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Supplementary Figure S1. Experimental setup. (A) siPC1-1433 and siPC2-1644 are a second set of
PC1- and PC2-targeting siRNAs (respectively). Transfection of either siPC1-1433 (150 nM) or PC2-
1644 (100 nM) enhanced TAGLN expression. qPCR data are shown. (B) MRTF-A mRNA was quan-
tified by RT-qPCR. siPC1 or siPC2 knockdown did not alter the efficiency of MRTF-A silencing (n =
3, n.s. non-significant, ** p < 0.01, ***p<0.001).



Biological processes
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Supplementary Figure S2. PKD-linked cytoskeletal changes are regulated by MRTEF. Differentially
expressed genes were determined as detailed in Supplementary Methods, and were subjected to
enrichment analysis of Biological Processes (A) and Cellular Compartment (B), using ClusterPro-
filer in R. Categories that were depleted in siPC1 and siPC2 conditions (compared to siNR) are
shown in green. Further, selected top categories that were enriched in siPC1 or siPC2 conditions
(compared to siNR) are listed in the siPC1 and siPC2 columns. Significant decreases compared to
these in siMRTF-treated samples are shown in the next two columns. Note that biological processes
that overlap between PC knockdown conditions and the siPC+siMRTEF-A conditions were related
to cytoskeleton organization and cell contractility (red rectangles).



Genes and GO categories underrepresented upon PC loss
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Biological processes downregulated by both PC1- and PC2 loss
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Biological processes downregulated by PC1-loss and partially restored by MRTF-A downregulation

Biological processes downregulated by PC2-loss and partially restored by MRTF-A downregulation
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Supplementary Figure S3. PC1 and PC2 loss-specific underrepresented biological processes and
their MRTF-dependence. Top panel: Epithelial cells knocked down for PC1 and PC2 transcription-
ally underrepresented several metabolic pathways. Lower panels: Out of these, MRTF-A silencing
partially mitigates amino acid transport across plasma membrane (siPC1).



Selectively upregulated blologlcal processes by PC1 loss
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MRTF-A- dependent subset of the above
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Selectively upregulated blologlcal processes by PC1 loss
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MRTF-A-dependent subset of the above
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Supplementary Figure S4. PC1 and PC2 loss-specific biological processes. DEG searched for tran-
scripts that were upregulated upon PC1 loss but were unaffected by PC2 loss, or vice versa. For
PC1, loss-related biological processes centered around DNA replication and transcription (top
panel). Within this transcript set, MRTF-dependent genes were grouped in DNA recombination-
related repair. Interestingly, PC2-specific upregulated categories remained to be linked to cell pro-
jection/cytoskeletal reorganization/cell motility. The MRTE-dependent subset is predicted to regu-

late the actin cytoskeleton, cell contractility, and muscle development.
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Supplementary Figure S5. Expression analysis methods. (A) ATM within the Area Quantification
Module measured MRTF-A/DAB signal and colored each pixel according to its DAB optical density.
Yellow to red color gradient corresponds to increasing MRTE-A expression, as indicated. Green and
yellow masks show selected normal tubules without or with lumen, respectively. Red masks depict
visibly enlarged tubules; lumen measurements are given in pm. Scale bar corresponds to all panels.
(B) Automated Area Quantification Module was trained to recognize the hematoxylin-stained nu-
clei and to depict MRTEF-A expression, as in (A, middle row panels). The bottom panels show a
superimposed image of the nuclear mask and the MRTF-A-specific stain. Here red indicates nuclei,
green indicates MRTF-A and yellow depicts nuclear MRTE-A.



MRTF-A IHC
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Supplementary Figure S6. ADPKD patients’ cystic epithelium shows enhanced MRTEF-A expres-
sion. Five ADPKD patients (patient R, P, L, K, and W) and control (normal kidney tissue from a
clear cell renal cell carcinoma patient) specimens were assessed for MRTF-A expression by IHC.
Nuclear expression of MRTF-A was observed in all ADPKD patients, albeit the extent varied. The
cystic epithelial wall showed enhanced MRTF expression compared to the normal tubules within
the same patient’s specimens and to the normal tubules of the RCC patient. Scale bar corresponds
to all panels.
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Supplementary Figure S7. Distribution curves show the frequency of nuclei with increasing MRTF-
A expression. The inner cortex, outer cortex, and medulla were assessed separately in Pkd2 WS25/-
(3 months old, n = 5) and control Pkd2 WS25/+ (3 months old, n = 5) animals.



