Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Working Memory, Stroop Interference Tests, Functional EEG, and Alpha ERD
2.3. LC Tandem Mass Spectrometry of Plasma Glutamatergic Metabolites
2.4. Statistical Methods
3. Results
3.1. Demographic and Neuropsychological Data of WM Participants
3.2. Working Memory (WM) Results
3.3. Stroop Task Results
4. Discussion
4.1. Working Memory
4.2. Stroop Task
4.3. Summarized Findings
4.4. Limitations
4.5. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassani, R.; Estarellas, M.; San-Martin, R.; Fraga, F.J.; Falk, T.H. Systematic Review on Resting-State EEG for Alzheimer’s Disease Diagnosis and Progression Assessment. Dis. Markers 2018, 2018, 5174815. [Google Scholar] [CrossRef] [PubMed]
- Harrington, M.G.; Chiang, J.; Pogoda, J.M.; Gomez, M.; Thomas, K.; Marion, S.D.; Miller, K.J.; Siddarth, P.; Yi, X.; Zhou, F.; et al. Executive function changes before memory in preclinical Alzheimer’s pathology: A prospective, cross-sectional, case control study. PLoS ONE 2013, 8, e79378. [Google Scholar] [CrossRef] [PubMed]
- Lloret, A.; Esteve, D.; Lloret, M.A.; Cervera-Ferri, A.; Lopez, B.; Nepomuceno, M.; Monllor, P. When Does Alzheimer’s Disease Really Start? The Role of Biomarkers. Int. J. Mol. Sci. 2019, 20, 5536. [Google Scholar] [CrossRef] [PubMed]
- Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013, 15, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Yener, G.G.; Basar, E. Biomarkers in Alzheimer’s disease with a special emphasis on event-related oscillatory responses. Suppl. Clin. Neurophysiol. 2013, 62, 237–273. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 7, 1161. [Google Scholar] [CrossRef] [PubMed]
- Crystal, H.; Dickson, D.; Fuld, P.; Masur, D.; Scott, R.; Mehler, M.; Masdeu, J.; Kawas, C.; Aronson, M.; Wolfson, L. Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 1988, 38, 1682–1687. [Google Scholar] [CrossRef] [PubMed]
- Iacono, D.; Markesbery, W.R.; Gross, M.; Pletnikova, O.; Rudow, G.; Zandi, P.; Troncoso, J.C. The Nun study: Clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology 2009, 73, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.O.; Aakre, J.A.; Kremers, W.K.; Vassilaki, M.; Knopman, D.S.; Mielke, M.M.; Alhurani, R.; Geda, Y.E.; Machulda, M.M.; Coloma, P.; et al. Prevalence and Outcomes of Amyloid Positivity Among Persons without Dementia in a Longitudinal, Population-Based Setting. JAMA Neurol. 2018, 75, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Fagan, A.M.; Shaw, L.M.; Xiong, C.; Vanderstichele, H.; Mintun, M.A.; Trojanowski, J.Q.; Coart, E.; Morris, J.C.; Holtzman, D.M. Comparison of analytical platforms for cerebrospinal fluid measures of beta-amyloid 1-42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch. Neurol. 2011, 68, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Bukke, V.N.; Archana, M.; Villani, R.; Romano, A.D.; Wawrzyniak, A.; Balawender, K.; Orkisz, S.; Beggiato, S.; Serviddio, G.; Cassano, T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. Int. J. Mol. Sci. 2020, 21, 7452. [Google Scholar] [CrossRef]
- Bai, X.; Edden, R.A.; Gao, F.; Wang, G.; Wu, L.; Zhao, B.; Wang, M.; Chan, Q.; Chen, W.; Barker, P.B. Decreased gamma-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease. J. Magn. Reson. Imaging 2015, 41, 1326–1331. [Google Scholar] [CrossRef]
- Govindpani, K.; Calvo-Flores Guzman, B.; Vinnakota, C.; Waldvogel, H.J.; Faull, R.L.; Kwakowsky, A. Towards a Better Understanding of GABAergic Remodeling in Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1813. [Google Scholar] [CrossRef] [PubMed]
- Goutagny, R.; Krantic, S. Hippocampal oscillatory activity in Alzheimer’s disease: Toward the identification of early biomarkers? Aging Dis. 2013, 4, 134–140. [Google Scholar] [PubMed]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Kim, H. Glutamine as an immunonutrient. Yonsei Med. J. 2011, 52, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Pelkey, K.A.; Chittajallu, R.; Craig, M.T.; Tricoire, L.; Wester, J.C.; McBain, C.J. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017, 97, 1619–1747. [Google Scholar] [CrossRef]
- Andersen, J.V.; Markussen, K.H.; Jakobsen, E.; Schousboe, A.; Waagepetersen, H.S.; Rosenberg, P.A.; Aldana, B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021, 196, 108719. [Google Scholar] [CrossRef]
- Jawhar, S.; Wirths, O.; Bayer, T.A. Pyroglutamate amyloid-beta (Abeta): A hatchet man in Alzheimer disease. J. Biol. Chem. 2011, 286, 38825–38832. [Google Scholar] [CrossRef] [PubMed]
- Al-Qazzaz, N.K.; Ali, S.H.; Ahmad, S.A.; Chellappan, K.; Islam, M.S.; Escudero, J. Role of EEG as biomarker in the early detection and classification of dementia. Sci. World J. 2014, 2014, 906038. [Google Scholar] [CrossRef] [PubMed]
- Begleiter, H.; Porjesz, B. Genetics of human brain oscillations. Int. J. Psychophysiol. 2006, 60, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Rochart, R.; Liu, Q.; Fonteh, A.N.; Harrington, M.G.; Arakaki, X. Compromised Behavior and Gamma Power During Working Memory in Cognitively Healthy Individuals with Abnormal CSF Amyloid/Tau. Front. Aging Neurosci. 2020, 12, 574214. [Google Scholar] [CrossRef]
- Arakaki, X.; Hung, S.M.; Rochart, R.; Fonteh, A.N.; Harrington, M.G. Alpha desynchronization during Stroop test unmasks cognitively healthy individuals with abnormal CSF Amyloid/Tau. Neurobiol. Aging 2022, 112, 87–101. [Google Scholar] [CrossRef]
- Zani, A.; Tumminelli, C.; Proverbio, A.M. Electroencephalogram (EEG) Alpha Power as a Marker of Visuospatial Attention Orienting and Suppression in Normoxia and Hypoxia. An Exploratory Study. Brain Sci. 2020, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Nakao, T.; Xu, J.; Qin, P.; Chaves, P.; Heinzel, A.; Duncan, N.; Lane, T.; Yen, N.S.; Tsai, S.Y.; et al. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on “rest-self overlap”. Soc. Neurosci. 2016, 11, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Arrubla, J.; Farrher, E.; Strippelmann, J.; Tse, D.H.Y.; Grinberg, F.; Shah, N.J.; Neuner, I. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J. Neurosci. Res. 2017, 95, 1796–1808. [Google Scholar] [CrossRef]
- Curic, S.; Leicht, G.; Thiebes, S.; Andreou, C.; Polomac, N.; Eichler, I.C.; Eichler, L.; Zollner, C.; Gallinat, J.; Steinmann, S.; et al. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 2019, 44, 1239–1246. [Google Scholar] [CrossRef]
- Wyss, C.; Tse, D.H.Y.; Kometer, M.; Dammers, J.; Achermann, R.; Shah, N.J.; Kawohl, W.; Neuner, I. GABA metabolism and its role in gamma-band oscillatory activity during auditory processing: An MRS and EEG study. Hum. Brain Mapp. 2017, 38, 3975–3987. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.E.; Summerfelt, A.; Buchanan, R.W.; O’Donnell, P.; Thaker, G.K.; Weiler, M.A.; Lahti, A.C. Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 2010, 35, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Plourde, G.; Baribeau, J.; Bonhomme, V. Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans. Br. J. Anaesth. 1997, 78, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Sanacora, G.; Smith, M.A.; Pathak, S.; Su, H.L.; Boeijinga, P.H.; McCarthy, D.J.; Quirk, M.C. Lanicemine: A low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol. Psychiatry 2014, 19, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Wilder, C.; Moncrieffe, K.; Nolty, A.; Arakaki, X.; Fonteh, A.N.; Harrington, M.G. Boston Naming Test predicts deterioration of cerebrospinal fluid biomarkers in pre-symptomatic Alzheimer’s disease. FASEB J. 2018, 32, 545.1. [Google Scholar] [CrossRef]
- Crum, R.M.; Anthony, J.C.; Bassett, S.S.; Folstein, M.F. Population-based norms for the Mini-Mental State Examination by age and educational level. JAMA 1993, 269, 2386–2391. [Google Scholar] [CrossRef] [PubMed]
- Arakaki, X.; Lee, R.; King, K.S.; Fonteh, A.N.; Harrington, M.G. Alpha desynchronization during simple working memory unmasks pathological aging in cognitively healthy individuals. PLoS ONE 2019, 14, e0208517. [Google Scholar] [CrossRef] [PubMed]
- Jalalvandi, M.; ZahediNiya, M.; Kargar, J.; A Karimi, S.; Sharini, H.; Goodarzi, N. Brain Functional Mechanisms in Attentional Processing Following Modified Conflict Stroop Task. J. Biomed. Phys. Eng. 2020, 10, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Morawski, M.; Schilling, S.; Kreuzberger, M.; Waniek, A.; Jager, C.; Koch, B.; Cynis, H.; Kehlen, A.; Arendt, T.; Hartlage-Rubsamen, M.; et al. Glutaminyl cyclase in human cortex: Correlation with (pGlu)-amyloid-beta load and cognitive decline in Alzheimer’s disease. J. Alzheimer’s Dis. 2014, 39, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Michno, W.; Nystrom, S.; Wehrli, P.; Lashley, T.; Brinkmalm, G.; Guerard, L.; Syvanen, S.; Sehlin, D.; Kaya, I.; Brinet, D.; et al. Pyroglutamation of amyloid-betax-42 (Abetax-42) followed by Abeta1-40 deposition underlies plaque polymorphism in progressing Alzheimer’s disease pathology. J. Biol. Chem. 2019, 294, 6719–6732. [Google Scholar] [CrossRef]
- Gunn, A.P.; Wong, B.X.; McLean, C.; Fowler, C.; Barnard, P.J.; Duce, J.A.; Roberts, B.R.; Group, A.R. Increased glutaminyl cyclase activity in brains of Alzheimer’s disease individuals. J. Neurochem. 2021, 156, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Hartlage-Rubsamen, M.; Bluhm, A.; Moceri, S.; Machner, L.; Koppen, J.; Schenk, M.; Hilbrich, I.; Holzer, M.; Weidenfeller, M.; Richter, F.; et al. A glutaminyl cyclase-catalyzed alpha-synuclein modification identified in human synucleinopathies. Acta Neuropathol. 2021, 142, 399–421. [Google Scholar] [CrossRef] [PubMed]
- Bayer, T.A. Pyroglutamate Abeta cascade as drug target in Alzheimer’s disease. Mol. Psychiatry 2022, 27, 1880–1885. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.T.; Bolognin, S.; Zanatta, C.; Donatelli, L.; Innamorati, G.; Pampanin, M.; Zanusso, G.; Zatta, P.; Dalle Carbonare, L. Increased glutaminyl cyclase expression in peripheral blood of Alzheimer’s disease patients. J. Alzheimer’s Dis. 2013, 34, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.P.; Masters, C.L.; Cherny, R.A. Pyroglutamate-Abeta: Role in the natural history of Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2010, 42, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
- Caccamo, A.; Oddo, S.; Billings, L.M.; Green, K.N.; Martinez-Coria, H.; Fisher, A.; LaFerla, F.M. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 2006, 49, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A. Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 2008, 5, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Zeisel, S.H.; Mar, M.H.; Sadler, T.W. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002, 16, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.H.; Whitcomb, D.J.; Park, S.J.; Martinez-Perez, C.; Barbati, S.A.; Mitchell, S.J.; Cho, K. M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer’s disease pathology. Brain Commun. 2020, 2, fcaa058. [Google Scholar] [CrossRef]
- Roy, R.G.; Mandal, P.K.; Maroon, J.C. Oxidative Stress Occurs Prior to Amyloid Abeta Plaque Formation and Tau Phosphorylation in Alzheimer’s Disease: Role of Glutathione and Metal Ions. ACS Chem. Neurosci. 2023, 14, 2944–2954. [Google Scholar] [CrossRef]
- Mandal, P.K.; Roy, R.G.; Samkaria, A. Oxidative Stress: Glutathione and Its Potential to Protect Methionine-35 of Abeta Peptide from Oxidation. ACS Omega 2022, 7, 27052–27061. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.K.; Saharan, S.; Tripathi, M.; Murari, G. Brain glutathione levels--a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol. Psychiatry 2015, 78, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.K.; Tripathi, M.; Sugunan, S. Brain oxidative stress: Detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 2012, 417, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res. 2020, 45, 1461–1480. [Google Scholar] [CrossRef] [PubMed]
- Tamagno, E.; Guglielmotto, M.; Vasciaveo, V.; Tabaton, M. Oxidative Stress and Beta Amyloid in Alzheimer’s Disease. Which Comes First: The Chicken or the Egg? Antioxidants 2021, 10, 1479. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2010, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Kandlur, A.; Satyamoorthy, K.; Gangadharan, G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front. Mol. Neurosci. 2020, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.M. Oxidative stress-A direct bridge to central nervous system homeostatic dysfunction and Alzheimer’s disease. Cell Biochem. Funct. 2022, 40, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Bustillo, J.R.; Upston, J.; Mayer, E.G.; Jones, T.; Maudsley, A.A.; Gasparovic, C.; Tohen, M.; Lenroot, R. Glutamatergic hypo-function in the left superior and middle temporal gyri in early schizophrenia: A data-driven three-dimensional proton spectroscopic imaging study. Neuropsychopharmacology 2020, 45, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Volk, C.; Jaramillo, V.; Studler, M.; Furrer, M.; O’Gorman Tuura, R.L.; Huber, R. Diurnal changes in human brain glutamate + glutamine levels in the course of development and their relationship to sleep. Neuroimage 2019, 196, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.; Yu, S.; Wong, W.; McGeer, E.G.; McGeer, P.L. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J. Alzheimer’s Dis. 2013, 33, 1073–1088. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef] [PubMed]
- Scalise, M.; Pochini, L.; Galluccio, M.; Indiveri, C. Glutamine transport. From energy supply to sensing and beyond. Biochim. Biophys. Acta 2016, 1857, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; He Yang, X.Y.; Healy-Louie, G.; Schulz, H.; Elzinga, M. Nucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon. J. Biol. Chem. 1991, 266, 16255. [Google Scholar] [CrossRef]
- Wittnam, J.L.; Portelius, E.; Zetterberg, H.; Gustavsson, M.K.; Schilling, S.; Koch, B.; Demuth, H.U.; Blennow, K.; Wirths, O.; Bayer, T.A. Pyroglutamate amyloid beta (Abeta) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J. Biol. Chem. 2012, 287, 8154–8162. [Google Scholar] [CrossRef] [PubMed]
- Wirths, O.; Breyhan, H.; Cynis, H.; Schilling, S.; Demuth, H.U.; Bayer, T.A. Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol. 2009, 118, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Biria, M.; Banca, P.; Healy, M.P.; Keser, E.; Sawiak, S.J.; Rodgers, C.T.; Rua, C.; de Souza, A.; Marzuki, A.A.; Sule, A.; et al. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat. Commun. 2023, 14, 3324. [Google Scholar] [CrossRef]
Amino Acid | MW (g/mol) | Precursor Ion H+ (m/z) | Products Ions H+ (m/z) |
---|---|---|---|
Gln | 146.2 | 275.3 | 172, 84.2, 215 |
Glu | 147.1 | 318 | 230, 170 |
PGlu | 129.1 | 172.0 | 130.0, 84.2 |
GABA | 103.1 | 232.2 | 112.2, 200.3 |
Homoarginine (IS) | 188.2 | 317.0 | 170.0 |
Homophenylalanine (IS) | 179.2 | 308.0 | 117.1 |
CH-NATs | CH-PATs | p-Value | |
---|---|---|---|
Age (yrs.) | 75.4 (6.7) | 79.1 (7.4) | 0.875 |
Gender (M/F) | 2/6 | 3/5 | >0.999 # |
Education (yrs.) | 16.8 (1.9) | 17.6 (2) | 0.875 |
Aβ42 Level (pg/mL) | 1003.7 (286.0) | 421.5 (187.1) | 0.004 ** |
Total Tau Level (pg/mL) | 244.1 (78.3) | 253.1 (104.3) | 0.979 |
Aβ42/Tau | 4.6 (1.8) | 1.8 (0.6) | 0.001 ** |
MMSE-7 | 29.1 (1.4) | 29.1 (0.8) | 0.934 |
Molecule (pg/mL) | F | C | P | LT | RT | O |
---|---|---|---|---|---|---|
GABA | r = 0.023 p = 0.956 | r = 0.18 p = 0.672 | r = −0.16 p = 0.714 | r = 0.06 p = 0.887 | r = 0.14 p = 0.746 | r = −0.21 p = 0.612 |
r = −0.76 p = 0.028 | r = −0.63 p = 0.096 | r = −0.52 p = 0.182 | r = −0.44 p = 0.277 | r = −0.76 p = 0.028 * | r = −0.58 p = 0.130 | |
PGlu | r = −0.93 p = 0.001 ** | r = −0.89 p = 0.003 ** | r = −0.73 p = 0.041 * | r = −0.94 p = 0.001 ** | r = −0.96 p = 0.0001 ** | r = −0.74 p = 0.037 * |
r = −0.61 p = 0.109 | r = −0.40 p = 0.326 | r = −0.092 p = 0.830 | r = −0.42 p = 0.295 | r = −0.21 p = 0.623 | r = −0.37 p = 0.362 | |
Gln | r = 0.95 p = 0.0003 ** | r = 0.82 p = 0.012 * | r = 0.85 p = 0.008 * | r = 0.92 p = 0.001 ** | r = 0.87 p = 0.005 ** | r = 0.88 p = 0.004 ** |
r = −0.43 p = 0.297 | r = −0.28 p = 0.497 | r = −0.28 p = 0.497 | r = −0.28 p = 0.504 | r = −0.36 p = 0.379 | r = −0.29 p = 0.481 | |
Glu | r = −0.17 p = 0.682 | r = 0.052 p = 0.902 | r = −0.21 p = 0.614 | r = −0.21 p = 0.616 | r = −0.06 p = 0.888 | r = −0.43 p = 0.291 |
r = −0.67 p = 0.067 | r = −0.58 p = 0.129 | r = −0.38 p = 0.354 | r = −0.71 p = 0.050 * | r = −0.52 p = 0.188 | r = −0.50 p = 0.206 | |
Gln/Glu | r = 0.28 p = 0.502 | r = 0.013 p = 0.975 | r = 0.27 p = 0.523 | r = 0.26 p = 0.542 | r = 0.11 p = 0.786 | r = 0.44 p = 0.280 |
r = 0.45 p = 0.264 | r = 0.40 p = 0.323 | r = 0.12 p = 0.775 | r = 0.38 p = 0.358 | r = 0.24 p = 0.559 | r = 0.34 p = 0.414 | |
Gln/PGlu | r = 0.80 p = 0.018 * | r = 0.87 p = 0.005 ** | r = 0.67 p = 0.071 | r = 0.76 p = 0.030 * | r = 0.80 p = 0.018 * | r = 0.63 p = 0.097 |
r = 0.26 p = 0.542 | r = 0.13 p = 0.763 | r = −0.27 p = 0.521 | r = 0.11 p = 0.799 | r = −0.26 p = 0.540 | r = 0.074 p = 0.861 | |
Gln/GABA | r = 0.73 p = 0.038 | r = 0.57 p = 0.139 | r = 0.76 p = 0.027 | r = 0.70 p = 0.052 | r = 0.62 p = 0.104 | r = 0.82 p = 0.013 * |
r = −0.13 p = 0.760 | r = −0.022 p = 0.958 | r = −0.10 p = 0.813 | r = −0.091 p = 0.831 | r = −0.086 p = 0.840 | r = −0.063 p = 0.882 | |
PGlu/Glu | r = −0.49 p = 0.219 | r = −0.71 p = 0.050 | r = −0.44 p = 0.277 | r = −0.53 p = 0.179 | r = −0.61 p = 0.108 | r = −0.32 p = 0.436 |
r = 0.14 p = 0.742 | r = 0.35 p = 0.400 | r = 0.52 p = 0.184 | r = 0.46 p = 0.252 | r = 0.56 p = 0.153 | r = 0.27 p = 0.518 | |
PGlu/GABA | r = −0.77 p = 0.025 * | r = −0.85 p = 0.008 * | r = −0.61 p = 0.112 | r = −0.80 p = 0.018 * | r = −0.85 p = 0.007 * | r = −0.56 p = 0.149 |
r = −0.43 p = 0.292 | r = −0.23 p = 0.584 | r = 0.053 p = 0.902 | r = −0.25 p = 0.547 | r = −0.022 p = 0.959 | r = −0.23 p = 0.585 | |
Glu/GABA | r = −0.080 p = 0.851 | r = 0.12 p = 0.781 | r = −0.078 p = 0.855 | r = −0.12 p = 0.774 | r = 0.013 p = 0.976 | r = −0.29 p = 0.491 |
r = −0.63 p = 0.097 | r = −0.57 p = 0.143 | r = −0.36 p = 0.384 | r = −0.71 p = 0.047 * | r = −0.46 p = 0.248 | r = −0.49 p = 0.223 |
CH-NAT | CH-PAT | p-Value | |
---|---|---|---|
Age (yrs.) | 73.2 (2.0) | 79.7 (5.8) | 0.162 |
Gender (M/F) | 2/3 | 3/4 | >0.999 # |
Education (yrs.) | 16.8 (0.8) | 16.4 (2.1) | 0.969 |
Aβ42 Level (pg/mL) | 919.6 (249.3) | 455.0 (218.7) | 0.069 |
Total Tau Level (pg/mL) | 202.2 (62.5) | 334.3 (139.9) | 0.218 |
Aβ42/Tau | 4.7 (1.2) | 1.5 (0.6) | 0.020 * |
MMSE-7 | 28.8 (1.3) | 28.8 (1.0) | >0.999 |
Molecule (pg/mL) | F | C | P | LT | RT | O |
---|---|---|---|---|---|---|
GABA | r = 0.83 p = 0.171 | r = 0.61 p = 0.386 | r = 0.84 p = 0.156 | r = 0.57 p = 0.434 | r = 0.86 p = 0.144 | r = 0.35 p = 0.654 |
r = −0.08 p = 0.871 | r = −0.20 p = 0.662 | r = −0.13 p = 0.785 | r = −0.35 p = 0.443 | r = −0.11 p = 0.821 | r = −0.34 p = 0.458 | |
PGlu | r = 0.59 p = 0.410 | r = 0.81 p = 0.195 | r = 0.55 p = 0.451 | r = 0.83 p = 0.170 | r = −0.48 p = 0.517 | r = 0.93 p = 0.068 |
r = −0.54 p = 0.215 | r = −0.36 p = 0.427 | r = −0.36 p = 0.424 | r = −0.34 p = 0.457 | r = −0.46 p = 0.304 | r = −0.18 p = 0.696 | |
Gln | r = −0.79 p = 0.209 | r = −0.94 p = 0.059 | r = −0.71 p = 0.289 | r = −0.96 p = 0.037 * | r = 0.17 p = 0.827 | r = −0.90 p = 0.102 |
r = −0.62 p = 0.137 | r = −0.53 p = 0.219 | r = −0.62 p = 0.135 | r = −0.65 p = 0.112 | r = −0.50 p = 0.248 | r = −0.52 p = 0.231 | |
Glu | r = −0.11 p = 0.887 | r = 0.14 p = 0.863 | r = −0.08 p = 0.922 | r = 0.16 p = 0.839 | r = −0.87 p = 0.128 | r = 0.51 p = 0.489 |
r = 0.15 p = 0.744 | r = 0.25 p = 0.589 | r = 0.28 p = 0.539 | r = 0.17 p = 0.717 | r = 0.13 p = 0.784 | r = 0.37 p = 0.414 | |
Gln/Glu | r = −0.13 p = 0.872 | r = −0.42 p = 0.581 | r = −0.10 p = 0.905 | r = −0.46 p = 0.540 | r = 0.84 p = 0.156 | r = −0.68 p = 0.321 |
r = −0.25 p = 0.593 | r = −0.16 p = 0.727 | r = −0.28 p = 0.540 | r = −0.24 p = 0.602 | r = −0.12 p = 0.799 | r = −0.14 p = 0.758 | |
Gln/PGlu | r = −0.80 p = 0.198 | r = −0.91 p = 0.087 | r = −0.69 p = 0.307 | r = −0.94 p = 0.061 | r = 0.002 p = 0.998 | r = −0.76 p = 0.241 |
r = 0.09 p = 0.843 | r = 0.05 p = 0.922 | r = −0.02 p = 0.973 | r = −0.11 p = 0.813 | r = 0.03 p = 0.954 | r = −0.12 p = 0.801 | |
Gln/GABA | r = −0.87 p = 0.134 | r = −0.97 p = 0.027 * | r = −0.79 p = 0.211 | r = −0.99 p = 0.012 * | r = 0.02 p = 0.976 | r = −0.88 p = 0.118 |
r = −0.54 p = 0.216 | r = −0.41 p = 0.366 | r = −0.53 p = 0.225 | r = −0.44 p = 0.318 | r = −0.39 p = 0.382 | r = −0.34 p = 0.449 | |
PGlu/Glu | r = 0.87 p = 0.128 | r = 0.98 p = 0.021 * | r = 0.80 p = 0.197 | r = 0.99 p = 0.008 * | r = −0.03 p = 0.970 | r = 0.90 p = 0.098 |
r = −0.60 p = 0.153 | r = −0.42 p = 0.344 | r = −0.48 p = 0.275 | r = −0.32 p = 0.491 | r = −0.41 p = 0.365 | r = −0.25 p = 0.593 | |
PGlu/GABA | r = 0.56 p = 0.439 | r = 0.78 p = 0.216 | r = 0.52 p = 0.481 | r = 0.81 p = 0.189 | r = −0.51 p = 0.487 | r = 0.92 p = 0.080 |
r = −0.39 p = 0.384 | r = −0.18 p = 0.698 | r = −0.20 p = 0.660 | r = −0.13 p = 0.785 | r = −0.30 p = 0.510 | r = −0.02 p = 0.962 | |
Glu/GABA | r = −0.24 p = 0.765 | r = 0.01 p = 0.988 | r = −0.19 p = 0.805 | r = 0.04 p = 0.964 | r = −0.90 p = 0.103 | r = 0.40 p = 0.600 |
r = 0.20 p = 0.668 | r = 0.33 p = 0.469 | r = 0.34 p = 0.453 | r = 0.29 p = 0.533 | r = 0.18 p = 0.698 | r = 0.46 p = 0.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leong, V.S.; Yu, J.; Castor, K.; Al-Ezzi, A.; Arakaki, X.; Fonteh, A.N. Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer’s Disease. Cells 2024, 13, 970. https://doi.org/10.3390/cells13110970
Leong VS, Yu J, Castor K, Al-Ezzi A, Arakaki X, Fonteh AN. Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer’s Disease. Cells. 2024; 13(11):970. https://doi.org/10.3390/cells13110970
Chicago/Turabian StyleLeong, Vincent Sonny, Jiaquan Yu, Katherine Castor, Abdulhakim Al-Ezzi, Xianghong Arakaki, and Alfred Nji Fonteh. 2024. "Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer’s Disease" Cells 13, no. 11: 970. https://doi.org/10.3390/cells13110970
APA StyleLeong, V. S., Yu, J., Castor, K., Al-Ezzi, A., Arakaki, X., & Fonteh, A. N. (2024). Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer’s Disease. Cells, 13(11), 970. https://doi.org/10.3390/cells13110970