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Abstract: This review discusses the potential of targeting the kynurenine pathway (KP) in the
treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid
tryptophan (TRP), produces metabolites that regulate various physiological processes, including
inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain
immune balance, may accumulate excessively during inflammation, leading to systemic disorders.
Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase
2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been
considered promising therapeutic targets. It was highlighted that both inhibition and activation
of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several
inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds
therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation
may be an effective treatment strategy for diseases for which treatment options are currently limited.
Taken together, this review highlights the importance of further research on the clinical application of
KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.

Keywords: tryptophan; kynurenine pathway; kynurenine; indoleamine 2,3-dioxygenase; tryptophan
2,3-dioxygenase; kynurenine 3-monooxygenase; immunosuppression; inflammatory disorders

1. Introduction

Tryptophan (TRP) is an essential biogenic amino acid characterized by its exten-
sive metabolism through several metabolic pathways, with the kynurenine pathway (KP)
being mostly responsible for its catabolism [1]. Metabolites of KP, due to their biologi-
cal activity, participate in the regulation of numerous physiological processes, including
cell cycle [2], inflammation [3], and neurotransmission [4], as well as being involved
in the development of pathological conditions [5–8]. Within this pathway, TRP is oxi-
dized to N-formylkynurenine by tryptophan 2,3-dioxygenase (TDO) and two indoleamine
2,3-dioxygenase isoforms (IDO-1 and IDO-2). Under physiological conditions, they cat-
alyze the same reaction in parallel but have different tissue distributions [9]. IDO1 is
observed in almost all body tissues, while TDO activity is highest in the liver [10]. In the
next step, N-formylkynurenine is converted to kynurenine (KYN) by formamidase. The
presence of KYN has been confirmed in blood, most peripheral tissues of the body, and
the brain. KYN is metabolized by the three branches of KP, resulting in the formation of
kynurenic acid (KYNA), anthranilic acid (AA), and 3-hydroxykynurenine (3-HKYN). The
conversion of KYN to 3-HKYN is catabolized by kynurenine 3-monooxygenase (KMO),
while KYNA is by kynurenine aminotransferase (KAT). In turn, 3-HKYN is converted to
xanthurenic acid (XA) by the KAT and to 3-HAA after modification with the kynureninase
(KYNU). The presence of KMO, KAT, and KYNU has been confirmed in almost all body
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tissues [11]. 3-HAA is metabolized by 3-hydroxyanthranilic acid 3,4-dioxygenase (3-HAO)
to aminocarboxymuconatesemialdehyde (ACMS), which is converted by ACMS decarboxy-
lase to aminomuconicsemialdehyde. This compound undergoes non-enzymatic cyclization
to picolinic acid (PA) or is non-enzymatically transformed to quinolinic acid (QA), which is
converted by quinolinate phosphoribosyltransferase into an oxidized form of nicotinamide
adenine dinucleotide, a coenzyme directly participating in numerous cellular metabolic
processes [4]. There is strong evidence demonstrating that in the changes in the activity of
KP, enzymes are observed in the development of a wide range of systemic disorders [11],
including autoimmune [12], infectious [13], and metabolic diseases [14]. Regulation of the
enzyme activity of the kynurenine pathway (KP) involves complex genetic, epigenetic,
and environmental mechanisms, both in physiological and pathological conditions. Ge-
netic factors appear to play a key role in controlling the activity of the KP enzyme. For
example, specific polymorphisms of the IDO1 and KMO genes may affect their expression
level and functional activity, and thus influence the production of both neuroprotective
and neurotoxic metabolites. Genetic mutations in these enzymes have been associated
with a variety of diseases, including neurodegenerative and psychiatric disorders [15,16].
Epigenetic modifications such as DNA methylation and histone acetylation also regulate
the expression of KP enzymes. Environmental factors and disease states may influence
these modifications. For example, inflammation can induce IDO1 expression by activating
transcription factors such as NF-κB and STAT1, which bind to the promoter regions of the
IDO1 gene. Moreover, epigenetic drugs that modify histone acetylation patterns can alter
the expression of KP enzymes, thereby affecting pathway activity [4,17]. Environmental
factors such as stress, infection, and dietary ingredients significantly influence the activity
of the KP enzyme. Inflammatory cytokines such as IFN-γ and TNF can increase IDO1
and TDO levels, increasing the conversion of TRP to KYN [18]. In pathological condi-
tions such as cancer or chronic infection, persistent activation of these enzymes can lead
to immunosuppression and contribute to disease progression. End-product inhibition is
another regulatory mechanism in which accumulated downstream metabolites, such as
QA, can inhibit upstream enzymes, maintaining metabolic balance [19]. Research on the
biological role of the KP has led authors to conclude that targeting enzymes within this
pathway may be an effective method of treating inflammatory diseases, including those
with limited therapeutic options or currently considered incurable. This literature review
aims to identify these enzymes as potential therapeutic targets.

2. The Role of the Kynurenine Pathway in the Immune Response

The KP plays an important role in maintaining the balance of the immune system, as
indicated by the close associations between KP activation and the expression levels of pro-
inflammatory cytokines [20]. The activation of KP is induced mainly by pro-inflammatory
factors such as interleukins (IL-1 and IL-6), tumor necrosis factor (TNF), and interferon-γ
(IFN-γ), and it is observed during inflammation [21]. Numerous studies have demonstrated
that KP activation is responsible for the negative feedback suppression loop of immune
activation [12,22–24]. It enhances immune tolerance by increasing the concentration of
KYN and its downstream metabolites. KYN is a compound with potent immunosuppres-
sive properties and is an agonist of the aryl hydrocarbon receptor (AhR), which plays
an important role in regulating numerous cellular signaling pathways and maintaining
cellular homeostasis. Another AhR agonist is KYNA [25]. The AhR is a ligand-activated
transcription factor that is widely distributed in various tissues throughout the body. AhR
is highly expressed in hepatocytes, where it plays a key role in the metabolism of xenobi-
otics and endogenous compounds. Additionally, AhR is expressed in a variety of immune
cells, including T cells, B cells, dendritic cells, and macrophages, influencing the immune
response and inflammation (Figure 1). This effect seems to be the most important among
the systemic effects because activating this receptor leads to an intensified immunosup-
pressive effect. Keratinocytes in the epidermis also express AhR, contributing to skin
homeostasis and response to environmental toxins. This receptor is present in lung cells,
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where it helps respond to pollutants in the air. Intestinal epithelial cells and immune cells
in the intestine express AhR, which is involved in maintaining intestinal homeostasis and
modulating intestinal microbiota. AhR is expressed in the reproductive organs, where it
may influence reproductive development and function [12,18]. Neurons and glial cells in
the central nervous system express AhR, indicating a role in neurodevelopment and neuro-
protection. These wide distributions highlight the importance of AhRs in regulating many
physiological processes and responding to environmental stimuli. AhR activation is closely
associated with a nuclear transition that relies on a sequence of positively charged amino
acids known as the nuclear localization signal (NLS). The NLS consists of two segments
(bipartite NLS) and is located within the conserved basic helix–loop–helix (bHLH) domain
in the N-terminal part of the protein. In its unliganded state, AhR predominantly resides in
the cytoplasm, bound to a chaperone complex comprising two molecules of HSP90, and
single molecules of co-chaperone p23 and hepatitis x-associated protein-2 (XAP2). Most
AhR ligands are hydrophobic, including KYN and KYNA, allowing them to cross the cell
membrane through simple diffusion [26]. KYN can cross cell membranes and penetrate
tissue readily [4]. Additionally, kynurenine uptake in T cells is mediated by the System L
Amino Acid Transporter SLC7A5 [27]. When a ligand binds to cytosolic AhR, it induces a
conformational change that exposes the NLS, facilitating its recognition by nuclear trans-
porters. Specifically, members of the importin (IMP) superfamily, such as IMPβ1 or its
adaptor protein IMPα, can recognize the exposed NLS. Following this recognition, AhR,
along with the IMPα/β1 heterodimer, is transported into the nucleus through the nuclear
pore complexes (NPCs). On the nuclear side of NPCs, IMPβ1 binds to RanGTP (Ras-related
nuclear protein), which leads to the release of the NLS-cargo. This process allows AhR to
enter the nucleus and exert its regulatory functions. The combination of kynurenine and
AHR leads to the formation of a complex with the nuclear translocator molecule (Arnt)
in the nucleus, influencing changes in gene transcription. Activation of AHR by KYN
or KYNA induces FoxP3, which promotes the differentiation of naïve CD4+ cells into a
Treg cell phenotype and also inhibits RORγt expression, preventing cell maturation into
Th17 cells. Thus, KYN and KYNA are at the center of the immune seesaw, which can be
pro-inflammatory (via Th17 cells) or anti-inflammatory (via Tregs) [4].

Its activation upregulates the IL-6 and signal transducer and activator of transcription
3 (STAT3) expression, inducing the general control non-repressible-2 kinase and mammalian
target of rapamycin kinase pathways [28,29]. Thus, increased synthesis of KYN, mainly
by IDO1, suppresses the immune system response, causing inactivation and apoptosis of
Th1 and effector T cells, as well as activation of immunosuppressive T regulatory cells
(Tregs) [30]. KYN-activated Tregs can upregulate IDO1 expression in dendritic cells (DCs)
in response to antigen presentation, further increasing immunosuppression [18] (Figure 1).

This indicates that IDO1 expression can also be elevated by autocrine stimulation
in inflammatory conditions [29–31]. Conversely, a decrease in IL-6 or STAT3 expression
reduces IDO1 activity and KYN synthesis [31,32], while blocking AhR signaling restores T
cell proliferation and activation [33]. This suggests that KP metabolites and enzymes help
restore immune homeostasis in physiological conditions, preventing excessive immune
responses [34]. Additionally, the administration of KYNA in animal models has been
shown to exert significant anti-inflammatory effects and lower pro-inflammatory cytokine
secretion [35]. However, an excessive level of KYN in the body can lead to overactiva-
tion of AhR, accelerating cellular aging processes [36–39] and increasing their apoptosis
rate [28,40–42]. This can disturb physiological processes in the tissues of virtually all organs
and exacerbate systemic disorders associated with numerous diseases. Increased KYN syn-
thesis also upregulates KMO activity [43–45], contributing to the accumulation of 3-HKYN
and its metabolites [46]. Due to the pro-oxidative properties of these compounds, their
excess may intensify tissue and organ damage, leading to the exacerbation of inflammatory
processes and disease symptoms [47,48] (Figure 2).
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mune cells. IDO1 exhibits high expression in various immune cell types, including macrophages, 
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cells. Activation of IDO1 expression and activity in professional antigen-presenting cells (APCs) 
such as DCs and monocyte-derived macrophages, as well as in other innate immune cells like nat-
ural killer cells, eosinophils, and neutrophils, results in enhancing the immunosuppressive effect 
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tions: TRP—tryptophan, IDO1—indoleamine 2,3-dioxygenase 1, KYN—kynurenine, KYNA—
kynurenic acid, AhR—aryl hydrocarbon receptor, NF-κB—nuclear factor kappa-light-chain-en-
hancer of activated B cells, TNF—tumor necrosis factor, IL-6—interleukin 6, IL-1—interleukin 1, IL-
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Figure 1. Interaction of kynurenine and kynurenic acid with AhR in macrophage. Kynurenines,
produced through tryptophan degradation via IDO1, activate AhR, which is present in all innate
immune cells. IDO1 exhibits high expression in various immune cell types, including macrophages,
monocytes, dendritic cells (DCs), eosinophils, neutrophils, specific T cell subsets, and regulatory B
cells. Activation of IDO1 expression and activity in professional antigen-presenting cells (APCs) such
as DCs and monocyte-derived macrophages, as well as in other innate immune cells like natural
killer cells, eosinophils, and neutrophils, results in enhancing the immunosuppressive effect and
reducing local inflammation. It was created with BioRender (www.biorender.com). Abbreviations:
TRP—tryptophan, IDO1—indoleamine 2,3-dioxygenase 1, KYN—kynurenine, KYNA—kynurenic
acid, AhR—aryl hydrocarbon receptor, NF-κB—nuclear factor kappa-light-chain-enhancer of acti-
vated B cells, TNF—tumor necrosis factor, IL-6—interleukin 6, IL-1—interleukin 1, IL-4—interleukin
4, IL-10—interleukin 10, Treg—Regulatory T cell, Th1—T helper 1 cell, NK—natural killer cell,
↑—increase/rise, ↓—suppression/inhibition.

As mentioned above, an imbalance in the level of pro-inflammatory mediators im-
pacts KP enzyme activity. Therefore, chronic inflammation is usually accompanied by
overactivation of this pathway, leading to the accumulation of its metabolites. Due to
their significant biological activity, their excess may disturb various biological processes,
intensifying systemic homeostasis disorders caused by the ongoing disease. Since pharma-
cological modulation of KP activity can affect the immune response and inhibit processes
involved in the progression of numerous diseases, it seems to be a promising solution for
treating various disorders accompanied by pathologically severe inflammation, including
autoimmune diseases [11,15,49]. However, it should be noted that the mechanisms respon-
sible for alterations in the activation of signaling pathways associated with changes in KP
activity are not fully understood.

www.biorender.com
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It is well known that T cells are involved in the development of rheumatoid arthritis 
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matory cytokines [50–52]. Furthermore, B cells also participate in the progression of auto-
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flammatory cytokines [50,56]. Treatment with anti-CD20 antibodies, i.e., rituximab, 

Figure 2. The influence of the kynurenine pathway on immune activity. IDO is extensively
expressed in various immune cells, including macrophages, monocytes, dendritic cells (DCs),
eosinophils, neutrophils, certain T cell subsets, and regulatory B cells. The activation of IDO expres-
sion and activity in professional antigen-presenting cells (APCs) like DCs and monocyte-derived
macrophages, as well as in other innate immune cells such as NK cells, eosinophils, and neutrophils,
has a diverse impact on their functions within the immune system. It was created with BioRen-
der. Abbreviations: TRP—tryptophan, IDO1—indoleamine 2,3-dioxygenase 1, KYN—kynurenine,
KMO—kynurenine 3-monooxygenase, 3-HKYN—3-hydroxykynurenine, KYNA—kynurenic acid,
3-HAA—3-hydroxyanthranilic acid, QA—quinolinic acid, AA—anthranilic acid, XA—xanthurenic
acid, AhR—aryl hydrocarbon receptor, IL-1—interleukine 1, IL-6—interleukine 6, IL-10—interleukine
10, TNF—tumor necrosis factor, IFN-γ—interferon gamma, IFN-β—interferon beta, Treg—regulatory
T cell, NK—natural killer cell, Th1—T helper 1 cell, ROS—reactive oxygen species. ↑—increase/rise,
↓—suppression/inhibition.

3. The Involvement of the Kynurenine Pathway in the Pathogenesis of Selected
Autoimmune Diseases
3.1. Pharmacological Inhibition of Enzyme of IDO1 and TDO Activity
3.1.1. Rheumatoid Arthritis

It is well known that T cells are involved in the development of rheumatoid arthri-
tis (RA), both through direct tissue infiltration and indirectly via the release of pro-
inflammatory cytokines [50–52]. Furthermore, B cells also participate in the progression
of autoimmune reactions in RA [53–55]. They synthesize autoantibodies and trigger the
autoimmune response via the presentation of autoantigens to T cells and the release of
pro-inflammatory cytokines [50,56]. Treatment with anti-CD20 antibodies, i.e., rituximab,
depletes the B cell population and attenuates RA symptoms [57–59]. However, they rapidly
return after the repopulation of B cells into their autoantibody-secreting terminal form. It
was demonstrated that the relief of arthritis was not due to a reduction in regulatory T
cells or an altered T helper cell phenotype but was due to a reduced autoreactive B cell
response [60]. At this point, it is worth noting that IDO1 activity is essential for the differen-
tiation of the autoreactive B cell profile at the initiation of the autoimmune response [18,60].
At least two potential mechanisms have been identified by which the IDO1 pathway may
regulate B cell activity. The first mechanism of action of IDO1-mediated suppression
involves intracellular and microenvironmental tryptophan consumption combined with
activation of the integrated stress response (ISR) kinase, General Control Non-depressant
2 (GCN2) [61]. IDO1-driven activation of GCN2 signaling resulted in proliferation arrest
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in naïve T cells and apoptosis of inflammatory T cells while promoting the differentiation
and activation of FoxP3+ Tregs [61]. Another mechanism of immunity regulation by IDO1
involves the aryl hydrocarbon receptor (AhR), with one of its ligands being kynurenine,
for example. However, as demonstrated by Shinde et al., kynurenines do not alter the
B cell response to NP-Ficoll or NP-LPS in vitro or in vivo, indicating that GCN2 signals
may be the dominant mechanism by which IDO1 regulates T cell-independent immune
responses [40,62].

1-methyl-tryptophan (1-MT), a mixture of the two racemic isoforms 1-methyl-D-
tryptophan and 1-methyl-L-tryptophan, is an IDO inhibitor used in preclinical research,
which mainly inhibits the activity of IDO1 isoform [63–66]. Its administration to arthritis
mice effectively inhibits the aforementioned process [67]. This way, pharmacological in-
hibition of IDO1 can prevent the recurrence of autoimmune arthritis symptoms caused
by the B cell repopulation [60]. Therefore, IDO1 inhibitor seems to be useful in the com-
bination treatment with B cell depletion therapy, as a potentially effective strategy in the
management of RA [10,67] (Figure 3).
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der. Abbreviations: TRP—tryptophan, IDO1—indoleamine 2,3-dioxygenase, TDO—tryptophan
2,3-dioxygenase, KYN—kynurenine, KYNU—kynureninase, KAT—kynurenine aminotrans-
ferase, KMO—kynurenine 3-monooxygenase, 3-HKYN—3-hydroxykynurenine, KYNA—kynurenic
acid, 3-HAA—3-hydroxyanthranilic acid, 3-HAO—3-hydroxyanthranilic acid 3,4-dioxygenase,
QA—quinolinic acid, AA—anthranilic acid, XA—xanthurenic acid.

3.1.2. Morphea and Cutaneous Sclerosing Disorders

The pathogenesis of morphea and other cutaneous sclerosing disorders remains poorly
understood [68,69]. They are considered to be autoimmunological diseases; therefore, ab-
normalities in tryptophan metabolism may be associated with their pathogenesis [70,71].
Their current therapy is directed to the suppression of the autoimmune response [69,72].
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In this case, manipulation of the KP activity might also be an additional therapeutic op-
tion. A clinical study observed that L-tryptophan supplementation was responsible for an
outbreak of eosinophilia syndrome, which caused skin hardening resembling eosinophilic
fasciitis [73]. Moreover, several cases of scleroderma-like diseases have been reported
during the treatment of parkinsonism with combinations of L-5-hydroxytryptophan and
levodopa with benserazide, which is a strong kynureninase inhibitor [74]. Tranilast
(N-[3′,4′-dimethoxycinnamoyl]-anthranilic acid) is a 3-HAA derivative capable of targeting
this pathway [72]. It acts as a competitive inhibitor of both IDO and TDO [70]. Addition-
ally, it inhibits the activity of transforming growth factor β, which is normally enhanced
by 3-HAA [75]. Tranilast inhibits the expression of the transcriptional coactivator cAMP
response element binding protein (CBP) by disrupting the interaction between NF-κB and
CBP. At therapeutically relevant concentrations (50 µg/mL), tranilast has been proven
to inhibit NF-κB-dependent transcriptional activation by interfering with NF-κB/CBP
association. It probably contributes to the anti-inflammatory effect of tranilast by inhibiting
the transcription of the ICAM-1-κB and E-selectin-κB reporter genes. Furthermore, tranilast
significantly inhibited interleukin 6 secretion in human umbilical vein endothelial cells [76].
For all these reasons, it could be useful in the treatment of the above-mentioned diseases.
Several clinical studies confirm the role of tranilast in the treatment of scleroderma, primar-
ily as an adjunct to established therapies. It has been proven that only combined therapy
with systemic drugs and the combination of local betamethasone and tranilast showed
statistically significant improvement over 3 months in variants of this disease with a worse
prognosis, i.e., periarticular variants, frontoparietal variants, and generalized variants
(Figure 3) [77].

3.1.3. Systemic Lupus Erythematosus

Fatigue and depression belong to the most disturbing symptoms observed in the major-
ity of patients with systemic lupus erythematosus (SLE) [78]. They affect even individuals
with a mild form of the disease. Research has shown that the kynurenine pathway (KP) is
overactivated in the course of SLE, resulting from the increased levels of pro-inflammatory
cytokines commonly observed during this disease [79,80]. The increase in IDO activ-
ity seems to be associated with the development of some symptoms accompanying the
SLE [78]. The severity of SLE-related fatigue positively correlates with serum KYN and
QA levels [81,82]. Research has shown that the kynurenine pathway (KP) is overactivated
in the course of SLE, resulting from the increased levels of pro-inflammatory cytokines
commonly observed during this disease (Figure 3) [78,83].

3.2. Pharmacological Stimulation of IDO1 Activity in Autoimmune Diabetes
Autoimmune Diabetes

Mondanelli et al. have illustrated that during inflammatory states, IDO1 undergoes
proteasomal degradation by dendritic cells (DCs), shifting their function from immunoreg-
ulatory to immunostimulatory [84]. Bortezomib (BTZ), a proteasome inhibitor approved
for treating multiple myeloma [85], also indirectly modulates immune cell activation [86].
While BTZ downregulates IFN-γ-induced IDO expression in nasopharyngeal carcinoma
cells, it restores IDO1 protein levels in DCs from non-obese diabetic mice by inhibiting
proteasomal degradation. This DC-mediated mechanism contributes to immune response
suppression [87]. These properties of BTZ hold promise for treating autoimmune dis-
eases [85,88]. In vivo administration of BTZ prevents autoimmune diabetes development
through IDO1- and DC-dependent mechanisms. While it exhibits limited therapeutic
efficacy in monotherapy, combining suboptimal doses with an autoimmune-preventive
anti-CD3 antibody triggers disease reversal in diabetic mice [84]. The therapeutic outcome
parallels full-dose anti-CD3 treatment but with reduced adverse effect severity. Hence,
these findings suggest BTZ’s potential in managing autoimmune diabetes and underscore
the role of IDO1-mediated immune regulation in its progression [89]. Additionally, BTZ
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has shown the potential to restore immune balance in autoimmune contexts by bolstering
the IDO1-dependent mechanism [84,90].

4. Non-Autoimmune Inflammatory Disorders
4.1. Pharmacological Modulation Activity of IDO1 Activity
4.1.1. Inhibition of the Enzyme
Metabolic Diseases

Both preclinical and clinical studies have established the influence of the kynurenine
pathway (KP) on the severity of metabolic diseases [91–94]. KP metabolites exert signaling ef-
fects across various tissues, linking diverse physiological and pathological processes [22,95].
Targeting the KP to concurrently modulate inflammation and energy metabolism holds
significant promise for expanding preventive and therapeutic strategies for cardiologic and
metabolic disorders, among others [14,96–98]. Enhanced comprehension of the mechanisms
governing KP enzyme expression or activity is crucial, as they dictate the balance between
metabolites. Manipulating the KP through enzyme inhibitors or metabolites presents a
novel therapeutic avenue for addressing atherosclerosis [99–101], obesity [102–104], glucose
intolerance [96], impaired insulin secretion [105–107], and liver cirrhosis [108–112], conse-
quently mitigating associated risk factors. Therefore, the development of specific KP enzyme
inhibitors is highly desirable (Figure 3).

Hepatic Fibrosis

IDO1 has been identified as a significant factor in the development of hepatic fibrosis
and a potential therapeutic target [113]. Danshensu (DSS), a water-soluble active component
of Salvia miltiorrhiza extract commonly used in traditional Chinese medicine, exhibits
various pharmacological activities. Studies have demonstrated its potent ability to reduce
the progression of hepatic fibrosis [114]. Preclinical research has shown that intragastric
administration of DSS effectively inhibits JAK2-STAT3 signaling, leading to a reduction
in IDO1 expression, STAT3 phosphorylation, and nuclear localization. These findings
suggest an association between the activation of IDO1 and JAK2/STAT3 pathways and the
progression of hepatic fibrosis, indicating the potential utility of DSS as a complementary
agent for the treatment and prevention of hepatic fibrosis [114]. Conversely, ginsenoside-
Rg1, isolated from ginseng, protects against IDO1 overexpression-dependent mechanisms
implicated in the progression of hepatic fibrosis in animal models. Its administration
significantly reduces hepatic IDO1 expression levels, resulting in decreased hepatocyte
apoptosis rates in hepatic fibrosis mouse models. Additionally, it enhances the maturation
of hepatic dendritic cells, which are inhibited during this disease by IDO1-dependent
activation of the kynurenine pathway in the liver [114–117]. Therefore, ginsenoside-Rg1
presents another potential therapeutic agent for the treatment of hepatic fibrosis (Figure 3).

Atherosclerosis

The role of IDO1 in the process of atherosclerosis is complex and not fully under-
stood [118]. Several authors have observed discrepancies regarding its function in this
process. Despite the well-established protective effect of IDO1 against established athero-
genesis [118–120], it also exhibits pro-atherosclerotic functions during the developmental
stages of atherosclerosis [93,118,121,122]. Yun et al. demonstrated that IDO1 activation
leads to the modulation of T-cell responses, providing atheroprotection and enhancing
plaque stability [123]. Liang et al. found that the expression and activity of IDO1, as well
as TDO, increase with the histological grade in early atherosclerosis [118]. Conversely, the
inhibition of IDO1 using 1-MT inhibited the development of atherogenesis in high-fat diet-
fed, atherosclerosis-prone apolipoprotein E-deficient mice. Therefore, the administration of
IDO1 inhibitors may prove to be an effective preventive and therapeutic strategy for the
early stages of atherosclerosis (Figure 3).
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Acute Kidney Injury (AKI)

AKI following ischemia-reperfusion injury (IRI) is associated with high mortality
and a lack of specific therapy [124–126]. Excessive activation of IDO1 has a pro-apoptotic
effect in renal tubular epithelial cells [18,127,128], exacerbating kidney injury and impair-
ing function [129]. Animal studies have demonstrated that inhibition of IDO1 by 1-MT
alters the transcription of both coding and non-coding sequences within the IRI transcrip-
tome [130]. These molecular changes appear to contribute to protection from the harmful
consequences of renal IRI. During the recovery from renal IRI, pretreatment with 1-MT
alleviates alterations in coding sequences associated with this disorder and triggers changes
in non-coding transcripts, primarily represented by small nucleolar RNA [131,132]. This
suggests a biological role of non-coding, IDO-dependent RNA sequences in regulating the
early response to IRI, while inhibition of IDO1 may represent a novel strategy to reduce
AKI following IRI progression (Figure 3).

Skin Wound Healing

Skin wound healing involves a complex process comprising several stages, including
inflammation, proliferation, and remodeling [133]. During the inflammation phase, pro-
inflammatory cytokines and chemokines are induced at the wound site, contributing
to wound healing development [134,135]. These factors also induce the synthesis and
activation of IDO1 [136,137]. However, overactivity of this enzyme may prolong the
wound healing time, while its inhibition accelerates the skin wound healing process [138].
Therefore, local administration of 1-MT or other IDO1 inhibitors on the skin, such as in
the form of an ointment, may be an effective approach in treating difficult-to-heal wounds,
such as diabetic and pressure ulcers (Figure 3) [139].

Kynurenine (KYN) and kynurenic acid (KYNA) have also been demonstrated to be ef-
fective in preventing scar formation. Local antifibrogenic therapy using KYN is particularly
appealing. However, its application is significantly limited due to its ability to cross the
blood–brain barrier (BBB), potentially causing complications such as the death of excitatory
neurons. Therefore, increasing attention is being directed towards its metabolite, KYNA,
which does not penetrate the BBB and thus does not induce adverse effects on the central
nervous system. Studies have shown that KYNA significantly increases the expression of
matrix metalloproteinases (MMP1 and MMP3), while inhibiting the production of type
I collagen and fibronectin by fibroblasts in vitro, without negatively impacting skin cell
viability. Topical application of KYNA-containing cream to fibrotic rabbit ears specifically
reduced the scar elevation index and tissue cellularity in KYNA-treated wounds compared
to controls. Additionally, wounds treated with KYNA exhibited reduced levels of colla-
gen deposition, a significant decrease in the expression of type I collagen and fibronectin,
and increased expression of MMP1 compared to untreated wounds or those treated with
non-active cream. These findings provide compelling evidence that KYNA represents
a promising antifibrotic candidate to improve healing outcomes in patients predisposed
to hypertrophic scar formation [140]. KYNA is a promising compound for the topical
treatment of keloid and hypertrophic scars, as evidenced by studies in healthy adult men
and women with mature keloid scars. Application of 0.5% KYNA cream twice daily led
to a significant reduction in mean Patient and Observer Scar Assessment Scale (POSAS)
scores after 30 days of treatment, and this improvement was maintained post-treatment.
Therefore, topically applied KYNA is a potentially novel and effective method for treating
mature keloid scars [141].

The involvement of the kynurenine pathway (KP) in the wound healing process is
corroborated by metabolomics studies conducted on the serum of patients with chronic
venous leg ulcers (CVLUs). These patients demonstrated an increase in KYN levels com-
pared to those in the recovery phase. There was moderate support (Bayes factor = 3.70) for
a negative association between changes in KYNA concentration and a linear healing slope.
The results suggest that KYN and tryptophan (TRP) may be healing markers in individuals
with CVLU [142]. Additionally, KYNA inhibited IL-17 and IL-23 production in vitro in
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CD4+ T cells and dendritic cells (DCs) through activation of G protein-coupled receptor
35 (GPCR35). This indicates that KYNA may potentially be used as an immunomodula-
tory agent in the treatment of IL-23- and IL-17-dependent autoimmune diseases, such as
psoriasis [143].

Intestinal Disorders

The kynurenine pathway (KP) also plays a crucial role in maintaining intestinal
well-being, with changes in the synthesis of kynurenine (KYN) and its metabolites asso-
ciated with intestinal disorder development [94]. Baseline expression of IDO1 in antigen-
presenting cells within the intestinal wall contributes to immune tolerance [144,145], and
this enzyme can impact metabolic health by shaping intestinal microbiota [146,147]. Up-
regulation of IDO1 is observed during intestinal inflammatory disorders, including hu-
man inflammatory bowel diseases [112,148]. Due to the anti-inflammatory and immuno-
suppressive properties of KYN, pharmacological agents capable of, depending on the
need, inhibiting or potentiating expression or activation of IDO1 have the potential to be
used in treating various intestinal diseases, such as colitis or inflammatory bowel disease
(Figure 3) [149,150]. It has been proven that activation of the IDO pathway may be harmful
to intestinal inflammation in mice and humans [151]. A meta-analysis of transcriptomic
datasets showed that genes involved in TRP metabolism are upregulated in Crohn’s disease
(CD) and ulcerative colitis (UC) and return to baseline after successful infliximab treat-
ment. Microarray and mRNAseq profiles from multiple experiments confirmed that the
enzymes responsible for TPR degradation in the kynurenine pathway (IDO1, KYNU, KMO,
and TDO2), the TRP metabolite receptor (HCAR3), and the enzymes catalyzing NAD+
turnover (NAMPT, NNMT, PARP9, CD38) were synchronously coregulated in IBD but not
in intestinal cancer [152]. Chemotherapeutic drug-induced intestinal damage was often
characterized by a rapid increase in TRP-KYN axis metabolism. KYNA resulted in the
formation of a positive feedback loop with the IL-6-IDO1-AhR hydrocarbon receptor. Var-
denafil and linagliptin as GPR35 and AHR agonists, respectively, significantly attenuated
chemotherapy-induced intestinal toxicity in vivo, suggesting that chemotherapeutics in
combination with them may represent a promising therapeutic strategy for cancer patients
in the clinical setting [153].

However, literature data regarding IDO1 as a potential therapeutic target are ambigu-
ous. Intestinal microbe-derived Lys has been shown to promote IDO1 expression in colonic
DCs. By administering Dub or Lys, it is possible to restore the rebalance of Treg/Th17
responses and thus protect mice from colitis [154].

4.1.2. Activation of IDO
Idiopathic Pneumonia Syndrome

The lungs have evolved mechanisms to mitigate the severity of immunopathological
processes during immune responses [147]. This is crucial for maintaining lung function
during inflammatory conditions and ensuring survival. Immunosuppressive mechanisms
in the lungs appear to be linked to kynurenine pathway (KP) activation (Figure 3) [18,155].
Lee et al. demonstrated that donor CD4+ T cells transiently induce IDO expression in
lung parenchyma in an IFN-γ-dependent manner after allogeneic hematopoietic stem cell
transplantation (HSCT). Inhibition of host IDO expression, achieved by suppressing IFN-γ
synthesis, leads to acute lethal pulmonary inflammation, known as idiopathic pneumo-
nia syndrome (iPS) [156]. Interestingly, IL-6 can induce IDO expression potently in an
IFN-γ-independent manner when STAT3 deacetylation is inhibited [156,157]. Treatment
with a histone deacetylase inhibitor (HDACi) prevents the downregulation of IDO caused
by IFN-γ inhibition, but only in an IL-6-dependent manner. Kynurenine produced by
lung epithelial cells and alveolar macrophages during iPS progression suppresses the
pro-inflammatory activities of lung epithelial cells and CD4+ T cells through the AhR
pathway [156,158]. Consequently, HDACi can inhibit iPS development when IFN-γ ex-
pression is suppressed [156]. This underscores IDO’s critical role as a regulator of acute
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pulmonary inflammation and suggests that upregulation by HDACi could be a therapeutic
approach for iPS after HSCT. Therefore, the addition of HDACi, such as SB939, to the
immunosuppressive protocol might be an effective strategy for preventing and treating iPS
after HSCT [156].

4.2. Pharmacological Inhibition of KMO Activity
4.2.1. Acute Kidney Injury

Apart from IDO1, KMO is also highly expressed during AKI [159,160]. In an experi-
mental AKI model induced by kidney ischemia-reperfusion injury (IRI), inhibiting KMO
activity using GSK065, GSK366, and GSK428, as well as downregulating its expression,
preserved renal function and reduced renal tubular cell injury. These findings indicate that
increased kynurenine pathway (KP) flux through KMO contributes to the severity of AKI
after IRI [161,162]. Additionally, inhibiting KMO activity during AKI appears to be a more
specific and safe solution than targeting IDO, making it a valuable therapeutic approach to
protect against AKI development caused by acute inflammation (Figure 3) [160,163].

4.2.2. Acute Pancreatitis

Acute pancreatitis (AP) is a devastating sterile inflammation that can lead to systemic
multiple organ dysfunction syndrome (MODS), often resulting in death [164–166]. Acute
mortality from AP-MODS exceeds 20%, and even survivors often have a shortened lifespan.
Currently, there is no specific therapy to protect against symptoms of acute pancreatitis with
MODS (AP-MODS) [167]. Recent observations suggest that KMO activity and 3-HKYN
plasma concentration positively correlate with inflammation levels, the incidence of organ
dysfunction, and the severity of AP and AP-MODS courses [167,168]. This indicates that
KMO overactivity may be a metabolic mechanism contributing to organ injury triggered
by sterile initiators of systemic inflammation. GSK180, a potent and specific KMO inhibitor,
has demonstrated therapeutic protection against AP-MODS in experimental models of
AP [167,169]. These findings underscore the therapeutic potential of KMO inhibitors in
treating critical diseases and suggest them as a potential therapeutic approach in managing
AP and intervening early against AP-MODS (Figure 3).

4.2.3. Sickness Behavior

Sickness behavior, triggered by immune system activation, is among the organism’s
strategies to combat infections [170,171]. It is induced by bacterial endotoxins, such as LPS,
which stimulate the release of pro-inflammatory cytokines, leading to KP activation and
behavioral alterations. KP metabolites play a significant role in mediating sickness-like
behavior and neuroinflammation induced by LPS [172–174]. Omega-3 polyunsaturated
fatty acids (PUFAs) found in fish oil (FO) have anti-inflammatory properties [175–179].
FO has been shown to effectively inhibit KP dysregulation and mitigate sickness behavior
induced by LPS in aged mice. Moreover, FO administration notably blocks LPS-induced
activation of IDO and KMO within brain tissue, resulting in decreased brain levels of
KYN and 3-HKYN [172]. These beneficial effects of PUFAs may be associated with their
ability to modulate central inflammation, KP activity, and serotonergic signaling, as well
as to incorporate into neuronal membranes [180,181]. Therefore, the PUFAs present in
FO appear to be ideal candidates for nutritional interventions to decrease KP activation
and neuroinflammation levels, which are associated with several neuropsychiatric and
neurodegenerative diseases affecting elderly individuals (Figure 3) [182].

4.2.4. Intestinal Disorders

Mice with dextran sulfate sodium (DSS)-induced colitis showed impaired TRP metabolism
along with upregulation of KMO and kynureninase (KYNU). These results were confirmed
by studies conducted in patients with active UC, in which both KMO and KYNU expression
were positively correlated with the inflammatory factors TNF and IL-1β. It was observed
that pharmacological blockade of KMO or genetic silencing of KYNU suppressed the
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expression of pro-inflammatory cytokines triggered by IL-1β in intestinal epithelial cells.
Moreover, blocking KMO with the selective inhibitor Ro 61-8048 alleviated the symptoms
of DSS-induced colitis in mice, which was accompanied by an increase in the NAD+ pool
and restoration of the redox balance. This study provides evidence of the pro-inflammatory
properties of KMO and KYNU in the treatment of intestinal inflammation, indicating a
promising therapeutic approach in the treatment of ulcerative colitis by targeting these
enzymes (Figure 3) [183].

5. Infectious Diseases

Numerous studies have demonstrated that the activation of the kynurenine path-
way (KP) mainly plays a harmful role in the development and progression of several
parasitic [184–188], bacterial [189–193], and chronic viral infections [194–198] (Figure 3).

5.1. Pharmacological Inhibition of IDO1 Activity
5.1.1. Malaria

IDO1 is involved in the pathogenesis of cerebral malaria, the most severe and often
fatal neurological complication of Plasmodium falciparum infection [199–201]. N-aryl-9-
aminobenzo[b]quinolizinium derivatives, effective inhibitors of IDO1, have demonstrated
activity against P. falciparum in cell culture. These compounds directly affect parasite
growth and simultaneously inhibit IDO1 activation in the host [202]. Furthermore, their
administration significantly reduces the severity of systemic symptoms of cerebral malaria
in animal models [202]. Therefore, they may effectively complement the treatment of
patients suffering from this disease.

5.1.2. In Utero Bacterial Infection

Tryptophan (TRP) catabolism via the KP is upregulated in the human placenta in
response to in utero infection, leading to increased release of pro-inflammatory and neu-
roactive factors into the fetal circulation [203–207]. Lipopolysaccharide (LPS), a bacterial
factor, triggers KP activation and increased secretion of pro-inflammatory cytokines within
the placenta [203,207,208]. Sulfasalazine, an anti-inflammatory and immunosuppressive
drug commonly used in rheumatoid arthritis and ulcerative colitis treatment [209,210], effec-
tively inhibits LPS-dependent nuclear factor-kB activation and release of pro-inflammatory
cytokines in the placenta, leading to decreased IDO expression [211]. These observations
suggest that modulation of KP activity in the human placenta, particularly IDO, may be a
new potential therapeutic target for managing in utero infections.

5.1.3. Influenza Infection

Viral infections induce tryptophan depletion and kynurenine accumulation due to
increased IDO activity in infected cells to suppress the immune response against them [212].
In animal models, IDO expression is upregulated in lung tissue immediately after influenza
infection [213,214], leading to immunosuppression within this tissue by decreasing the
synthesis of pro-inflammatory cytokines and T-cell activity. Treatment with 1-methyl-
tryptophan (1-MT) increases the expression of pro-inflammatory factors and enhances
immune cell response [215], potentially limiting initial damage caused by the influenza
virus in nasal and bronchial epithelial cells. Additionally, inhibiting IDO1 leads to increased
T cell adaptive immune response to influenza infection [216], suggesting that controlling
IDO1 activity during influenza vaccination may increase efficacy and robustness of the T cell
response, improving influenza-specific heterosubtypic immunity. Interestingly, antiviral
compounds inhibiting influenza virus entry prevent KP activation [197], whereas agents
blocking later infection stages stimulate this pathway. Therefore, since kynurenine has been
implicated as a factor triggering pain hypersensitivity during viral infection, antivirals
inhibiting virus entry or a combination of antivirals impacting later stages of influenza virus
infection with IDO1 inhibitors may become a novel strategy for treating and mitigating
severe influenza cases with accompanying neurological symptoms [217].
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5.1.4. HIV Infection

Similar to influenza infection, in vivo research has shown that human immunodefi-
ciency virus (HIV)-1 infection induces IDO overactivity [218]. This phenomenon is mostly
observed in human monocyte-derived macrophages. The role of macrophages in HIV-1
infection appears to involve a complex interplay between numerous inflammatory factors
and the virus. The primary mechanism involved in IDO activation by HIV-1 seems to be
associated with a direct effect of the virus or its proteins rather than an indirect induction
by IFN-γ or other pro-inflammatory cytokines [219]. However, it is also possible that
some cellular factors may partly contribute to KP upregulation during the development of
HIV-1 infection. Increased KP activity exacerbates mechanisms that suppress the immune
response [12]. Among the enzymes in this pathway, IDO1 has been recognized as a signifi-
cant immune response checkpoint, playing an important role in HIV-1 infection-associated
immune dysfunction, even in the context of antiretroviral therapy [220]. This suggests that
an increased level of immunosuppressive KP metabolites is one of the mechanisms that fa-
cilitates the development and progression of this infection and may limit the effectiveness of
its treatment. This is supported by the consistent association of KP activity with decreased
CD4+ T cell counts, elevated T cell activation, and viral load. Additionally, it independently
predicts mortality and morbidity from events unrelated to acquired immunodeficiency
syndrome (AIDS) [221]. A better understanding of KP dysregulation induced by HIV-1
may provide more selective and effective therapeutic solutions against HIV infection and
AIDS development. Furthermore, broader knowledge concerning KP modulation may lead
to new pharmacological approaches for AIDS-associated dementia and other neurological
inflammatory disorders associated with macrophages or microglia.

5.1.5. Tuberculosis

In addition to HIV-1, IDO-mediated tryptophan (TRP) catabolism via the KP is com-
monly enhanced in the course of tuberculosis [222]. A cumulative overactivity of IDO
induced by both HIV-1 and Mycobacterium tuberculosis appears to be responsible for the
extraordinarily high rate of progression to active tuberculosis observed in HIV-1-infected
patients [223]. However, it remains unclear whether the increase in IDO activity is causative
of progression to active disease or a compensatory response to the tuberculosis microbe.
Nevertheless, assessing the systemic level of KP metabolites seems to be a promising di-
agnostic method for detecting active tuberculosis and monitoring the effectiveness of its
treatment. Moreover, in vivo research has indicated that inhibiting IDO activity has the
potential to be an effective and clinically relevant host-directed approach for tuberculosis
treatment [224]. Therefore, confirmatory studies are necessary to better understand the
role of KP in the pathogenesis of tuberculosis and confirm the utility of IDO inhibition as a
potential therapeutic target for tuberculosis.

5.2. Pharmacological Inhibition of KMO Activity
5.2.1. Trypanosomiasis and Malaria

Preclinical studies have shown that treatment with Ro 61-8048, a potent, high-affinity
pharmacological inhibitor of KMO, significantly decreases the severity of neuroinflam-
matory responses in mice exhibiting severe, late central nervous system (CNS) stages of
African trypanosomiasis [225]. This effect was not observed during the early stages of
the disease. In vitro analysis has indicated that this compound does not directly inhibit
trypanosome proliferation, suggesting that the observed anti-inflammatory effect results
from its impact on host cells. This effect appears to be associated with the increase in
the level of anti-inflammatory KP metabolites observed after KMO inhibition, such as
KYNA and anthranilic acid (AA), which induce the expression of chemotactic monocyte
chemoattractant protein 1 [226]. These findings also suggest that 3-hydroxykynurenine
(3-HKYN) and its metabolites are involved in the development of severe inflammatory
responses associated with the late CNS stages of trypanosomiasis. They further suggest
that KMO inhibitors co-administered with conventional pharmacotherapy may be effective
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in preventing or ameliorating post-treatment reactive encephalopathy [227]. Moreover,
Ro 61-8048 prevents death and ataxia in mice infected with Plasmodium falciparum [228],
indicating the potential utility of KMO inhibitors in the treatment of both trypanosomiasis
and malaria.

5.2.2. SIV/HIV Infection

Swainson et al. demonstrated that KMO inhibition using CHDI-340246 in the acute
simian immunodeficiency virus (SIV) infection rhesus model prevents an increase in KP
downstream metabolite levels accompanying the infection [221]. As a result, it improves
further clinical outcomes of this disease, reflected in an increase in CD4+ T cell count and
body weight. Additionally, inhibition of KMO significantly increases the number of naive
T cells and downregulates programmed cell death protein 1 (PD-1) expression in naive and
memory T cell subpopulations. Importantly, early PD-1 overexpression during acute SIV
infection is associated with worse clinical outcomes [221,229]. Therefore, KMO inhibition
in early acute SIV/HIV-1 infection may provide significant clinical benefits [221]. It could
be effective as an adjunctive treatment in SIV/HIV-1 infection to slow disease progression
and improve immune reconstitution.

6. Other Disorders
6.1. Pharmacological Inhibition of IDO Activity
6.1.1. Endometriosis

Elevated expression of IDO1, observed in endometrial stromal cells (ESCs), may indi-
rectly promote the synthesis of cyclooxygenase-2 (COX-2) and matrix metallopeptidase
9 (MMP-9). These pro-inflammatory factors induce abnormal growth of ESCs and initiate in-
vasion and implantation of shed endometrium to the peritoneum, leading to the formation
of endometrial lesions and anomalous endometrium decidualization [230]. Additionally,
IDO1 may activate immunosuppressive macrophages, which can facilitate the survival of
endometrial tissues and seem to be involved in the progression of endometriosis. Inhibition
of IDO1 by 1-MT or its L isoform suppressed the expression of COX-2 and MMP-9 in
ESCs, contributing to a decrease in their proliferation, adhesion, and invasion [230,231].
These data indicate that 1-MT or other IDO1 inhibitors can be applied to prevent the
development of endometriosis (Figure 3) [232]. However, further studies are required to
identify IDO1-targeting therapies that do not affect hormonal balance and are safe and
clinically relevant.

6.1.2. Other Disorders

Galanal, a labdane-type diterpene derived from Myoga flowers, competitively inhibits
IDO1 activity [233]. Even very low doses of this compound potently block the enzymatic
activity of IDO1, as well as downregulate its mRNA expression. The mechanism of galan-
gal is associated with the disruption of the transcriptional functions of nuclear factor-kB
and the IFN-γ signaling pathway, which is responsible for the induction of IDO1 expres-
sion [234]. These properties of galangal make it a potentially valuable immunomodulatory
agent [235]. Galanal has stronger inhibitory potency than 1-MT; therefore, this compound
has great potential as a novel drug for the treatment of various inflammatory disorders
associated with potent IDO1 overactivity, including immune-related diseases or tumors
(Figure 3) [234].

7. The Beneficial and Harmful Effects of KP Activation

For the beneficial effects of KP activation in autoimmune diseases, TRP metabolites
such as KYN and KYNA are responsible for immunosuppression. Their primary role is
to suppress overactive immune responses. By promoting regulatory T cells (Tregs) and
inhibiting effector T cells, these metabolites help alleviate the excessive immune activity
characteristic of autoimmune diseases, thereby reducing inflammation and tissue damage.
The activation of IDO in response to inflammation, leading to the conversion of TRP into
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KYN, plays an important role in these beneficial effects. As a result of reducing TRP levels,
T lymphocyte proliferation is inhibited, which may help control autoimmune reactions and
maintain immunological tolerance [12]. Moreover, in autoimmune diseases involving the
central nervous system, such as multiple sclerosis, the neuroprotective properties of KYNA
may be particularly beneficial. By antagonizing excitotoxic amino acid receptors, KYNA
helps protect neurons against damage caused by inflammatory processes.

It should also be considered that KP activation in autoimmune diseases leads to
increased concentration of quinolinic acid (QA), a neurotoxic compound [47,236]. Elevated
QA levels may contribute to neurodegeneration and cognitive disorders in autoimmune
diseases, posing a serious problem in multiple sclerosis, where both inflammation and
KP dysregulation are involved in neuronal damage. Another consequence is excessive
immune suppression, which increases the risk of infection and may hinder the body’s
ability to eliminate cancer cells. Additionally, KP dysregulation has been associated with
psychiatric symptoms, including depression and anxiety, which are common comorbidities
in autoimmune diseases. Elevated levels of certain KP metabolites may disrupt the balance
of neurotransmitters, contributing to mental health problems.

8. Novel Therapeutic Strategies Aimed at Selectively Modulating KP Activity

Designing therapeutic strategies to selectively modulate kynurenine pathway (KP)
activity without potentiating deleterious effects involves a multifaceted approach that
targets specific enzymes, receptors, and metabolic pathways within the KP. This precise
action aims to provide beneficial effects such as immune regulation and neuroprotection
while minimizing adverse effects like neurotoxicity and excessive immune suppression.

Selective inhibition of specific enzymes in the KP can help modulate the production
of beneficial and harmful metabolites. The primary focus is on inhibiting IDO activity
to limit immunosuppressive effects and potentially enhance anti-tumor immunity [237].
However, it is important to note that excessive inhibition may lead to undesirable inflam-
matory reactions. The therapeutic potential of selectively modulating IDO1 activity lies in a
multifaceted approach that combines enzyme inhibition [238], modulation of downstream
pathways [239], advanced drug delivery systems [240], and personalized medicine strate-
gies [241]. These approaches aim to maximize the beneficial effects of IDO1 modulation,
such as immune regulation and neuroprotection, while minimizing adverse outcomes like
neurotoxicity and excessive immune suppression.

Another critical enzyme is KMO, which converts KYN into 3-HKYN. Increased KMO
activity leads to the production of QA, a neurotoxic compound. Therefore, inhibiting
KMO can lower QA levels, mitigating neurotoxicity while preserving the production of the
neuroprotective metabolite KYNA [49].

Increasing the levels of neuroprotective and immunomodulatory KP metabolites is
another therapeutic approach. This can be achieved through the use of synthetic analogs or
by promoting the activity of kynurenine aminotransferases (KATs), which may provide
neuroprotection and reduce excitotoxicity in diseases such as multiple sclerosis [15].

Using advanced drug delivery systems to target specific tissues or cells may improve
the effectiveness and safety of KP-modulating therapies. Encapsulating KP modulators in
nanoparticles or liposomes can enhance their delivery to specific sites, such as inflamed
tissues or the central nervous system, thereby reducing systemic side effects [240].

Combining KP modulators with other therapeutic agents can provide a synergistic
effect, improving therapeutic outcomes while minimizing side effects. For instance, co-
administering KP inhibitors with anti-inflammatory drugs may help control autoimmune
reactions without excessively suppressing the immune system. In cancer therapy, combin-
ing IDO inhibitors with immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors) may
increase anti-tumor immunity by reducing immune tolerance mechanisms [10].

Tailoring therapy based on individual metabolic and genetic profiles can optimize
therapeutic outcomes and minimize side effects. Developing and using biomarkers to
monitor KP activity and response to therapy may help personalize treatment plans. This
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would enable patients to receive the most appropriate and effective therapy based on their
specific KP dynamics [242].

Modulating receptors involved in the signaling of KP metabolites is another promis-
ing approach. The use of NMDA receptor antagonists may help alleviate QA-induced
neurotoxicity [243]. This approach could be particularly beneficial for diseases in which
QA levels are elevated.

Thus, designing therapeutic strategies to selectively modulate KP activity is promising.
However, due to the complexity of KP, involving numerous enzymes and metabolites with
opposing activities, it requires precise targeting and careful management. Addressing
these challenges is crucial to developing effective and safe treatments that will leverage the
therapeutic potential of KP while minimizing harmful effects.

Although several key KP metabolites, such as KYN and KYNA, are known to play a
role in immune regulation, the full spectrum of KP metabolites and their specific immune
regulatory functions remain poorly understood. The specific cellular targets and signaling
mechanisms by which KP metabolites exert their immunomodulatory effects are not fully
elucidated. For example, the interaction of KP metabolites with receptors such as the AhR
and subsequent effects require further investigation. The role of KP in various disease
contexts, including autoimmune diseases, cancer, and neurodegenerative diseases, requires
further research. A key gap is the differential activation of KP in these diseases and its
impact on disease progression and response to treatment. There is limited understanding
of the longitudinal effects of KP activation on the immune system and its systemic effects,
including potential neurotoxic or neuroprotective effects. Long-term studies are needed to
elucidate these effects. Filling these research gaps with targeted experimental approaches
will significantly advance the understanding of KP in immune regulation. Application
of multi-omics to comprehensively map KP metabolites and assess their impact on im-
mune regulation, cell-specific knockout models to identify specific cellular targets and
mechanisms of action of KP metabolites, disease-specific animal models, and longitudinal
studies to understand the long-term and systemic effects of activation KP can provide
comprehensive insight into the roles and mechanisms of KP, paving the way for new
therapeutic strategies.

9. Future Directions

Among the compounds capable of modulating the activity of the KP, inhibitors of IDO1
have become an important class of pharmaceuticals. This is because kynurenine (KYN) and
its metabolites participate in numerous physiological and pathological processes [1,95,244],
such as tumor immune escape [245], development of infectious [207,220,222], autoim-
mune [50,68,105], or metabolic disease [91,92,94], and neurodegeneration [5,22]. They are
mostly considered therapeutics for cancer therapy, mainly in combination with conven-
tional treatments, immunogenic chemotherapy, or immune checkpoint drugs, where they
have shown decent effectiveness and high safety levels [10,24,25]. In addition to antitumor
therapies, IDO1 inhibitors seem to be an effective solution in the management of various
inflammatory disorders [131,215,216], including autoimmunological diseases [60,61,67].

In support of the above, preclinical studies have demonstrated that inhibition of IDO1
can be effective in combination with B cell depletion therapy in the treatment of RA [61],
as well as in managing SLE-associated fatigue [246], morphea [77], and other cutaneous
sclerosing disorders [247]. IDO1 overactivity has also been observed in the course of viral
diseases [214]. In animal models, its expression was upregulated in lung tissue immediately
after contracting the influenza virus [217], as well as in monocyte-derived macrophages
during HIV-1 infection [219]. Therefore, IDO1 inhibitors may become a novel strategy for
treating and mitigating their symptoms. They have great potential as immune adjuvants
in combination with influenza vaccine and antiretroviral therapy [214,220]. Apart from
infectious diseases, modulation of IDO1 activity has potential in treating various intestinal
diseases, such as colitis or inflammatory bowel disease [112]. Furthermore, the activation
of IDO1 also negatively affects the rate of wound healing, so the use of IDO1 inhibitors
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may be an effective approach to treating difficult-to-heal wounds [139]. Other research
indicates that they could be administered to prevent endometriosis [231], as well as to
slow the progression of atherosclerosis [121] and hepatic fibrosis [113]. Additionally, the
downregulation of KP activity, especially IDO, in the human placenta may help manage in
utero infections [207].

It is worth noting that the authors indicate the presence of some controversy associated
with the use of IDO inhibitors. Competitive inhibitors, such as 1-MT, commonly used in
preclinical research, have demonstrated low effectiveness in in vivo conditions because
they only reach therapeutic effects at high serum concentrations, comparable to TRP [10].
Furthermore, they meet numerous structural and functional criteria as potential agonists of
the AhR with similar KYN binding affinity. Therefore, their low systemic immunomodu-
latory effect may be associated with their off-target effects, such as AhR activation [248].
This aspect should not be overlooked when assessing their clinical outcomes and potential
utility. Moreover, the inhibition of IDO1 activity does not always prove to be therapeutically
desirable [249]. Activation of this enzyme seems to be a promising approach to manag-
ing certain inflammatory disorders. This solution turned out to be effective in an animal
model of autoimmune diabetes [250] and appears to be useful in preventing and treating
idiopathic pneumonia syndrome after HSCT [156]. This all underscores the necessity for
a better understanding of the basic biological role of IDO1, IDO2, and TDO to develop
new, more effective, and safer therapeutic strategies, as well as to identify patients who
will benefit the most from their use. To date, no clinical trials have been conducted on
compounds modulating the activity of KP enzymes in non-neoplastic diseases.

Beyond the pharmacological modulation of IDO1 activity, the authors propose other
approaches that may serve as therapeutic targets for inflammatory disorders with abnormal
TRP catabolism. TDO and IDO2 inhibition may decrease KYN production when inhibition
of IDO1 is not sufficient to achieve the desired therapeutic effect [251]. Targeting more than
one enzyme at once may induce a wide and synergistic systemic response, which could be
especially effective in patients with inherent or acquired resistance to currently available
inhibitors of IDO1. Simultaneous targeting of IDO2 and IDO1, though less understood,
may provide new therapeutic options for managing inflammatory disorders, including
autoimmune ones. Moreover, the idea of dual IDO1 and TDO inhibitors is also desirable,
as inhibition of IDO may lead to the activation of TDO [10]. However, all these enzymes
belong to upstream levels of the KP, and their inhibition may cause more adverse effects
than selective approaches.

Targeting KMO and KAT activity appears to be an effective solution when inhibit-
ing upstream enzymes in the KP is not desirable. Preclinical studies have found that
pharmacological inhibition of KMO activity may find application in treating certain dis-
eases [161,163,165]. In some cases, blocking this enzyme seems to be a better therapeutic
approach than targeting IDO. Since KMO overactivity has been shown to contribute to the
severity of AKI after IRI, AP, and AP-MODS symptoms, administering KMO inhibitors
appears to be an effective strategy for managing these disorders [162,166,167]. Addition-
ally, these compounds seem to be potentially useful in treating some parasitic diseases,
including trypanosomiasis and malaria [199,200]. The authors also showed that KMO
inhibition can be effective as an adjunctive treatment for SIV and HIV infections [221]. It
slows the progression of these diseases and enhances immune reconstitution. In turn, KAT
inhibitors might be effective in managing endotoxic shock [252]. Apart from that, they
have the potential to be a novel therapeutic solution in treating pre-eclampsia and other
cardiovascular diseases. PF-04859989 is a new, potent, highly specific, and irreversible
inhibitor of the human and rat KAT II isoform [253,254]. It could be useful in treating these
disorders, as well as others accompanied by excessive activation of this enzyme. However,
many unknowns remain concerning this issue, as the expression profile and pathophysio-
logical role of KAT isoforms in the cardiovascular system remain unclear, requiring further
research to resolve them.
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In addition to directly modulating KP enzymes, the authors suggest other therapeutic
targets that could address inflammatory disorders associated with abnormal KP activity.
These include modulating the expression levels of IDO, TDO, and KMO, regulating the
proteasomal degradation rate of these enzymes, and targeting upstream factors responsible
for the synthesis and activation of IDO, such as the JAK/STAT3 pathway, or downstream
effectors for KP metabolites, including general control nonderepressible-2 kinase and
mammalian target of rapamycin kinase [65,114]. Additionally, direct targeting of specific KP
metabolites using monoclonal antibodies, as well as inhibiting receptors for KP metabolites
such as AhR and G protein-coupled receptor 35, or mechanisms responsible for TRP
cellular transport, should also be considered as potential therapeutic solutions [10,166].
These approaches may mitigate the detrimental effects of KP metabolites, regardless of
their source and synthesis level. AhR antagonists, in particular, have shown promising
results in animal models in this regard [255–257].

10. Conclusions

Physiologically, the KP plays an important role in maintaining the balance of the
immune system. However, various inflammatory conditions are accompanied by its exces-
sive activation, leading to the accumulation of its active metabolites. This accumulation
may adversely affect numerous biological processes, intensifying disturbances in systemic
homeostasis caused by the ongoing disease. Pharmacological modulation of KP activity
appears to be an effective solution for the adjunctive treatment of many inflammatory disor-
ders, including autoimmune conditions. Although inhibition of this pathway is considered
a therapeutic target in most assessed disorders, this approach is not always desirable.
Depending on the nature of the disorder, activation of the pathway may bring beneficial
effects in some cases. Among the enzymes belonging to the KP, IDO, TDO, and KMO show
the greatest potential as therapeutic targets in various inflammatory disorders. Results of
preclinical studies suggest that modulation of their activity may provide new, effective
strategies for managing numerous inflammatory diseases, including those currently consid-
ered incurable or with limited therapeutic options, such as autoimmune conditions. This
underscores the importance of further research on this topic, particularly concerning their
clinical application.
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