C expression and concomitantly restored mesen-
teric lymphatic function via attenuation of macrophage-derived growth factor secretion,
highlighting the importance of immune cells in regulating gastrointestinal VEGF-C home-
ostasis [157]. Transgenic overexpression of VEGF-C driven by the epithelial keratin-14
promoter in mouse dermal tissues results in increased weight gain and the development of
insulin resistance in mutant mice, due in part to increased infiltration of pro-inflammatory
M1 macrophages within subcutaneous white adipose tissue [158]. It will be interesting
to observe how VEGFR3 expression and signaling on LECs change in the state of chronic
low-grade inflammation with abundant VEGF-C in the tissues.

Obesity-associated inflammation also reduces lymphangiogenesis. Analyzing sorted
LECs from HFD-fed C57BL/6J obesity-prone mice showed that the expression of VEGFR3
is decreased in obesity, while HFD-fed BALB/cJ and myostatin null (MSTNln) obesity-
resistant mice had no significant changes to their lymphatics [159–161]. Based on findings
of increased peri-lymphatic lipid droplet accumulation in HFD obese mice, we performed
in vitro studies to determine the effects of long-chain free fatty acids on lymphatic function.
LECs treated with stearic acid exhibited decreased VEGFR3 expression and downstream
Akt and eNOS activation, which was reversible using pharmacologic PTEN blockade,
illustrating a mechanism by which lymphangiogenesis can be modulated in disease states
without the additional recruitment of immune cells [19,159]. These studies suggest obesity-
associated inflammation confers increased LEC resistance to VEGFR3 activation, further
contributing to the progression of metabolic dysfunction.

In conclusion, research shows that obesity decreases lymphatic function by the down-
regulation of VEGFR3 signaling via chronic low-grade inflammation, and, conversely,
decreased lymphatic function also contributes to lipid accumulation causing obesity. Thus,
specific targeting of VEGFR3 signaling to improve lymphatic function either by ligand
(VEGF-C/D) overexpression or by controlling chronic inflammation with lymphatic dys-
function related obesity and additional metabolic disorders.

5. Transplant Allograft Rejection

The lymphatic vasculature is thought to contribute to chronic organ transplant rejection
by promoting antigen-presenting cell (APC) trafficking and activation of adaptive immune
responses (Figure 2d). This pathophysiologic process has been extensively studied in the
mammalian cornea because it is avascular and immune-privileged under healthy conditions
but becomes vascularized and inflamed under pathologic conditions [162–167]. In a murine
allogeneic corneal transplant model, Dietrich and colleagues found that lymphangiogenesis
had a greater effect on immune allograft rejection rates than angiogenesis [167]. Inhibition
of angiogenesis using VEGF-Trap resulted in a lesser degree of graft survival improvement
than the inhibition of lymphangiogenesis using either of the two VEGFR3 inhibitors [167].
Interestingly, galectin-8, a carbohydrate-binding protein found in LECs, has also been
identified as a promoter of corneal allograft rejection via the upregulation of inflammatory
lymphangiogenesis by mediating podoplanin-VEGFR3-integrin crosstalk [168].

Similarly, within a renal allograft mouse model, spontaneous regeneration of the
renal lymphatic vasculature after surgery has been linked to an increase in the systemic
trafficking of CCR7+ APCs involved in adaptive immune responses and progression of
chronic transplant rejection [169]. Upon analyzing biopsies of renal transplant patients,
these same researchers found patients experiencing chronic transplant rejection displayed
greater lymphatic vessel area but not vessel number in their kidneys compared to transplant
patients who were not experiencing organ rejection [169]. Additionally, VEGF-C, VEGF-D,
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and fibroblast growth factor 2 (FGF-2) expression was elevated within these transplant
rejection patients, reflecting increased renal lymphangiogenic activity [169]. In another
mouse renal transplant study, downstream inhibition of the VEGFR3 effector mTORC1
using sirolimus reduced lymphangiogenic activity, which elicited greater attenuation of
chronic allograft transplant injury responses compared to calcineurin inhibition, thus
implicating intracellular VEGFR3 signaling in the pathophysiologic development of chronic
kidney rejection [170].

In cardiac allograft transplantation, lymphangiogenesis similarly supports immune
cell infiltration to facilitate rejection. In a murine model, post-allograft ischemia–reperfusion
injury stimulated VEGFR3 expression in LECs and promoted increased CD4+ T cell,
CD8+ T cell, and ED1+ macrophage, and myeloperoxidase (MPO)+ neutrophil infiltra-
tion [171]. Accordingly, and in line with the protective effects of blocking VEGFR3 sig-
naling in other transplant settings, inducible LEC-specific deletion of VEGFR3 prior to
transplant surgery improves graft survival rates [171]. In another study, increased lymph
flow and enhanced migration of donor passenger leukocytes from cardiac allografts to
recipient draining lymph nodes was associated with increased allograft CD8+ T cell infil-
tration [172]. Furthermore, cardiac allograft vasculopathy, determined by the severity of
arterial luminal occlusion, correlated with CD8+ T cell infiltration density and lymphatic
vessel area, suggesting lymphangiogenic activity contributes to graft loss [172]. Inhibition
of LEC VEGFR3 signaling in a rat cardiac allograft model reduced the tissue expression of
CCL21, a chemokine promoter of dendritic cell migration, which reduced inflammatory cell
infiltration and prolonged graft viability [123]. VEGFR3 has also been shown to promote
the migration of peripherally injected naïve CD4+ T cells to draining lymph nodes by
regulating extracellular heparan sulfate expression and resultant CCL21 gradients in a
PI3K-dependent manner [173].

Many transplant rejection models conceptualize lymphangiogenesis as a pathogenic
driver of allograft failure. However, based on experimental findings of decreased pul-
monary lymphatic density and increased hyaluronan (HA) fragment accumulation after
mouse lung transplantation, Cui et al. hypothesized that impaired hyaluronan clearance
from inadequate lymphatic drainage may mediate acute lung transplant rejection [174].
Compared to controls and isografts, lung allografts exhibited a significantly higher propor-
tion of apoptotic LECs and lower nuclear proliferation marker expression, thus confirming
impaired lymphangiogenic capacity [174]. In contrast to other transplant settings, daily
intravenous VEGF-C156S (the lymphangiogenesis-specific form of VEGF-C) injections
enhanced lymphatic drainage and HA clearance and attenuated acute rejection responses
in treated mice [174]. These findings appear to be clinically relevant, since reductions in
tissue HA levels following treatment for acute lung transplant rejection were associated
with improved respiratory functional outcomes [174].

In conclusion, corneal, renal, and cardiac transplant rejections are mainly due to
activated VEGFR3 signaling, and blocking VEGFR3 signaling is a potential therapeutic
target for longer transplant survival. On the contrary, lung transplant survival is proper
lymphatic drainage dependent, and thus activation of VEGFR3 signaling through pro-
lymphangiogenic agents seems to be critical. Further research has yet to reveal how lung
transplants differ from other organ transplants in terms of opposite lymphatic and VEGFR3
signaling requirements.

6. Autoimmune and Autoinflammatory Disorders

Altered VEGFR3 signaling and the resulting lymphatic vessel dysfunction have also
been implicated in the pathogenesis of multiple autoinflammatory disorders, including
several glandular autoinflammatory conditions. Single-nucleotide polymorphisms (SNPs)
in the gene encoding VEGF-C have been identified as potential risk factors for developing
autoimmune thyroid diseases, including Grave’s disease and Hashimoto’s thyroiditis [175].
Within the minor salivary glands of primary Sjogren’s syndrome patients, newly expanded
lymphatic capillaries display increased VEGFR3 expression and increased periductal in-
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flammatory cell infiltration [176] (Figure 2e). Behçet’s disease patients experiencing uveitis
exhibit higher circulating levels of soluble VEGFR3 (sVEGFR3) and a lower ratio of VEGF-
C/sVEGFR3, suggesting dysregulated lymphangiogenesis [177].

Research shows that systemic lupus erythematosus (SLE) and systemic sclerosis (SS)
display cutaneous lymphatic dysfunction with limited available information on VEGFR3
expression. SLE patients exhibit dilated cutaneous lymphatic vessels without signifi-
cant changes in lymphatic density [178]. Ambler et al. recapitulated these findings in an
ultra-violet radiation (UVR)-sensitive mouse model in which SLE is induced via chronic epi-
cutaneous imiquimod treatment [178]. LEC-specific PTEN gene knockout, which enhances
intracellular VEGFR3 activation and resulting lymphatic drainage, in imiquimod-treated
mice following UVR exposure led to decreased inflammation and B-cell responses in drain-
ing lymph nodes [178]. Cutaneous biopsies from systemic sclerosis (SS) patients with
multi-organ fibrosis display diminished lymphatic vessel density but increased VEGFR3
and VEGF-D mRNA expression compared to healthy controls [179]. Another study in
SS patients noted an inverse correlation between the number of fingertip ulcers and cu-
taneous biopsy lymphatic vessel counts [180]. In vitro treatment of wildtype LECs with
SS-patient-derived serum resulted in reduced VEGFR3 expression and impaired migratory,
proliferative, and tube-forming capacity [181].

While lymphangiogenesis is usually regulated by VEGF-C/VEGFR3, a VEGF-A over-
expression mouse model of psoriasis displayed persistently increased lymphatic vessel
size, tortuosity, and proliferation as part of delayed-type hypersensitivity reactions. These
changes were reversible with combined VEGFR1-VEGFR2 blockade, thereby implicating
excessive LEC VEGFR2 signaling in the pathogenesis of at least one type of inflammatory
skin disease [182].

Within a mouse model of alopecia areata, an autoimmune condition, lymphatic ves-
sels within affected dermal tissues were distended, suggesting lymphatic contribution to
hair growth [183]. Transgenic overexpression of VEGF-C and resulting increased dermal
lymphatic density promoted prolonged anagen hair follicle growth via paracrine activation
of dermal papilla cells [184,185]. Conversely, the expression of soluble VEGFR3 (sVEGFR3)
extracellular domains produced the opposite results, indicating that VEGFR3 underactiv-
ity limits hair growth [184]. Additionally, recent seminal finding related to hair follicle
stem cells (even though not directly related to alopecia) indicate that hair follicle stem cell
(HFSC)-associated lymphatics have also been shown to promote stem cell quiescence [186].
Diphtheria-toxin-mediated dermal lymphatic ablation promoted precocious telogen-to-
anagen transitions in hair follicles, which was also recapitulated following soluble VEGFR3
antibody treatment, implicating VEGFR3 signaling in this process [186]. In turn, HFSCs re-
ciprocally regulate lymphatic activity via angiopoietin-like protein 7 and angiopoietin-like
protein 4 expression [186]. Further studies in this direction are needed to fully characterize
the role of lymphatic vessels in hair growth and regeneration and the link to autoimmunity
in this context.

Certain VEGF-C SNPs confer the increased risk for developing rheumatoid arthritis
(RA), suggesting a potential contribution of dysregulated VEGFR3 signaling [187]. Addi-
tionally, TNF-α, the primary driver of RA progression, has been shown to increase VEGF-C
expression in the affected joint synovial fluid of RA patients, potentially disrupting en-
dogenous growth factor gradients [188]. Several experimental RA models propose that
lymphatic insufficiency may worsen disease progression, which is supported by clini-
cal findings of impaired lymphatic clearance of indocyanine green (ICG) dye within the
affected hands of RA patients and experimental findings of decreased lymphatic vessel
maturity within the inflamed joints of transgenic TNF-expressing mice [189,190]. Within
translational models of inflammatory arthritis, VEGFR3 blockade results in decreased
lymphangiogenesis, impaired afferent lymphatic drainage, and increased synovial volumes
in transgenic tumor necrosis factor (TNF)-overexpressing mice [191]. Conversely, treatment
with adenovirus expressing VEGF-C has been shown to increase intraarticular lymphatic
vessel density and concomitantly reduce joint swelling and inflammation [192]. Together,
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these findings indicate that impaired lymphangiogenesis and lymphatic function promotes
the pathogenesis of RA [191,192]. In contrast, in patients with adult-onset Still’s disease, an
incompletely understood autoinflammatory disorder characterized by fever, arthralgias,
and lymphadenopathy, circulating VEGF-C has recently been found to be elevated [193]. In-
terestingly, serum VEGF-C concentrations correlated with active symptoms, inflammatory
cytokine levels, and disease severity markers [193].

Elevated VEGF-C, VEGFR3, podoplanin, and LYVE-1 mRNA expression has been
observed within the inflamed colonic mucosa of ulcerative colitis (UC) and Crohn’s disease
(CD) patients [194,195]. This has been reproduced in dextran sodium sulfate (DSS)-induced
mouse models of inflammatory bowel disease (IBD), in which the intestinal lymphatics
exhibit increased vessel density, elevated VEGFR3 expression, and vessel dilation, suggest-
ing that overactive lymphangiogenesis may be involved in disease pathogenesis [196,197].
However, this hypothesis is complicated by the finding that VEGFR3 blockade induces
the development of dilated and tortuous lymphatics in the IL-10 knockout model of
spontaneous inflammatory bowel disease (IBD), which was shown to worsen intestinal
inflammation [198]. To better understand these relationships, several research groups
have induced VEGF-C overexpression, leading to improvement in some studies and worse
intestinal inflammation in others [196,199]. Indeed, it remains unknown if these histopatho-
logic findings are causative or compensatory in nature, making it difficult to determine if
insufficient versus excessive lymphangiogenesis is to blame [200]. However, dysfunctional
lymphatics clearly exert some influence on intestinal inflammatory disease progression.

In conclusion, autoimmune pathologies seem to be highly heterogeneous, showing
a disease specific up- and downregulation of VEGFR3 signaling. While SLE, SS, and
alopecia exhibit reduced VEGFR3 signaling, RA, UC, CD, and IBD display increased
VEGFR3 signaling; thus, both pro- and anti-lymphatic therapies are in play, depending
on the disease type. For future studies, it will be interesting to elucidate the basis of the
heterogeneity in VEGFR3 signaling between different autoimmune conditions to specifically
target lymphatic vessels and VEGFR3 signaling.

7. Conclusions

Aberrant VEGFR3 signal transduction and altered lymphangiogenesis or lymphatic
function may contribute to the development of many diseases, as summarized in Table 1.
This effect is likely due to the central role of the lymphatic system in tissue fluid drainage,
fat absorption, and immune cell trafficking, as well as the propensity of lymphatic vessels
to become injured by chronic inflammatory reactions. The heterogeneity in VEGFR3 signal-
ing across different pathologies shows that not all diseases arise uniformly with respect
to alterations in lymphatic growth and function. For example, diseases like secondary
lymphedema and obesity largely show decreased VEGFR3 signaling despite increased
VEGF-C ligand expression in affected tissues, indicating a probable development of VEGF-
C resistance in these pathologies, akin to the phenomenon of insulin resistance [201]. Thus,
therapeutic interventions in these diseases should be focused on enhancing VEGFR3 sig-
naling by regulating chronic inflammation rather than exogenous lymphangiogenic ligand
supply. Demonstrating the concept of VEGF-C resistance in lymphatic pathologies and
understanding the molecular basis of such phenomena could be a potential new direc-
tion for future studies. In contrast to lymphedema and obesity, many cancers and organ
transplant rejection cases, when viewed from a lymphatic perspective, arise mainly due to
increased VEGFR3 signaling and the pathologic activation of lymphatic growth. In these
conditions, therapeutic strategies should rely on dampening VEGFR3 signaling. Finally,
autoimmune pathologies involving lymphatic dysfunction appear to be a mixed bag, with
some pathologies showing increased while others show decreased VEGFR3 signaling, there-
fore necessitating disease-specific therapeutic interventions. Overall, understanding the
cellular mechanisms that regulate the crosstalk between lymphatic vessels and other tissues
is an important research goal. This understanding may lead to novel targeted therapies
that can impact not only primarily lymphatic diseases such as lymphedema but also a
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host of common diseases including obesity, metabolic syndrome, tumors, and autoimmune
disorders.

Table 1. Proposed VEGFR3-signaling-related molecular alterations in lymphatic-related diseases.

Disease Clinical Manifestations Histopathologic
Findings

Proposed VEGFR3-Related
Molecular Pathology

Selected
References

Milroy/Milroy-like
primary lymphedema Lower extremity swelling Hypoplastic lymphatics VEGF-C, VEGFR3,

INPPL1 gene mutations [48,49,51,52,58,73,202]

Hennekam’s
syndrome

Generalized lymphedema and
lymphangiectasia,

variable intellectual
disability, characteristic facial

dysmorphic features

Lymphatic
vessel dysplasia

CCBE-1, ADAMTS3
gene mutations [54–56]

Isolated lymphovenous
malformations

Congenital lymphatic
malformations, cerebral cavernous

malformations (CCM)
Hyperplastic lymphatics Increased cellular VEGFR3,

neuropilin-2, ERK 1/2 activity [64,65]

Generalized
lymphatic

anomaly (GLA)

Diffuse or multi-focal lymphatic
malformations; cutaneous/soft
tissue edema; chylous thoracic
effusions, ascites, lymphorrhea

Hyperproliferative,
dilated lymphatics

PIK3CA mutation
(hyperactivating) [74]

CLOVES syndrome

Capillary, venous,
lymphatic vascular

malformations; thoracic
lipomatous hyperplasia;
asymmetric limb growth

Macrocystic and
microcystic malformations, or
combined lymphatic lesions

w/disorganized channels

PIK3CA mutation
(hyperactivating) [76,203]

Proteus
syndrome

Cutaneous,
Musculoskeletal,

and vascular tissue
overgrowth lesions

Hyperplastic
lymphatics, abnormal

lymphovascular channels

AKT1 mutation
(hyperactivating)

PTEN (inactivating)
[78,79]

Gorham–Stout
disease

Spontaneous, progressive
osteolysis; soft tissue

lymphangioma;
chylothorax

Proliferative ectopic
lymphatics within

bony structures

KRAS mutation
(activating) [81,82]

Noonan syndrome
Lymphedema of bilateral

lower limb and genitals; posterior
cervical hygroma

Dilated hyperplastic
lymphatics

Ras-Raf, PTPN11,
SHP2 mutations [84–86]

Central conducting
lymphatic anomaly (CCLA)

Abnormal lymphatic drainage by
large vessels within the trunk

Dilated channels, central
lymphatic obstruction ARAF, EPHB4 mutations [83,88,204]

Tumor Metastasis Clinical Manifestations Histopathologic Findings Proposed VEGFR3-Related
Molecular Pathology Selected References

Breast cancer Local tissue infiltration and
metastasis to distant organs

Peri-tumoral
lymphatic growth and tumor

invasion of neighboring
lymph nodes

PGE2-EP4 axis
stimulation, CLEC2A
activation, VEGF-C

overexpression

[114,125,126]

Melanoma
Local tissue

infiltration and metastasis to
distant organs

Aberrant distribution of
melanocytes, Pagetoid spread,

dyscohesive nests
of melanocytes

ARF6 upregulation, integrin
B1 upregulation,
k-Cyclin deletion

[118,127,128,133–135]

Oral SCC Local tissue infiltration and
metastasis to distant organs

Tumor budding, perineural
and vascular invasion,

sarcolemma spread,
tumor-infiltrating

T-lymphocytes,
CD68+-tumor-associated

macrophages,
tumor-associated

tissue eosinophilia,
cellular cannibalism

Neuropilin-2
upregulation, SEMA3F

downregulation, VEGF-C
overexpression

[108,115]

Hypopharyngeal cancer Local tissue infiltration and
metastasis to distant organs

Squamous cell (most
common), submucosal tumor

extension
EIF4E activation [117]

Esophageal SCC Local tissue infiltration and
metastasis to distant organs

Keratin pearls, individual
cell keratinization,

intercellular bridges
SEMA3F downregulation [116]

Cholangiocarcinoma Local tissue infiltration and
metastasis to distant organs

Abundant fibrous
desmoplastic stroma

CXCR2-CXCL5
axis activation [205]

Autoimmune Disorders Clinical Manifestations Histopathologic Findings Proposed VEGFR3-Related
Molecular Pathology Selected References

Autoimmune thyroid disease
Grave’s disease; Hashimoto’s

thyroiditis; dysregulated thyroid
hormone secretion

Increased lymphatic
vessel density

VEGF-C
polymorphisms [175,206]

Sjogren’s syndrome

Diminished lacrimal and salivary
gland function, xerostomia,

keratoconjunctivitis sicca, parotid
gland enlargement

Expansion of lymphatic
capillaries, periductal

inflammatory cell infiltration

VEGFR3, VEGF-C
polymorphisms [176]
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Table 1. Cont.

Disease Clinical Manifestations Histopathologic
Findings

Proposed VEGFR3-Related
Molecular Pathology

Selected
References

Behcet’s disease
Mucocutaneous lesions, recurrent

genital ulcerations, uveitis,
skin lesions

Expansion of lymphatic
capillaries, periductal

inflammatory cell infiltration

Increased
circulating sVEGFR3,

dysregulated VEGF-C/
VEGFR3 ratio

[177]

Alopecia areata Discrete, round patches of hair loss Dilated dermal lymphatics Elevated vascular endothelial
growth factor expression [183]

Systemic lupus
erythematosis (SLE)

Progressive multi-organ tissue
fibrosis, vascular damage

and inflammation

SLE: Dilated cutaneous
lymphatic vessels without

changes in lymphatic density

Increased VEGF-C,
VEGF-D, VEGFR2,
VEGFR3 activity

[178]

Psoriasis
Well circumscribed, circular,

erythematous papules and plaques
with dry scaling

Perivascular and dermal
inflammatory cell infiltration,
vascular dilatation, edema of
dermal papillae, parakeratosis

Increased VEGF-A expression,
VEGFR2 activation [182]

Rheumatoid arthritis Systemic polyarthritis,
articular destruction

Chronic perilymphatic
inflammation,

lymphatic leakiness

VEGF-C
polymorphisms, impaired

VEGF-C/VEGFR3 signaling
[187–190]

Still’s disease

Autoinflammatory fever,
arthralgias, lymphadenopathy,

joint pain,
persistent papules and plaques

Upper keratinocyte
dyskeratosis, scattered

superficial dermal neutrophils,
vacuolar interface changes,

apoptotic keratinocytes

Increased VEGF-C
expression [193]

Inflammatory
bowel disease Crohn’s disease, ulcerative colitis Increased lymphatic

vessel density

Impaired
VEGFC/VEGFR3

axis signaling
[194–200]

Allograft Transplant Rejection Clinical Manifestations Histopathologic Findings Proposed VEGFR3 Related
Molecular Pathology Selected References

Corneal transplant
rejection

Progressive end-organ dysfunction,
corneal edema, anterior chamber

inflammation, increased
intraocular pressure

Increased pathologic
lymphangiogenesis

Increased VEGFR3 activation;
galectin-8-mediated integrin-

podoplanin-VEGFR3 crosstalk
[162,163,166–168]

Renal allograft rejection
Malaise, fever, oliguria, graft pain

or tenderness, progressive
end-organ dysfunction

Endothelial cell swelling and
inflammation, dilated

peri-tubular capillaries,
thrombotic microangiopathy,

subendothelial widening
(acute), tubular hypertrophy,

interstitial fibrosis,
mononuclear inflammatory

cell infiltrate (chronic)

Increased VEGFR3, VEGF-D,
mTORC1 activation [169,170]

Cardiac
allograft rejection

Arterial luminal occlusion,
diminished cardiac

output, hypotension,
mechanical abnormalities

CD4+ T cell, CD8+ T cell,
ED1+ macrophage,
myeloperoxidase +,

neutrophil infiltration,
perivascular infiltration,

interstitial inflammatory cells

Decreased pulmonary
lymphatic vessel density,

increased hyluronan,
fragment accumulation,
lymphocytic infiltrate

Increased VEGF-C/
VEGFR3 activation [123,171,172]

Pulmonary
allograft rejection

Dyspnea, cough, sputum
production, respiratory

distress (acute)

Insufficient VEGF-C/
VEGFR3 activation [174]

Obesity/
metabolic syndrome

Hypertension, hyperglycemia,
visceral adiposity, dyslipidemia

Leaky lymphatics, impaired
lymph drainage, lymphatic

fluid stasis

Prox-1 mutations, increased
adipose tissue and serum
VEGF-C levels, reduced

VEGFR3-AKT-eNOS
activation, impaired LEC

CD36 activity

[141–144,150,154,157,158]

Secondary/Acquired
Lymphedema Clinical Manifestations Histopathologic Findings Proposed VEGFR3-Related

Molecular Pathology Selected References

Breast-cancer-related
lymphedema (BCRL)

Subcutaneous lymphatic fluid
stasis and accumulation,

fibroadipose skin deposition,
dermal thickening

CD4+ T cell infiltration,
fibrosis, immature

hyperplastic, leaky lymphatics

Prox-1, VEGF-C, Neuropilin-2
mutations, elevated tissue and
systemic VEGF-C expression,
SHIP2 mutation, epigenetic

microRNA alterations

[90–94,96–98,207]
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