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Abstract: Post-surgical abdominal adhesions, although poorly understood, are highly prevalent.
The molecular processes underlying their formation remain elusive. This review aims to assess
the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative
peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword
or medical subject heading (MeSH) search for all original articles and reviews was performed in
PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after
abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were
evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search
yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and
were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP)
checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special
focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions.
Current interventional strategies are examined, including the use of mechanical barriers, advances in
regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the
potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion
development. Evidence suggests that in addition to their role in innate defense against infections and
autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after
surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations
for researchers. Continued research is vital to fully elucidate the relationship between NETs and
post-surgical adhesion formation to develop effective treatments.

Keywords: peritoneal adhesion; surgery; neutrophil extracellular traps; DNase1; DNase1L3

1. Background

As many as 93–100% of patients develop adhesions after abdominal surgery, which
can result in intestinal obstruction, pelvic pain, and infertility complications [1]. These adhe-
sions may respond naturally to tissue injury during surgery, inflammation, or infection [2,3].
The formation of adhesions is a complex process involving multiple cellular and molecular
events, including coagulation, fibrinolysis, inflammation, angiogenesis, and extracellular
matrix (ECM) remodeling [3,4]. Neutrophil extracellular traps (NETs) are structures com-
posed of deoxyribonucleic acid (DNA), histones, and granule proteins that are released
by neutrophils [5]. NET formation is a unique process in immune defense in humans.
NETs were initially discovered as a defense mechanism against microbial infections as they
can trap and neutralize pathogens [6]. However, recent research has suggested that NETs
can also play a role in non-infectious conditions, including inflammation, autoimmune
diseases, and tissue repair [7]. The relationship between NETs and adhesions lies in their
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involvement in the host response to tissue injury and inflammation [8]. When tissue injury
occurs, neutrophils are rapidly recruited to the site of the injury or infection [9]. Upon
activation, neutrophils can release NETs to neutralize pathogens; however, NETs can also
contribute to tissue damage and inflammation due to cytotoxic components [10,11]. Several
studies suggest that the recruitment and activation of neutrophils at the site of injury may
contribute to adhesion formation through the release of pro-inflammatory mediators and
the promotion of fibroblast activation [12–14], raising further questions on their particular
significance. Duan Z et al.’s work revealed that measuring the neutrophil extracellular trap
formation index (NFI) in postoperative drainage fluid offers a more sensitive and specific
method for early prediction of deep surgical site infections compared to traditional serum
infection indicators like CRP and PCT [15]. Consequently, the objective of this review was
to examine research focusing on the role that neutrophils play in abdominal adhesions.
Understanding this relationship could lead to novel therapeutic strategies for preventing
or treating postoperative adhesions.

2. Review
2.1. Search Strategy

Search strategy and selection criteria: This review was performed according to PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [16]. Elec-
tronic databases, including PubMed and Google Scholar, were systematically searched
using the keywords or medical subject headings (MeSHs) “Tissue Adhesion” (or “Surgical
Adhesion”, “Surgery-Induced Tissue Adhesions”, “Surgical Adhesion”, “Surgery-Induced
Tissue Adhesion”) and “Extracellular Traps” (or “Neutrophil Extracellular Traps”, “Ex-
tracellular DNA Traps”, “NETs (Neutrophil Extracellular Traps)”). The literature search
was conducted with a timeframe from January 2003 to May 2023 and the search was not
restricted to specific languages. The following selection process was conducted, according
to the PRISMA 2020 checklist [16] (see also Figure 1): In the first step, duplicates were
removed. In the next step, studies were screened based on the abstract only by an inde-
pendent reviewer and finally included if they contained original data relevant to the topic.
Next, a full-text article assessment was performed for the remaining articles, and those
with an inadequate methodology and insufficient data and those lacking adhesion markers
were eliminated according to the Cochrane Risk of Bias Tool [17]. In the last step, a quality
assessment was performed for the remaining articles, adhering to the Critical Appraisal
Skills Programme (2023) (CASP) qualitative study checklist [18]; see Table 1.

Table 1. Quality assessment using Critical Appraisal Skills Programme (2023) (CASP) qualitative
study checklist.

a b c d e f g h i j

Sudo, Makoto et al. [19] Y Y Y Y Y Y Y Y Y Y
Terri, Michela et al. [20] Y Y Y Y Y Y Y Y Y Y

Sandoval, Pilar et al. [21] Y N Y Y N Y Y Y Y Y
Kanamaru, Rihito et al. [22] Y Y Y Y Y Y Y Y Y Y

Elrod, Julia et al. [23] Y Y Y Y Y Cannot tell Y Y Y Y
Hu, Qiongyu et al. [24] Y Y Y Y Y N Y Y Y Y

Jonathan M. Tsai et al. [25] Y Y Y Y Y Y Y Y Y Y

Note: (a) Was there a clear statement of the aims of the research? (b) Is a qualitative methodology appropriate?
(c) Was the research design appropriate to address the aims of the research? (d) Was the recruitment strategy
appropriate to the aims of the research? (e) Was the data collected in a way that addressed the research issue?
(f) Has the relationship between researcher and participants been adequately considered? (g) Have ethical issues
been taken into consideration? (h) Was the data analysis efficiently rigorous? (i) Is there a clear statement of
findings? (j) How valuable is the research? Y = yes; N = no.
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Figure 1. A PRISMA [16] flow diagram showing the search and selection process. The initial search
across PubMed and Google Scholar databases yielded 912 records. After the removal of duplicates, this
was refined to 709 unique articles. A review of titles and abstracts led to the exclusion of 582 articles
due to irrelevance or those not meeting the inclusion criteria. A total of 127 records underwent full-text
article assessment for eligibility and a quality assessment, finally yielding 7 articles for inclusion in our
final review.

2.2. Screening and Quality Assessment

Record identification and removal of duplicates: An initial search conducted in the
PubMed and Google Scholar databases yielded 912 records. The removal of duplicates
reduced the pool to 709 unique articles. Abstract screening: Subsequent screening of the
titles and abstracts led to the exclusion of 582 articles. The exclusion criteria were irrelevance
to the research question and non-adherence to the predefined inclusion criteria; see Figure 1.
Full-text article eligibility assessment: Further evaluation of the full-text articles resulted
in the exclusion of 109 records due to inadequate methodological description. Seven
studies were excluded for providing insufficient data, which raised concerns about their
reproducibility and reliability. Four studies were excluded because they did not utilize
specific markers for adhesion; see Figure 1.

Quality Assessment: A detailed quality assessment was conducted on the remaining
seven studies using the Critical Appraisal Skills Programme (CASP) checklist [26]. Overall,
most studies conformed to the majority of the checklist criteria; see Table 1.

Results: These 7 studies explore various aspects of NET formation and its implications,
illustrating a complex interplay of factors contributing to adhesion formation. One study
illustrates how mechanical injury to the mesothelial layer during abdominal surgery leads
to the recruitment of neutrophils and monocytes, whose formation of NETs is implicated in
the pathogenesis of peritoneal adhesions, suggesting that modulating these immune re-
sponses may prevent such occurrences [25]. Additionally, research involving gastric cancer
patients post-surgery shows that increased NET production by low-density neutrophils
facilitates tumor cell attachment and growth, proposing that DNase treatment to disrupt
these NETs could prevent peritoneal recurrence [22]. Moreover, investigations reveal that
early-recruited neutrophils release NETs that activate the STING-associated inflammatory
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response, with interventions that disrupt NETs and inhibit STING signaling markedly
reducing adhesion burden, thus identifying NET/STING pathways as potential therapeutic
targets [24]. Similarly, evidence from murine models indicates that NETs are crucial in
forming peritoneal adhesions, with DNase treatments significantly reducing these adhe-
sions, suggesting potential therapeutic approaches pending further clinical validation [23].
Furthermore, another study demonstrates that mesothelial cells in the peritoneal cavity
can undergo a mesothelial-to-mesenchymal transition, contributing to the formation of
adhesions, with the blockade of the transforming growth factor beta (TGF-β) pathway
offering a novel approach to mitigate these effects [21]. In parallel, research on peritoneal
fibrosis highlights the role of inflammation and injury from clinical events like surgery
in driving fibrosis through complex interactions among myofibroblasts, leukocytes, and
other cell types, contributing to the deterioration of the peritoneal membrane [20]. Lastly, a
study on the combined treatment with antithrombin and a PAD4 inhibitor in mice suggests
that this approach effectively reduces postoperative adhesion formation by mitigating
thrombin and NET-related processes, offering promising insights into managing surgical
outcomes [19]. Collectively, these studies not only underscore the multifaceted role of NETs
in peritoneal adhesion formation but also open avenues for targeted interventions that
could ameliorate or prevent the adverse effects of surgical interventions.

Four main parts will be discussed in more detail in the following paragraphs: the
pathogenesis of adhesions, the prevention and treatment of NETs, the potential impact of
NET inhibition on adhesion formation, and a feasibility analysis of suppressing NETs in
post-surgical adhesion.

2.3. Pathogenesis of Adhesions

Adhesions are fibrous bands between internal organs [27]. They form due to events
like coagulation, inflammation, and angiogenesis [3,28]. Adhesions can result from surgery,
trauma, or inflammatory conditions [28,29]. Upon tissue injury, the body initiates a complex
response beginning with the activation of the coagulation cascade. This cascade results
in fibrin production, forming a temporary matrix that not only stabilizes the wound but
also prevents bleeding [30–32]. As a result of injury, inflammatory mediators are released,
including cytokines, chemokines, and growth factors, which promote the recruitment of
immune cells such as neutrophils and macrophages to the injured area [33–36]. Another
critical element in this process is the mesothelium, a protective layer of cells lining the
internal organs and providing a non-adhesive surface [37]. However, when surgical injuries
disrupt this layer, there is a significant risk of adhesion formation, highlighting the delicate
balance within the body’s internal environment [37]. This disruption leads to a phenomenon
known as mesothelial-to-mesenchymal transition (MMT), whereby mesothelial cells acquire
a fibroblast-like phenotype. These transformed cells then produce extracellular matrix
(ECM) components, further contributing to adhesion formation [37–39]. Interestingly,
while fibrin deposition acts as a supportive matrix for cell migration and temporary wound
stabilization, it also plays a pivotal role in adhesion formation [40,41]. Under normal
conditions, this fibrin matrix is gradually degraded by fibrinolytic enzymes like plasmin,
which serves to prevent excessive adhesion formation [42,43]. However, an imbalance
between fibrin deposition and fibrinolysis can lead to the persistence of fibrin, thereby
promoting adhesion [43]. Furthermore, angiogenesis emerges as a critical factor in the
development of adhesions. It ensures the supply of oxygen and nutrients to the growing
fibrous tissue, underscoring the complexity of adhesion development [44,45]. Angiogenesis
is regulated by various pro- and antiangiogenic factors such as vascular endothelial growth
factor (VEGF) [46,47] and thrombospondin-1 [48–50].

A summary of the pathogenesis, mechanisms, and interventional strategies of adhesion
formation can be found in Table 2.
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Table 2. Overview of adhesion pathogenesis, mechanisms, and interventional strategies. ECM—extracellular matrix, VEGF—vascular endothelial growth factor,
siRNA—small interfering RNA, and shRNA—short hairpin RNA.

Overview of Adhesion Pathogenesis, Mechanisms, and Interventional Strategies

Aspect Description References

Etiology and Pathogenesis Adhesions, fibrous bands between organs, result from coagulation, inflammation, and angiogenesis initiated by tissue
injury from surgery, trauma, or inflammation, leading to fibrin deposition and cytokine-mediated immune activation. [3,25,27–33,35]

Fibrin Deposition and Fibrinolysis Fibrin forms a matrix for cell adhesion; imbalance due to impaired fibrinolysis promotes adhesion, as seen with
reduced plasmin activity. [40–43,51]

ECM Remodeling and Fibroblast Proliferation Fibroblasts migrate to the injury site, expanding and remodeling ECM with collagen, fibronectin, elastin,
proteoglycans, and glycoproteins, essential for adhesion maturation. [52–56]

Angiogenesis Neovascularization, essential for supplying nutrients to fibrotic tissue, is driven by factors like VEGF and inhibited
by thrombospondin-1. [44–50]

Mesothelial Cell Dysfunction Surgical trauma induces mesothelial-to-mesenchymal transition, with mesothelial cells producing ECM, facilitated by
disruptions to the protective mesothelial layer. [37–39,57,58]

Prophylactic Surgical Techniques Precision techniques, including minimally invasive surgery like laparoscopy, aim to minimize tissue trauma and
reduce foreign material use to prevent adhesions. [59–62]

Mechanical Barrier Interventions Bioresorbable films and gels, such as Seprafilm (sodium hyaluronate and carboxymethylcellulose), and hydrogels,
such as polyethylene glycol-based products, are used to prevent tissue adhesion. [63–69]

Pharmacological Interventions Anti-inflammatory drugs, corticosteroids, tissue plasminogen activators, and antiangiogenic agents are investigated
to mitigate adhesion formation. [70–74]

Regenerative Medical Approaches Stem cell therapy, specifically mesenchymal stem cells, and tissue engineering with bioactive scaffolds or hydrogels
are explored for their anti-adhesive effects. [75–80]

Targeted Molecular Therapies Molecular interventions including siRNA or shRNA for gene silencing and monoclonal antibodies targeting specific
growth factors or signaling pathways are developed to inhibit adhesion pathways. [81–87]

Barrier Implementation and Pharmacological Strategies Mechanical barriers, such as Seprafilm and pharmacological agents, are utilized during surgery to reduce adhesion
incidence, with an increasing interest in their combined roles. [88–90]

Integrated Strategy and Future Research Appropriate surgical techniques are currently the most effective prevention, with ongoing research into optimizing
barrier methods, pharmacological agents, and novel molecular and regenerative therapies. [59–62,68,91,92]
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2.4. NET Formation and Degradation

In the realm of innate immunity, neutrophil extracellular traps (NETs) serve as a
frontline defense mechanism against invading pathogens. These web-like structures are
released by activated neutrophils through a dynamic sequence of events, including nu-
clear decondensation, cytoplasmic content release, and ultimately, cell rupture—a process
collectively referred to as NETosis [93–95]. Distinct from traditional apoptosis, NETosis is
characterized by the explosive release of cellular components that ensnare and neutralize
pathogens [96–99]. The nomenclature “NETosis” merges “NET” with “apoptosis,” high-
lighting its deviation from conventional programmed cell death mechanisms. Within the
spectrum of NETosis, two primary forms are recognized: suicidal and vital NETosis [100].
Suicidal NETosis, or lytic NETosis, primarily involves a cell death program driven by the
production of reactive oxygen species (ROS), either through an NADPH oxidase (NOX)-
dependent pathway or via mitochondrial-derived ROS (mROS) from a NOX-independent
pathway [101]. Intriguingly, suicidal NETosis can also occur without the activation of NOX2,
driven instead by extracellular Ca2+ influx, which can be stimulated by agents like fungal
ionophores (e.g., nigericin, ionomycin) and granulocyte macrophage colony-stimulating
factor (GM-CSF) [3].

In contrast, vital NETosis does not result in neutrophil death. This pathway allows
neutrophils to release NETs while remaining alive and functionally active, which is crucial
during acute infections where a rapid immune response is necessary. Both mechanisms
have been well documented but serve different roles depending on the inflammatory
or infectious context, including aseptic conditions as opposed to responses to microbial
infections or in autoimmune diseases [100,102].

Specifically, the initiation of NET formation is triggered by various stimuli, including
pathogens and immune mediators such as interleukin-8 (IL-8) and lipopolysaccharide
(LPS) [103–105]. The process involves protein kinase C (PKC) activation and reactive oxygen
species (ROS) production via nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase [98,106,107]. Subsequently, increased ROS activate enzymes like neutrophil elastase
(NE), leading to chromatin decondensation aided by myeloperoxidase (MPO) [108,109].
This change, along with the formation of pores by gasdermin D (GSDMD), results in the
formation of NETs [110–112].

Peptidyl arginine deiminase 4 (PAD4) converts arginine residues on histones (proteins
that help compact DNA) into citrulline, a process known as citrullination [113]. DNA
is unfolded or decondensed as a result of this alteration in the charge distribution of
histones [114]. As a result, the transcription machinery can access DNA more easily,
which in turn affects gene expression [115]. This chromatin decondensation process is
essential for NET formation, as it allows for the re-assembling of nuclear components
with cytoplasmic granule proteins. Concurrently, GSDMD, a pore-forming protein, is
cleaved by caspases to form pores in the plasma membrane [116]. Through these pores,
the decondensed chromatin and proteins are ejected, which then form NETs that trap and
neutralize pathogens.

However, the degradation of NETs is crucial for resolving inflammation and prevent-
ing pathologies such as tissue adhesion [117–119]. The primary mechanism by which NETs
are degraded involves the action of nucleases, primarily deoxyribonucleases (DNases),
which cleave their DNA backbone of NETs [22,119]. Table 3 summarizes the critical factors
involved in NET degradation.
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Table 3. Main factors of NET degradation. SLE—systemic lupus erythematosus, DNase1—deoxyribonuclease-1, DNase1L3—deoxyribonuclease-1-like 3,
DNase2—Deoxyribonuclease-2, HUVS—hypocomplementemic urticarial vasculitis syndrome, ALI—acute lung injury, ARDS—acute respiratory distress syndrome,
DCs—dendritic cells, and MerTK—Mer tyrosine kinase.

Enzyme/Cell Type Detailed Function and Location Disease/Condition Association NET Degradation and Clearance Mechanism References

DNase1
Cleaves extracellular DNA within
NETs; crucial for NET disassembly.
Normally active in the circulation.

SLE: Patients experience NET
accumulation due to absent or

impaired DNase1 activity.

Central to the degradation process of NETs; absence
leads to severe accumulation of NETs, highlighting its

importance for immune homeostasis.
[120–122]

DNase1L3
Shares structural and functional

properties with DNase1; crucial for
extracellular NET degradation.

Linked to autoimmune diseases due
to DNase1L3 deficiency. Specific

mutations related to HUVS and SLE.

Similar to DNase1 in preventing an autoimmune
response through degradation of NETs [36,123,124]

DNase2
Functions at an acidic pH within
lysosomes; not a primary actor in

NET degradation.

Cystic fibrosis: NETs contribute to
airway obstruction; DNase2 may
degrade DNA in slightly acidic

environments.

Less effective than DNase1/L3 at degrading NETs, but
may act if airway surface pH is sufficiently acidic,

indicating a secondary role in NET clearance.
[125–128]

Macrophages, phagocytes,
and DCs

Phagocytes that engulf and digest
NETs through their

endosomal–lysosomal system.
Express receptors like MerTK for

NET recognition. DCs also remove
and degrade NETs.

ALI, ARDS, and autoimmune
responses: NETs exacerbate

inflammation.

Both cell types play crucial roles in physical
engulfment and biochemical degradation of NETs,

including the production of DNases.
[129–134]

Complement-mediated
degradation

Part of the innate immune system
that can recognize and clear NETs
once complement proteins have

been deposited.

SLE: NETs act as potent activators of
the complement system, impacting

SLE pathology.

The complement system marks NETs for phagocytic
destruction, aiding in clearance and potentially

affecting autoimmune disease progression.
[10,135–137]
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2.5. The Role of NETs in Adhesion Development

Neutrophils, especially NETs, may be essential during peritoneal adhesion. Recently,
it has been suggested that NETs serve as important scaffolds for adhesion formation [8,138].
NETs may affect peritoneal adhesions at various levels. Post-surgical adhesion formation is
a complex process involving multiple cell types and signaling pathways [3]. This complexity
originates from the consistent recruitment of immune cells [25,139] coupled with the
unchecked proliferation of fibroblasts [140,141] and mesothelial cells [142]. Neutrophils
play a pivotal role in the early stages of adhesion formation, acting as key mediators in
this complex physiological process. Dominant within the initial adhesive environment,
neutrophils regulate the release of vital mediators such as IL-8, interleukin-1 beta (IL-1β),
and ROS [143]. An essential pathway of note in this context is the ROS signaling pathway.
For instance, transmembrane and immunoglobulin domain-containing 1 (TMIGD1) has
been shown to thwart abdominal adhesion formation by mitigating oxidative stress in the
mitochondria of peritoneal mesothelial cells [144]. Neutrophil extracellular traps (NETs)
play an important role in this landscape. The concentration of NETs peaks during the
1–3 day window following surgery [25], and their persistence, extending beyond the
lifespan of neutrophils, imparts a prolonged functional importance that persists even after
neutrophil apoptosis [145]. However, it is the complex interplay between NETs and various
cellular components that emphasizes their collective importance in the postoperative milieu.
Central to this interaction is the concept of pathway interdependence, which accentuates
the synergistic relationships between cellular processes and mediators in the development
of post-surgical adhesions. For example, the ROS interplay with NET formation is diverse,
influencing whether NET formation manifests beneficial or detrimental effects. Excessive
ROS, produced during neutrophil activation, are known to trigger NET formation by
causing severe DNA damage, like oxidizing guanine to 8-oxo guanine [146]. This eventually
initiates a DNA repair pathway, resulting in chromatin decondensation.

In the context of peritoneal adhesions, NET formation predominantly occurs within
the peritoneal cavity, particularly proximal to post-capillary venules and at locations af-
fected by surgical interventions or tissue injuries [5]. This spatial distribution is especially
pertinent during abdominal surgeries, where neutrophils are stimulated to release NETs in
reaction to tissue damage and the presence of foreign materials such as surgical sutures.
The formation of NETs at these sites initiates a pro-inflammatory cascade that facilitates
critical processes like fibrin deposition and fibroblast activation, which are essential for the
development of peritoneal adhesions [147]. Furthermore, the process of histone citrullina-
tion, a modification associated with NET formation, serves as a precise biomarker for this
phenomenon [5]. What is more, the level of H3cit (citrullinated histone H3) was developed
as a biomarker for some diseases associated with NETs, like arterial thromboembolism
(ATE) [148], tumors [115], and abdominal aortic aneurysms [149]. The quantification of
histone citrullination offers a direct measure of NET activity, thereby linking NET formation
to the progression of surgical adhesions. This biomarker provides an invaluable metric for
both researching the underlying mechanisms of adhesion formation and evaluating clinical
interventions aimed at modulating NET formation to mitigate its pathological effects.

After abdominal surgery, neutrophils are activated to produce NETs through a complex
interplay of physiological and biochemical processes. Surgical trauma and tissue damage
result in the release of damage-associated molecular patterns (DAMPs), which are recog-
nized by pattern recognition receptors (PRRs) on neutrophils, initiating their activation. The
subsequent inflammatory response is characterized by the release of cytokines (e.g., IL-1β,
IL-6, TNF-α) and chemokines (e.g., IL-8, CXCL1) [100,150], which prime neutrophils and
enhance their sensitivity to stimuli that induce NET formation. Additionally, the potential
for contamination or infection during surgery introduces pathogen-associated molecular
patterns (PAMPs) that further activate neutrophils through PRRs [151]. Activated platelets,
a common occurrence due to tissue injury and bleeding, release mediators such as platelet
factor 4 (PF4) and CD40L, and directly interact with neutrophils via surface molecules,
thereby promoting NET formation [152]. ROS produced by neutrophils upon activation,
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alongside intracellular signaling pathways involving enzymes like NADPH oxidase and
MPO, contribute to chromatin decondensation and the active release of NETs through NET
formation [10]. And many new triggers have been discovered, including those involved
in sterile inflammation [153]. Moreover, a recent study by Pandolfi, Laura et al. suggests
that neutrophil extracellular traps (NETs), induced by SARS-CoV-2 and combined with
factors secreted by alveolar macrophages, can drive the epithelial–mesenchymal transition
(EMT) in lung epithelial cells, potentially leading to lung fibrosis in severe COVID-19
patients [154]. Since epithelial cells are also involved in adhesion formation, EMT induced
by NET formation might similarly contribute to adhesion development.

2.6. The Potential Impact of NET Inhibition on Adhesion Formation

Understanding the inhibition of NETs is crucial for developing therapeutic strategies
to modulate their formation in pathological conditions, where excessive or dysregulated
NET formation contributes to disease progression [155]. Various inhibitors and molecular
targets that can effectively inhibit NET formation have been identified. In brief, NETs and
adhesions are implicated in the inflammatory and healing responses to tissue injury; NETs,
released by neutrophils, can induce fibroblast activity and thrombosis [156], thus contribut-
ing to adhesion between organs. The dysregulation of NET formation or removal plays a
critical role in abnormal tissue repair, potentially exacerbating adhesion development [157].
A summary of the role of NETs in peritoneal adhesion formation is summarized in Table 4.
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Table 4. The role of neutrophil extracellular traps in peritoneal adhesion formation. ECM—extracellular matrix, ROS—reactive oxygen species, PM—polymyositis,
ILD—interstitial lung disease, TLR9—Toll-like receptor 9, LF—lung fibroblast, MF—myofibroblast, and TGF-β—transforming growth factor beta.

The Role of Neutrophil Extracellular Traps in Peritoneal Adhesion Formation

Aspect Description References

Inflammatory Response
Inflammation activates cells like neutrophils to release NETs, promoting fibroblast activation, ECM remodeling, and

angiogenesis, which are involved in adhesion formation. NETs and adhesions are interconnected through inflammation
and tissue injury. Excessive ROS trigger NET formation through severe DNA damage, initiating DNA repair pathways.

[146,158–166]

Tissue Injury Response Adhesions and NETs play significant roles in responding to tissue injury and inflammation. Adhesions form fibrous bands
between organs post-injury, while NETs are immune response structures released by activated neutrophils. [94,167–169]

Fibroblast Interaction
NETs interact with fibroblasts, promoting their activation and ECM production, contributing to adhesion formation. They
also influence polymyositis (PM)-associated interstitial lung disease (ILD) and the TLR9-miR-7-Smad2 signaling pathway

in lung fibroblast (LF) proliferation and myofibroblast (MF) differentiation.
[170,171]

Tissue Remodeling NETs modulate tissue remodeling and repair, essential for wound healing. Dysregulated NET formation may result in
abnormal tissue repair and adhesion formation. [157,172,173]

Coagulation
NETs interact with the coagulation system, enhancing thrombosis, which contributes to adhesion development by

promoting fibrin deposition as a scaffold. Neutrophil-mediated inflammation enhances TGF-β signaling, leading to
fibrotic thrombus remodeling.

[156]



Cells 2024, 13, 991 11 of 21

2.7. Feasibility Analysis of Suppressing NETs in Post-Surgical Adhesion

It is essential to note that the choice of inhibitor and its efficacy may depend on the
context of a specific disease or inflammatory condition. NETs are a component of the
complex immune response during tissue injury and inflammation. Therefore, the effect
of inhibiting NETs on adhesion formation may be context-dependent and varies based on
specific surgical or pathological conditions. More research is required to directly investigate
the relationship between NET inhibition and adhesion formation and to determine whether
targeting NETs could be a viable strategy for adhesion prevention while minimizing the
adverse effects.

The role of NETs (neutrophil extracellular traps) in wound healing, especially within
the context of bowel anastomosis, remains an underexplored area of research. However,
emerging studies underscore a significant interplay between NETs and the wound healing
process [157]. A pivotal study published in Nature Medicine in 2015 by Wong et al. illustrated
that the presence of diabetes increases the formation of NETs within wounds, prolonging
the healing process in diabetic wounds [174]. Concurrently, another investigation revealed
that during lung ischemia–reperfusion, the release of mitochondrial DNA (mtDNA) induces
the formation of TLR9-mediated NETs, intensifying lung injury [175]. Given that injuries
from bowel anastomosis are essentially ischemic reperfusion injuries or arise from tissue
hypoxia [176], it is possible that the generation of NETs has a negative impact on the repair
of tissues affected by ischemia and hypoxia. Contrarily, in vitro analyses have indicated
that under suboptimal concentrations, NETs might bolster the proliferation of keratinocytes,
driven by the activation of the nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) pathway [177]. This suggests a concentration-dependent regulatory role of
NETs in wound healing. This observation aligns with the findings of Saffarzadeh et al.
which elucidated that the cytotoxic effects of NETs on epithelial and endothelial cells are
predominantly determined by concentration levels [178]. Interestingly, this cytotoxicity
is not modulated by DNA fragments but is orchestrated by histones and MPO, while NE
does not confer any cytotoxic effects. Histones, as primary constituents of NETs, act as
damage-associated molecular patterns (DAMPs) and are hypothesized to be cytotoxic
to epithelial and endothelial cells. Additionally, proteins released in conjunction with
NETs, such as NE and matrix metalloproteinase (MMP), might impede wound healing by
detrimentally affecting the ECM [179]. In summation, while the antimicrobial attributes of
NETs offer a positive influence on wound healing, their deleterious effects, especially in
conditions like diabetes, are pronounced and frequently correlate with hyperactive NET
formation. These findings are summarized in Table 5.
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Table 5. The potential therapeutic targets of NET inhibition in the context of adhesion formation. NETs—neutrophil extracellular traps; ROS—reactive oxygen species;
NADPH—nicotinamide adenine dinucleotide phosphate; PKC—protein kinase C; NE—neutrophil elastase; MPO—myeloperoxidase; PAD4—peptidylarginine
deiminase 4; NSA—necrosulfonamide; GSDMD—gasdermin D; DPI—diphenyleneiodonium; NOX—NADPH oxidase.

The Potential Therapeutic Targets of NET Inhibition in the Context of Adhesion Formation

Therapeutic Targets Specific Agents or
Approaches Description and Impact Examples References

Inhibition of NET formation

ROS inhibitors Agents such as DPI and apocynin target the NADPH oxidase
complex to reduce oxidative stress and subsequent NET formation.

DPI, apocynin, LDC7559,
and NA-11 [111,112,180,181]

PKC inhibitors Gö6976 and Ro-31-8220 suppress the protein kinase C pathway
crucial in the signaling cascade that leads to NET formation. Gö6976 and Ro-31-8220 [113,182]

NE and MPO inhibitors Sivelestat and ABAH inhibit NE and MPO, respectively, preventing
chromatin decondensation critical for NET release.

sivelestat/ONO 5046 and
ABAH [114,115]

PAD4 inhibitors Compounds such as Cl-amidine and GSK484 target PAD4, thus
blocking histone citrullination, a key step in NET assembly.

Cl-amidine, GSK484,
and BMS-P5 [116,117,183]

GSDMD inhibitors Blocking of the pore-forming protein gasdermin D hinders the
expansion of chromatin and granular proteins during NET formation. NSA and disulfiram [118,119,184–188]

Pharmacological agents NET suppression
Exhibition of anti-inflammatory effects that indirectly reduce NET

formation, with chloroquine specifically inhibiting NADPH oxidase
and metformin, affecting PKC-βII in neutrophils.

chloroquine, simvastatin,
and metformin [120,189–191]

Endogenous molecules Acceleration of NET
degradation

Degradation of extracellular NET structures by endogenous enzymes,
potentially reducing NET-mediated thrombosis and improving

ischemia–reperfusion outcomes; Pulmozyme® (recombinant human
DNase1) has shown efficacy in disintegrating NETs in clinical settings,

suggesting its utility in managing NET-related complications.

DNase1 and DNase1L3 [121–124,192–195]
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NETS exhibit a bifunctional role in both wound healing and broader physiological
responses, illustrating the multifaceted nature of their biological effects. Excessive NET
production may precipitate augmented adhesion formation, suggesting that their inhibition
could be beneficial. Conversely, it is conceivable that NET suppression might impede
wound healing, for instance, in the context of postoperative recovery. Within this complex
interplay, the process of anastomosis stands out as a critical determinant of surgical recu-
peration and sustained patient prognosis. Anastomosis, entailing the surgical juncture of
two bodily passages, is essential for re-establishing physiological continuity post-surgery.
Anastomotic insufficiencies pose a critical concern in surgical outcomes, indicating the sig-
nificance of intricate biological processes beyond the well-recognized ischemia–reperfusion
injury [196]. The intricate interplay of the gut microbiome in surgical recovery is emerging
as a critical factor [197]. This complex network of commensal bacteria, predominantly
housed in the colon’s mucus layer, plays a pivotal role in various metabolic and immune
processes [198]. Perioperative interventions, such as bowel preparation, antibiotic adminis-
tration, fasting, and the stress of surgery itself, can severely disrupt this delicate microbial
balance [199]. Such disruptions, known as dysbiosis, may lead to nutrient depletion, di-
minished microbial diversity, and consequently, compromised anastomotic healing due to
increased susceptibility to pathogenic bacteria [200]. Moreover, an altered gut microbiome
can promote NET formation, a hypothesis supported by current studies [201–203]. This is
mediated through various mechanisms: microbial metabolites like short-chain fatty acids
(SCFAs) modulate immune cell activity [204,205]; dysbiosis increases intestinal perme-
ability, enhancing exposure to pro-inflammatory stimuli like lipopolysaccharides (LPSs)
that trigger NET release [206–208]; and pathogenic microbes can directly stimulate NET
formation via interactions with neutrophil pattern recognition receptors (PRRs) [209].

For these reasons, a cautious approach is warranted. Selective inhibition targeting
modulators that minimally affect granule proteins, such as myeloperoxidase (MPO) or neu-
trophil elastase (NE), may represent a judicious strategy. Previous research highlights the
role of neutrophil extracellular traps (NETs) in providing a scaffold for adhesion formation,
with DNase administration shown to disrupt this process effectively [23]. Consequently,
therapeutic applications of DNases could offer a viable intervention to prevent peritoneal
adhesion without hindering the normal healing process.

3. Conclusions

Throughout this review, the involvement of neutrophil extracellular traps (NETs)
in the development of postoperative abdominal adhesions has been critically examined.
Emerging evidence suggests that interventions targeting NETs could represent a novel
therapeutic pathway for the prevention of adhesions. However, the potential effect of NET
inhibitors on essential healing processes necessitates further in-depth research. Future
studies must delineate NETs’ precise role in the formation of adhesions and rigorously
evaluate the therapeutic effectiveness and safety of NET-targeted therapies. Advancing our
understanding of NET-mediated adhesion could lead to innovative strategies that reduce
surgical adhesion-related complications.
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