Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane
Abstract
:1. Introduction
2. Methodology
2.1. Computational Simulations
2.2. Sample Preparation
2.3. Fluorescence Measurements
3. Results and Discussion
3.1. Analysis of Molecular Dynamics Calculations
3.2. Abundance of Water Molecules around Laurdan
3.3. Phase Changes of the Membrane
3.4. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tenchov, B.; Koynova, R.; Rapp, G. New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids. Biophys. J. 2001, 80, 1873–1890. [Google Scholar] [CrossRef]
- Walter, V.; Ruscher, C.; Gola, A.; Marques, C.M.; Benzerara, O.; Thalmann, F. Ripple-like instability in the simulated gel phase of finite size phosphocholine bilayers. Biochim. Biophys. Acta (BBA)—Biomembr. 2021, 1863, 183714. [Google Scholar] [CrossRef]
- Nagarajan, S.; Schuler, E.E.; Ma, K.; Kindt, J.T.; Dyer, R.B. Dynamics of the Gel to Fluid Phase Transformation in Unilamellar DPPC Vesicles. J. Phys. Chem. B 2012, 116, 13749–13756. [Google Scholar] [CrossRef]
- Mills, J.K.; Needham, D. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim. Biophys. Acta (BBA)—Biomembr. 2005, 1716, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Needham, D.; Dewhirst, M.W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev. 2001, 53, 285–305. [Google Scholar] [CrossRef] [PubMed]
- Haidekker, M.A.; Ling, T.T.; Anglo, M.; Stevens, H.Y.; Frangos, J.A.; Theodorakis, E.A. New fluorescent probes for the measurement of cell membrane viscosity. Chem. Biol. 2001, 8, 123–131. [Google Scholar] [CrossRef]
- Kuimova, M.K. Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 2012, 14, 12671–12686. [Google Scholar] [CrossRef] [PubMed]
- Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta (BBA)—Biomembr. 2000, 1469, 159–195. [Google Scholar] [CrossRef]
- Marsh, D. Handbook of Lipid Bilayers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Axelrod, D.; Koppel, D.; Schlessinger, J.; Elson, E.; Webb, W. Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophys. J. 1976, 16, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Dayel, M.J.; Hom, E.F.Y.; Verkman, A.S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 1999, 76, 2843–2851. [Google Scholar] [CrossRef]
- Hendrix, J.; Dekens, T.; Schrimpf, W.; Lamb, D.C. Arbitrary-Region Raster Image Correlation Spectroscopy. Biophys. J. 2016, 111, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Schrimpf, W.; Lemmens, V.; Smisdom, N.; Ameloot, M.; Lamb, D.C.; Hendrix, J. Crosstalk-free multicolor RICS using spectral weighting. Methods 2018, 140, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, A.; Tornmalm, J.; Demirbay, B.; Piguet, J.; Kinjo, M.; Widengren, J. Trans-cis isomerization kinetics of cyanine dyes reports on the folding states of exogeneous RNA G-quadruplexes in live cells. Nucleic Acids Res. 2023, 51, e27. [Google Scholar] [CrossRef] [PubMed]
- Manzo, C.; Garcia-Parajo, M.F. A review of progress in single particle tracking: From methods to biophysical insights. Rep. Prog. Phys. 2015, 78, 124601. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chmyrov, V.; Widengren, J.; Brismar, H.; Fu, Y. Mechanisms of fluorescence decays of colloidal CdSe-CdS/ZnS quantum dots unraveled by time-resolved fluorescence measurement. Phys. Chem. Chem. Phys. 2015, 17, 27588–27595. [Google Scholar] [CrossRef] [PubMed]
- Persson, G.; Thyberg, P.; Widengren, J. Modulated fluorescence correlation spectroscopy with complete time range information. Biophys. J. 2008, 94, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Ameloot, M.; vandeVen, M.; Acuña, A.U.; Valeur, B. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 589–608. [Google Scholar] [CrossRef]
- Osella, S.; Paloncyova, M.; Sahi, M.; Knippenberg, S. Influence of Membrane Phase on the Optical Properties of DPH. Molecules 2020, 25, 4264. [Google Scholar] [CrossRef]
- Osella, S.; Granucci, G.; Persico, M.; Knippenberg, S. Dual photoisomerization mechanism of azobenzene embedded in a lipid membrane. J. Mater. Chem. B 2023, 11, 2518–2529. [Google Scholar] [CrossRef]
- Frank, J.A.; Franquelim, H.G.; Schwille, P.; Trauner, D. Optical Control of Lipid Rafts with Photoswitchable Ceramides. J. Am. Chem. Soc. 2016, 138, 12981–12986. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Kreder, R. Fluorescent Probes for Lipid Rafts: From Model Membranes to Living Cells. Chem. Biol. 2014, 21, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Osella, S.; Smisdom, N.; Ameloot, M.; Knippenberg, S. Conformational Changes as Driving Force for Phase Recognition: The Case of Laurdan. Langmuir 2019, 35, 11471–11481. [Google Scholar] [CrossRef] [PubMed]
- Bagatolli, L.A. Fluorescent Methods to Study Biological Membranes; Mély, Y., Duportail, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 13, pp. 3–35. [Google Scholar]
- Parasassi, T.; De Stasio, G.; Ravagnan, G.; Rusch, R.M.; Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 1991, 60, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Parasassi, T.; De Stasio, G.; d’Ubaldo, A.; Gratton, E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys. J. 1990, 57, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Osella, S.; Knippenberg, S. Laurdan as a Molecular Rotor in Biological Environments. ACS Appl. Bio. Mater. 2019, 2, 5769–5778. [Google Scholar] [CrossRef] [PubMed]
- Hornum, M.; Kongsted, J.; Reinholdt, P. Computational and photophysical characterization of a Laurdan malononitrile derivative. Phys. Chem. Chem. Phys. 2021, 23, 9139–9146. [Google Scholar] [CrossRef] [PubMed]
- Osella, S.; Murugan, N.A.; Jena, N.K.; Knippenberg, S. Investigation into Biological Environments through (Non)linear Optics: A Multiscale Study of Laurdan Derivatives. J. Chem. Theory Comput. 2016, 12, 6169–6181. [Google Scholar] [CrossRef] [PubMed]
- Parasassi, T.; Gratton, E.; Yu, W.M.; Wilson, P.; Levi, M. Two-photon fluorescence microscopy of Laurdan generalized polarization domains in model and natural membranes. Biophys. J. 1997, 72, 2413–2429. [Google Scholar] [CrossRef] [PubMed]
- Bagatolli, L.A.; Gratton, E.; Fidelio, G.D. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophys. J. 1998, 75, 331–341. [Google Scholar] [CrossRef]
- Bagatolli, L.A.; Parasassi, T.; Fidelio, G.D.; Gratton, E. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: Implications for spectral properties. Photochem. Photobiol. 1999, 70, 557–564. [Google Scholar] [CrossRef]
- Parasassi, T.; Krasnowska, E.K.; Bagatolli, L.; Gratton, E. Laurdan and Prodan as Polarity-Sensitive Fluorescent Membrane Probes. J. Fluoresc. 1998, 8, 365–373. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Braun, A.R.; Sachs, J.N.; Nagle, J.F. Comparing Simulations of Lipid Bilayers to Scattering Data: The GROMOS 43A1-S3 Force Field. J. Phys. Chem. B 2013, 117, 5065–5072. [Google Scholar] [CrossRef] [PubMed]
- Marrink, S.J.; Corradi, V.; Souza, P.C.T.; Ingólfsson, H.I.; Tieleman, D.P.; Sansom, M.S.P. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019, 119, 6184–6226. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-W.; Pandit, S.A.; Scott, H.L.; Jakobsson, E. An Improved United Atom Force Field for Simulation of Mixed Lipid Bilayers. J. Phys. Chem. B 2009, 113, 2748–2763. [Google Scholar] [CrossRef] [PubMed]
- Gov, N.S.; Gopinathan, A. Dynamics of Membranes Driven by Actin Polymerization. Biophys. J. 2006, 90, 454–469. [Google Scholar] [CrossRef]
- Kukol, A. Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins. J. Chem. Theory Comput. 2009, 5, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Reif, M.M.; Hünenberger, P.H.; Oostenbrink, C. New Interaction Parameters for Charged Amino Acid Side Chains in the GROMOS Force Field. J. Chem. Theory Comput. 2012, 8, 3705–3723. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Berger, O.; Edholm, O.; Jahnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 1997, 72, 2002–2013. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Nose, S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Osella, S.; Marczak, M.; Murugan, N.A.; Knippenberg, S. Exhibiting environment sensitive optical properties through multiscale modelling: A study of photoactivatable probes. J. Photochem. Photobiol. A Chem. 2022, 425, 113672. [Google Scholar] [CrossRef]
- Aidas, K.; Angeli, C.; Bak, K.L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; et al. The Dalton quantum chemistry program system. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2014, 4, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Dunning, T. Gaussian-Basis Sets for Use in Correlated Molecular Calculations 1. the Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Grabarz, A.M.; Ośmiałowski, B. Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes. Molecules 2021, 26, 7434. [Google Scholar] [CrossRef] [PubMed]
- Buehler, L.K. Cell Membranes; Garland Science: Abingdon, UK, 2016. [Google Scholar]
- Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sykora, J.; Jurkiewicz, P.; Epand, R.M.; Kraayenhof, R.; Langner, M.; Hof, M. Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique. Chem. Phys. Lipids 2005, 135, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Hartkamp, R.; Moore, T.C.; Iacovella, C.R.; Thompson, M.A.; Bulsara, P.A.; Moore, D.J.; McCabe, C. Investigating the Structure of Multicomponent Gel-Phase Lipid Bilayers. Biophys. J. 2016, 111, 813–823. [Google Scholar] [CrossRef]
- Katsaras, J.; Yang, D.S.; Epand, R.M. Fatty-acid chain tilt angles and directions in dipalmitoyl phosphatidylcholine bilayers. Biophys. J. 1992, 63, 1170–1175. [Google Scholar] [CrossRef]
- Leekumjorn, S.; Sum, A.K. Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. Biochim. Biophys. Acta 2007, 1768, 354–365. [Google Scholar] [CrossRef] [PubMed]
Conf | 0–1 ns | 3–4 ns | 6–7 ns | 9–10 ns | 12–13 ns | 20–21 ns | |
---|---|---|---|---|---|---|---|
270K | I | −3.22 | −1.62 | −4.88 | −6.06 | −6.43 | −2.76 |
II | −1.93 | −3.96 | −4.99 | −8.36 | −4.57 | −3.36 | |
280K | I | −0.19 | −5.71 | −1.01 | −0.42 | −1.77 | −2.68 |
II | −1.15 | −5.84 | −1.45 | −6.14 | 0.16 | −5.20 | |
290K | I | −4.03 | 0.53 | 0.58 | −1.89 | 1.96 | 0.10 |
II | 0.62 | −0.24 | −3.17 | −6.19 | −2.51 | −1.35 | |
298K | I | −3.03 | −6.27 | −6.11 | −4.71 | −5.93 | −7.59 |
II | −1.22 | 1.56 | −1.29 | −3.15 | −4.32 | −5.43 | |
305K | I | −3.59 | −2.30 | -6.70 | −2.45 | −3.25 | −6.28 |
II | 0.17 | −0.24 | −1.19 | −2.80 | −5.11 | −3.57 | |
310K | I | −3.63 | −5.19 | −8.55 | −1.52 | 1.00 | −4.68 |
II | −2.25 | −6.23 | −3.22 | −6.75 | −1.88 | −3.97 | |
315K | I | −3.41 | −3.85 | −3.64 | −7.49 | −3.18 | −1.01 |
II | −1.35 | −0.45 | −0.63 | 1.89 | −2.22 | −4.09 | |
320K | I | −3.59 | −7.66 | −0.51 | −1.11 | −2.67 | −2.94 |
II | −2.46 | −3.07 | −5.19 | −1.20 | −5.35 | −1.66 |
440 nm Slow Comp. | 440 nm Fast Comp. | 490 nm | |
---|---|---|---|
15 °C | 7.70 ± 0.23 (73 ± 10)% | 5.04 ± 0.58 (27 ± 10)% | |
30 °C | 7.31 ± 0.12 (82 ± 4)% | 3.98 ± 0.49 (18 ± 4)% | |
39 °C | 7.15 ± 0.08 (78 ± 2)% | 3.28 ± 0.21 (22 ± 2)% | 6.67 ± 0.03 |
41 °C | 7.46 ± 0.17 (43 ± 3)% | 3.58 ± 0.14 (57 ± 3)% | 5.40 ± 0.02 |
45 °C | 7.68 ± 1.26 (4 ± 2)% | 2.67 ± 0.05 (96 ± 2)% | 4.10 ± 0.03 |
60 °C | 3.32 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knippenberg, S.; De, K.; Aisenbrey, C.; Bechinger, B.; Osella, S. Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane. Cells 2024, 13, 1232. https://doi.org/10.3390/cells13151232
Knippenberg S, De K, Aisenbrey C, Bechinger B, Osella S. Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane. Cells. 2024; 13(15):1232. https://doi.org/10.3390/cells13151232
Chicago/Turabian StyleKnippenberg, Stefan, Kathakali De, Christopher Aisenbrey, Burkhard Bechinger, and Silvio Osella. 2024. "Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane" Cells 13, no. 15: 1232. https://doi.org/10.3390/cells13151232
APA StyleKnippenberg, S., De, K., Aisenbrey, C., Bechinger, B., & Osella, S. (2024). Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane. Cells, 13(15), 1232. https://doi.org/10.3390/cells13151232