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Abstract: The term “Cardiorenal Syndrome” (CRS) refers to the complex interplay between heart
and kidney dysfunction. First described by Robert Bright in 1836, CRS was brought to its modern
view by Ronco et al. in 2008, who defined it as one organ’s primary dysfunction leading to secondary
dysfunction in the other, a view that led to the distinction of five different types depending on the
organ of primary dysfunction and the temporal pattern (acute vs. chronic). Their pathophysiology is
intricate, involving various hemodynamic, neurohormonal, and inflammatory processes that result
in damage to both organs. While traditional biomarkers have been utilized for diagnosing and
prognosticating CRS, they are inadequate for the early detection of acute renal damage. Hence, there
is a pressing need to discover new biomarkers to enhance clinical outcomes and treatment approaches.
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1. Introduction

The term “Cardiorenal Syndrome” (CRS) encompasses a complex interplay of dys-
function within both the cardiac and renal systems, presenting with variable temporal
patterns depending on the specific subtype of the syndrome. Dysfunction may manifest
acutely, chronically, or as a component of a systemic disease affecting both organs. This
intricate relationship was first hypothesized by Robert Bright in 1836, where he observed
structural cardiac changes in patients with advanced renal insufficiency. In 1840, a case
series highlighted the correlation between cardiovascular pathologies and renal impair-
ments, characterized by heightened albumin secretion [1]. In 2004, the National Heart,
Lung, and Blood Institute (NHLBI) defined CRS as an outcome of intricate interactions
between the renal and cardiac systems, culminating in the increased circulatory volume
and exacerbation of heart failure symptoms alongside disease progression.

In 2008, Ronco et al. provided a formal definition of CRS as primary dysfunction in
one organ, occurring either acutely or chronically, leading to secondary dysfunction in the
other one [2]. While CRS underscores the intimate physio-pathological interconnection
between the heart and kidneys, the Acute Dialysis Quality initiative proposed a refined
classification system, dichotomizing the syndrome into distinct groups based on the origi-
nation of primary organ dysfunction that triggers the pathological cascade (cardiorenal or
renocardiac) [3]. These subgroups are further subdivided based on the acuity or chronicity
of organ involvement, except for a category implicating systemic causes (Figure 1).

Unravelling the causal nexus between primary and secondary organ dysfunction can
prove challenging, particularly in the presence of concurrent risk factors such as diabetes,
hypertension, and atherosclerosis that intricately influence both systems, thereby shaping
a unified clinical profile [4]. The bidirectional interplay of cardiac and renal dysfunction
initiates a cascade of feedback mechanisms culminating in detrimental outcomes for both
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organ systems. Pathogenesis involves a complex interplay of hemodynamic, neurohor-
monal, and inflammatory mediators predominantly culminating in volume overload [5].
Although data are scarce, CRS can associate with high mortality rates depending on the
underlying cause and the type. In a retrospective cohort study, acute CRS was associated
with a higher risk of death compared with chronic renocardiac syndrome or chronic kidney
disease (CKD) without CRS [6]. Yet, existing diagnostic criteria are deemed insufficient
in this regard and urgent attention is warranted towards the discovery and validation
of novel, highly predictive biomarkers to facilitate accurate assessment, monitoring, and
tailored therapeutic strategies for CRS [7].
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Figure 1. Classification of cardiorenal syndromes. CRSs are classified based on the primary involve-
ment of the kidney or the heart and based on its temporal progression. Type I and II include cardiac 
conditions causing a secondary damage to the kidney in an acute or chronic fashion, respectively. 
Type III and IV encompass kidney dysfunction that damages the heart in an acute or chronic fash-
ion, respectively. Finally, type V includes systemic afflictions that affects both cardiac and kidney 
functions. 
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Figure 1. Classification of cardiorenal syndromes. CRSs are classified based on the primary in-
volvement of the kidney or the heart and based on its temporal progression. Type I and II include
cardiac conditions causing a secondary damage to the kidney in an acute or chronic fashion, re-
spectively. Type III and IV encompass kidney dysfunction that damages the heart in an acute or
chronic fashion, respectively. Finally, type V includes systemic afflictions that affects both cardiac and
kidney functions.

1.1. Renal Diagnostic Criteria

In the context of heart failure, volume overload often leads to alterations in serum
creatinine levels, which may sometimes be within normal range or even decreased. Con-
sequently, this biomarker is incorporated into the diagnostic criteria established by the
Kidney Disease Improving Global Outcomes (KDIGOs) for both acute kidney injury (AKI)
and CKD. However, there exists a distinct clinical entity presenting with acute kidney dis-
turbances that do not meet the criteria for either AKI or CKD, termed acute kidney disease
(AKD). These presentations vary based on temporal patterns. AKD is characterized by
structural and functional abnormalities lasting ≤3 months. Conversely, AKI is considered
a subgroup of AKD, defined as a renal function abnormality over a period of 6 h to 1 week.
CKD is understood as the presence of both structural and functional renal abnormalities
with systemic involvement lasting ≥3 months. Functional criteria for AKI include: a >50%
increase in serum creatinine over the past 7 days, or a ≥0.3 mg/dL increase in serum
creatinine within 2 days, or oliguria lasting ≥4 h. AKD presents the same functional criteria
as AKI picture but lists also glomerular filtration rate (GFR) < 60 mL/min/1.73 m2, or a
≥35% reduction in GFR compared to baseline, or a ≥ 50% increase in serum creatinine
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compared to baseline. In this case, structural criteria include markers of renal damage
such as albuminuria, acid–base and electrolyte disturbances, haematuria, or sediment
abnormalities. Lastly, such structural and functional abnormalities are also shared in CKD,
which is differentiated based on the temporal pattern as those last ≥3 months [8] (Table 1).

Table 1. Renal damage definition and criteria by the Kidney Disease Improving Global Out-
comes (KDIGOs).

AKI AKD CKD

Temporal Pattern ≤7 days ≤3 months ≥3 months

Functional Criteria

Increase in serum creatinine ≥ 50%
within 7 days, or increase
≥0.3 mg/dL within 2 days, or
oliguria for ≥4 h.

The same as AKI, or
GFR < 60 mL/min/1.73 m2, or
decrease in GFR by ≥35% with
respect to baseline, or increase in
serum creatinine by ≥50% with
respect to baseline.

GFR < 60 mL/min/1.73 m2

Structural Criteria

Albuminuria, hematuria,
acid–base and electrolyte
disturbances or sediment
abnormalities.

Abbreviations: AKD: acute kidney disease, AKI: acute kidney injury, CKD: chronic kidney disease, GFR: glomeru-
lar filtration rate.

1.2. Cardiac Diagnostic Criteria

Heart failure (HF) is a clinical syndrome characterized by symptoms and signs result-
ing from a structural and/or functional cardiac abnormality, stemming from an alteration
in systolic and/or diastolic function leading to reduced cardiac output and/or increased
intracardiac pressures at rest or during stress. The most commonly used classification is
based on the measurement of left ventricular ejection fraction (LVEF) and describes patients
with LVEF ≥50% (heart failure with preserved EF, HFpEF), LVEF < 40% (heart failure with
reduced EF, HFrEF), and LVEF between 40 and 49% (heart failure with mid-range ejection
fraction, HFmrEF) [9]. Furthermore, based on the temporal course, heart failure can be
differentiated into de novo and acute versus chronic.

2. Classification

The Acute Dialysis Quality Initiative group proposed a classification of CRS, dividing
it into two groups based on which organ was primarily involved: heart and then kidney, or
kidney and then heart. Each type was further subdivided based on the temporal course:
acute form (type 1 and 3) and chronic form (type 2 and 4). Finally, type 5 encompasses the
condition of systemic damage involving both the kidney and the heart [10,11] (Figure 1).
This classification can be very useful in setting up the therapeutic pathway, but it is
important to keep in mind that there is often overlap between the different groups, with
the evolution from one type to another during the progression of the disease.

2.1. Type I

The CRS type I, or acute cardiorenal syndrome, is characterized by the development
of AKI in patients with acute cardiac diseases; this is, in most cases, acute decompensated
heart failure (ADHF). The most common causes include acute coronary syndrome, pul-
monary embolism, pericardial tamponade, myocarditis, papillary muscle rupture, and
arrhythmias. These conditions result in acute heart failure characterized by hemodynamic
alterations such as renal hypoperfusion, which plays a significant role in this category [12].
Consequently, there is a persistent activation of the sympathetic tone, as well as a rise in
inflammatory mediators and the renin–angiotensin–aldosterone system (RAAS), which
may worsen both cardiac and renal function [13] (Figure 2).
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Figure 2. Underlying mechanisms for CRS type I and type II. CRS type I and II are due to cardiac
afflictions primarily altering kidney function. Its pathogenesis involves the increased activation
of the sympathetic nervous system (SNS), as well as a rise in inflammatory mediators and the
renin–angiotensin–aldosterone system (RAAS). Additionally, hemodynamic alterations such as renal
hypoperfusion play a significant role.

2.2. Type II

In CRS type II, or chronic cardiorenal syndrome, chronic HF is responsible for the
onset or progression of CKD. Indeed, CKD is observed in 45% to 63% of patients with
chronic heart failure and may represent the evolution of CRS type I [14–16]. In this category
as well, the systemic and local activation of the SNS and RAAS, hemodynamic factors of
renal hypoperfusion, chronic low-grade inflammation, and venous congestion appear to
play a predominant role [17,18] (Figure 2).

2.3. Type III

CRS type III, or acute renocardiac syndrome, is characterized by an acute alteration
in renal function leading to cardiac dysfunction [10], including ADHF, acute myocardial
infarction (AMI), and cardiac arrhythmias [19]. The underlying pathophysiology is not
well understood. Existing evidence suggests a bidirectional relationship between these
two systems, involving both the direct effects of AKI on the heart and the effects of AKI on
the function of other organs with indirect effects on the heart. Such mechanism involves
triggering an inflammatory process leading to cytokine activation, leukocyte infiltration,
and apoptotic cell death, resulting in compromised cardiac function. Additionally, known
physiological imbalances such as acid–base disturbances, electrolyte abnormalities, and
volume overload are associated with this condition [20] (Figure 3).
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Figure 3. Underlying mechanisms for the CRS type III and type IV. CRS type III and IV are charac-
terized by acute or chronic alterations in renal function leading to cardiac disease. The underlying
pathophysiology is not well understood but suggests a bidirectional relationship between the kidney
and heart, involving inflammatory processes and physiological imbalances such as acid–base distur-
bances, electrolyte abnormalities, volume overload, chronic inflammation, endothelial dysfunction,
and the toxic effects of the uremic environment.
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2.4. Type IV

CRS type IV, also known as chronic renocardiac syndrome, represents a category
characterized by progressive alterations in renal function leading to cardiac diseases. The
association between CKD and increased CV risk has long been recognized. Studies indicate
that cardiovascular causes account for nearly 50% of deaths across all age groups of patients
with CKD [21]. The pathogenesis involves a complex interaction of factors common to both
CKD and cardiovascular disease. These include modifiable risk factors such as cigarette
smoking, dyslipidemia, age, and diabetes [22]. Other factors are involved in the process of
chronic inflammation responsible for endothelial dysfunction and/or the toxic effect of the
uremic environment [11] (Figure 3).

2.5. Type V

CRS type V is secondary to the simultaneous involvement of both the kidney and the
heart in systemic clinical conditions. CRS can occur both acutely and chronically without
primary or secondary organ dysfunction. In acute forms, the most frequent conditions
are sepsis, infections, or exposure to toxic drugs. Meanwhile, chronic conditions may
include diabetes mellitus, hypertension, and systemic amyloidosis, for example. However,
some conditions such as systemic lupus erythematosus can present acutely and chronically.
Moreover, diabetes mellitus can involve either the heart or the kidney at different times,
making it challenging to categorize into a specific CRS category [10] (Figure 4).
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Figure 4. Underlying mechanisms for CRS type V. CRS type V occurs due to simultaneous kidney
and heart dysfunction in systemic conditions. It can be acute, often due to sepsis or toxic drugs, or
chronic, commonly associated with diabetes, hypertension, or amyloidosis.

3. Pathophysiology

The pathophysiology of CRS is characterized by a series of processes responsible
for damage at both the cardiac and renal levels. The list of contributors to CRS onset
and progression include common cardiac and renal risk factors such as hypertension,
diabetes, atherosclerosis, chronic inflammation, obesity, dyslipidemia, older age, sex, and
smoking [23]. The underlying mechanisms involve a cascade of events that affect both



Cells 2024, 13, 1283 6 of 14

the heart and the kidneys, leading to a mutual amplification of damage. These processes
involve the interaction of multiple factors, both hemodynamic and non-hemodynamic,
which are not always fully understood.

3.1. Hemodynamic Alterations
3.1.1. Venous Congestion

Many pieces of evidence demonstrate how the role of renal venous congestion is a
primary factor in CRS. The earliest studies date back to 1913 with Rowntree et al. [24] and
then Winton [25]. Later, in 1949, Blake [26] and colleagues documented how the increase
in renal venous hypertension alters renal hemodynamic parameters such as plasma flow
and glomerular filtration rate, leading to significant reductions in sodium excretion. A post
hoc analysis of the ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary
Artery Catheterization Effectiveness) demonstrated that right atrial pressure was the only
hemodynamic parameter associated with renal dysfunction [27]. The increase in central
venous pressure (CVP) caused by ADHF results in renal venous congestion, reducing blood
flow through renal vasculature. The mechanisms responsible for worsening renal function
and venous congestion include increased renal interstitial pressure, tubular obstruction, and
the activation of the renin–angiotensin system and sympathetic nervous system, resulting
in increased sodium avidity [28].

3.1.2. Intra-Abdominal Pressure

Elevated intra-abdominal pressure, assessed using a bladder catheter connected to a
transducer, correlates with deteriorating kidney function in acute heart failure patients [29].
The compressive impact on renal veins and ureters, resulting in decreased renal filtration,
may elucidate the contribution of elevated intra-abdominal pressure to the pathogenesis of
CRS [29,30].

3.2. Non-Hemodynamic Alterations
3.2.1. Neurohormonal Pathways

Among the mechanisms contributing significantly to cardiac or renal dysfunction
in CRS is the activation of the sympathetic nervous system (SNC) and the RAAS. The
decrease in arterial circulating blood volume triggers neurohormonal activation, including
RAAS, the endothelin system, and arginine vasopressin. These systems induce water
retention through sodium-retentive vasoconstriction, countered by vasodilatory natriuretic
hormone systems and cytokines [31,32]. Normally, these mechanisms work together to
maintain vascular tone, cardiac output, and tissue perfusion. However, in heart failure, they
perpetuate vicious cycles leading to chronic renal hypoxia, inflammation, and oxidative
stress, which can independently alter cardiac and renal structure and function [33].

3.2.2. Oxidative Stress

Under normal circumstances, ROS are produced in a balanced manner in all organs, in-
cluding the heart and kidneys, for cellular functions [34,35]. However, during pathological
or physiological stress, disruptions in oxidative reaction homeostasis can lead to increased
ROS production by mitochondria, causing tissue damage [36]. Impaired mitochondrial
metabolism in cardiomyocytes and kidney tubular cells represents the ultimate convergent
pathway leading to tissue injury in CRS patients [37].

3.2.3. Inflammation

Inflammatory processes may be implicated in the pathogenesis of CRS, contributing to
cellular damage in both the heart and kidneys. Both chronic kidney disease and heart failure
entail pronounced chronic inflammation, leading to the generation of pro-inflammatory
biomarkers, which play a crucial role in tissue damage to both organs, resulting in cellular
death and fibrosis. Key triggers initiating and propagating the inflammatory cascade



Cells 2024, 13, 1283 7 of 14

include the activation of the sympathetic nervous system and the RAAS, venous congestion,
ischemia, and oxidative stress [5].

Specifically, the circulating inflammatory mediators shown to rise after AKI, such as
TNF-α (tumor necrosis factor-α), IL-1 (interleukin-1), and IL-6 (interleukin-6), have direct
depressant effects on the heart and have been shown to reduce left ventricular ejection
fraction and cause long-term ventricular remodeling [38]. Furthermore, following the rise
of inflammatory mediators and with the help of stretch stress due to peripheral venous
congestion, the endothelium is dysfunctionally activated switching toward a proinflam-
matory and prothrombotic phenotype [39]. Recently, a role for kidney dendritic cells and
their crosstalk with cardiac homologous has emerged with an important role in CRS [40].
Independently of the underlying cause, chronic renal damage is characterized by some
degree of renal cell necrosis with inflammatory response [41]. Different mechanisms of
necrosis have been involved in the progression of kidney damage including ferroptosis and
necroptosis, all leading to an inflammatory response characterized by the local immune
system and endothelial cell activation with a rise in local oxidative stress and the release of
pro-inflammatory cytokines [42]. Indeed, after the injury, the remaining cells are dediffer-
entiated and proliferate to replace the damaged tissue. Yet, under the conditions of chronic
damage, the kidneys cannot generate new nephrons, and maladaptive response leads to
further injury [43]. Indeed, maladaptive repair leads to failed tubule recovery, a decrease in
epithelial cells and an increase in the mesenchymal ones, enhancing fibrosis and resulting in
CKD. Myofibroblast and damaged tubular cells produce pro-fibrotic factors such as TGF-β
and fibroblast growth factor-23 (FGF-23), facilitating the formation of fibrotic scars [44].
Fibrosis, in turn, associates with capillary rarefaction and local hypoxia, resulting in further
damage. FGF-23 recently showed an important role in mediating cardiac hypertrophy
following renal injury [45]. After hypertrophy onset, microvascular ischemia may also
participate in the progression of cardiac damage while profibrotic factors released at the
renal site may reach the heart and precipitate similar pathways at distance [46].

Of much interest, oxidative stress and inflammation contribute to the onset of en-
dothelial dysfunction by damaging the endothelial cells lining blood vessels, leading to
impaired vasodilation, increased permeability, and promoting thrombosis and atheroscle-
rosis [47]. Endothelial dysfunction is, therefore, a critical factor in the development and
progression of CRS by altering blood flow and modifying the physiological responses of
neurohormonal axis, which further heightens inflammatory responses and oxidative stress,
therefore, facilitating the onset of a vicious circle [48].

4. Biomarkers of Renal Injury

Biomarkers have traditionally been used in the diagnostic and prognostic process
of CRS. However, the currently available biomarkers do not always prove effective in
identifying early acute renal damage associated with heart diseases [49], potentially slowing
down the diagnostic process. Moreover, the same biomarkers of renal or cardiac damage
present several limitations in projecting the progression of CRS in a chronic context.

4.1. Established Biomarkers
4.1.1. Creatinine

One of the standard parameters used for the diagnosis of AKI is serum creatinine;
yet, this is not reliable during acute changes of renal function [50]. Serum creatinine (sCr)
would be more of a marker of function rather than injury, and its concentration does not
increase until there is a moderate loss of renal function. Additionally, sCr is influenced by
muscle mass. Therefore, in the elderly, malnourished, or chronically ill patients, it may
remain within range even in the presence of AKI. Furthermore, in cases of volume overload
such as in ADHF, sCr may be falsely low, delaying the diagnostic phase. In CRS, there is
tubular injury with cell death before renal function loss occurs [49]. Hence, there is a need
to identify new renal markers that indicate tubular injury earlier than creatinine [51].
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4.1.2. Glomerular Filtration Rate (GFR)

Glomerular filtration rate (GFR) serves as an index of renal function, measured as the
rate of plasma filtration in the nephron over a certain period of time [52]. Its estimate (eGFR)
is part of the diagnostic criteria of CKD. Reduction in eGFR in CRS patients correlates with
negative outcomes and increased mortality [53]. However, during volume reduction in pa-
tients undergoing diuretic therapy for ADHF, eGFR may not be that accurate. Additionally,
eGFR is calculated considering sCR, which, as previously discussed, can be misleading,
thus delaying diagnosis [52].

4.1.3. Brain Natriuretic Peptide

The measurement of B-type natriuretic peptide (BNP) in the blood involves both its
forms, BNP, which is biologically active, and N-terminal (NT) pro-hormone BNP (NT-
proBNP), the inactive precursor. BNP is a peptide synthesized and released by ventricular
cardiomyocytes, with functions including diuresis and natriuresis. BNP and NT-proBNP
serve as diagnostic biomarkers in ADHF and prognostic markers in chronic heart fail-
ure. Studies conducted by Takahama et al. [54] have shown that the increase in the NT-
proBNP/BNP ratio precedes the worsening of renal function in patients with ADHF and
is associated with a decrease in GFR. The NT-proBNP increases with age and reflects age-
related health status. In older individuals without cardiac issues, the BNP/NT-proBNP
level can be significantly higher than baseline levels [55], thereby reducing its utility as a
sole biomarker for CRS diagnosis.

4.2. Novel Biomarkers (Table 2)
4.2.1. Neutrophil Gelatinase-Associated Lipocalin (NGAL)

NGAL is synthesized and expressed by proximal and distal renal tubular cells [56] fol-
lowing stress conditions, particularly in response to infections, inflammation, ischemia, or
neoplastic transformation [57–60]. NGAL is also secreted at basal levels by cardiomyocytes
and other tissue cells [58]. Being produced within the kidney during ischemic conditions,
NGAL is seen as a potential marker of acute renal tubular injury and necrosis [61]. More-
over, NGAL can be detected both in blood and urine [61,62]. From the currently available
studies, it has been demonstrated that an increase in the biomarker in urine and blood has
allowed for the detection of AKI in patients with ADHF well before any significant changes
in sCr levels [63].

4.2.2. Cystatin C (CysC)

CysC is a cysteine protease inhibitor protein released into the bloodstream by all
nucleated cells [64]. CysC is filtered through the glomerulus into the urine and subsequently
completely reabsorbed at the proximal tubule level without being secreted, making it a
parameter of renal function. Its values are not influenced by age, sex, or muscle mass,
unlike creatinine [65,66]. Shardlow et al. have shown that CysC is a better marker of renal
function in chronic kidney disease compared to creatinine [67]. Furthermore, in acute heart
failure and CRS scenarios, increased levels of cystatin C prove to be a reliable indicator for
predicting outcomes after discharge, offering a valuable means of categorizing patients
according to their risk of adverse post-discharge events [68].

4.2.3. Kidney Injury Molecule-1 (KIM-1)

KIM-1 is a type 1 transmembrane receptor glycoprotein that is expressed following
tubular damage on the surface of proximal tubular epithelial cells, while under physiologi-
cal conditions, it is not expressed. It can be measured in urine [69,70]. There are studies
showing that in AKI, the increase in urinary KIM-1 can be used as a potential biomarker for
the acute diagnosis of CRS [71]. Specifically, KIM-1 can be used as an additional biomarker
alongside other markers in AKI, especially in its ischemic or nephrotoxic form, enhancing
their sensitivity and specificity [58–60].
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4.2.4. N-Acetyl-β-D-Glucosaminidase (NAG)

NAG is a lysosomal enzyme located on the brush border of the epithelial cells of the
proximal tubule, which under normal conditions is not detected in urine. It degrades gly-
coproteins and glycosaminoglycans, facilitating the breakdown of complex carbohydrates
in lysosomes [72]. It is not released by cells, and, due to its high molecular weight, it is
not filtered by the glomerulus [73]. Consequently, its urinary levels specifically reflect the
extent of tubular damage in the event of nephron injury during AKI [74–76].

4.2.5. Interleukin 18 (IL-18)

IL-18 is a pro-inflammatory cytokine that enhances the activity of natural killer cells
and T-cells, playing a crucial role in the immune response against infections and tumors.
Additionally, IL-18 promotes the production of other cytokines, such as interferon-gamma
(IFN-γ), and is involved in the pathogenesis of inflammatory diseases by contributing to the
inflammatory cascade. IL-18 is early released in urine during the acute ischemic damage of
the proximal renal tubules, and its levels rise 48 h before serum creatinine levels [77,78].

4.2.6. Galectin-3

Galectin-3 (Gal-3) belongs to the family of beta-galactosidase-binding lectins [79]. It is
released by macrophages, stimulating collagen activation and deposition in the extracellular
matrix [80,81]. Therefore, its main role is to promote fibrosis; particularly in the cardiac
context, it can lead to the remodeling and progression of heart failure. Moreover, Gal-3
is also involved in renal fibrosis and dysfunction, where an increase in serum levels may
precede the reduction in GFR [82]. Similarly, in patients with chronic heart failure, elevated
serum levels of Gal-3 are associated with an increased risk of worsening renal function [83].

Table 2. List of biomarkers linked to CRS outcomes and their characteristics.

Novel Biomarker Description References Results

NGAL
Marker secreted in urine and
blood. An early marker of
renal damage.

Song et al. [84] Diagnosis of CRS type I: ROC curve AUC 0.875
[0.813–0.937] p < 0.001

Alvelos et al. [85] Development of CRS type I in patients with acute
heart failure: AUC 0.93 [0.88–0.98] p < 0.001

Chen et al. [86] AKI progression in patients with CRS type I: OR,
4.7; 95% CI, 1.7–13.4 p < 0.001

CysC
Assessment of kidney
function. In CKD, it is better
than serum creatinine.
Predictor of adverse outcomes

Pinsino et al. [87]

CysC-based estimated glomerular filtration rate
predicts a composite endpoint of in-hospital
mortality, renal replacement therapy, or severe
right ventricular failure in patients with LVAD: OR
per 5 mL/(min·1.73 m2) decrease 1.16 (1.02–1.31)

Ruan et al. [88]

Levels of Cys C are independently associated with
in-hospital and 12-months mortality in patients
with CRS type I OR, 1.48; 95% CI, 1.75–4.16,
p = 0.027 and OR, 2.72; 95% CI, 1.92–4.28,
p = 0.017, respectively

Rafouli-Stergiou
et al. [68]

In-hospital changes in CysC predicted cardiac
death or rehospitalization for heart failure
decompensation at 60 days in patients with CRS:
ROC curve, AUC 0.681 [0.549–0.812], p = 0.014

NAG Marker of acute kidney injury. Liangos et al. [74]

The second, third, and fourth quartile groups of
NAG associated with an increased risk of dialysis
requirement or hospital death in patients with
AKI: OR 3.0 (95% CI 1.3–7.2); OR 3.7 (95% CI
1.6–8.8) and OR 9.1 (95% CI 3.7–22.7), respectively
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Table 2. Cont.

Novel Biomarker Description References Results

KIM-1 Marker of acute kidney injury.
It is measured in urine.

Liangos et al. [74]

The second, third, and fourth quartile groups of
KIM associated with an increased risk of dialysis
requirement or hospital death in patients with AKI:
OR 1.4 (95% CI 0.6–3.0), OR 1.4 (95% CI 0.6–3.0),
and OR 3.2 (95% CI 1.4 to 7.4), respectively

Kaddourah et al. [71]

In children with dilated cardiomyopathy, a
combined model using cut-off values of
KIM-1 ≥ 235, IL-18 ≥ 17.5, and (BNP) > 15 pg/mL
resulted in a distinction between patients with
mildly depressed LV (55 > LVEF ≥ 45) and those
with LVEF < 45%: ROC curve AUC 0.70

IL-18
Early marker of acute kidney
injury.

Parikh et al. [77,78]

Levels of IL-18 predicted the development of AKI
in ICU patients: IL-18 > 100 pg/mL OR 6.5 (95%
CI 2.1–20.4) p < 0.001
Levels of IL-18 predicted mortality in ICU patients:
IL-18 >200 pg/mL OR 2.32 (95% CI 1.2–4.4)
p < 0.001

Chen et al. [86] AKI progression in patients with CRS type I: OR
3.6 (95% CI 1.4–9.5)

Kaddourah et al. [71]

In children with dilated cardiomyopathy, a
combined model using cut-off values of
KIM-1 ≥ 235, IL-18 ≥ 17.5, and (BNP) > 15 pg/mL
distinguished patients with mildly depressed LV
(55 > LVEF ≥ 45) and those with LVEF < 45%:
ROC curve AUC 0.70

Gal-3 Marker of cardio-renal fibrosis
and dysfunction. Iacoviello et al. [83]

Gal-3 associated with kidney injury in patients
with chronic heart failure: OR 1.08 (95% CI
1.02–1.14), p = 0.012

Abbreviations: AKI, acute kidney injury. LV, left ventricle. LVEF, left ventricle ejection fraction. NGAL, neutrophil
gelatinase-associated lipocalin. NAG, urinary enzyme N-acetyl-β-D-glucosaminidase. KIM-1, kidney injury
molecule-1. IL-18, interleukin 18. Gal-3, galectin-3. OR, odds ratio. 95% CI, 95% confidence of interval. AUC, area
under the curve.

5. Conclusions and Perspectives

CRS is a complex condition classified into five types based on the heart–kidney relation-
ship and is associated with high morbidity and mortality, particularly when undiagnosed
early. While numerous studies have explored potential pathophysiological mechanisms
involving both organs, many aspects remain unclear. Traditional diagnostic criteria often
rely on biomarkers to detect renal insufficiency or heart failure, whether acute or chronic,
highlighting the need for effective biomarkers that can diagnose cardiac dysfunction in
renal diseases and renal damage in heart failure.

The current biomarkers for CRS are limited due to a lack of significant studies, com-
plicating their application across different CRS types. A promising strategy involves
using multiple biomarkers to improve diagnostic accuracy, though this requires fur-
ther validation.

This review aims to identify new biomarkers that could aid in the diagnostic, ther-
apeutic, and prognostic processes. Traditional renal markers like creatinine, GFR, and
BNP/NT-proBNP are evaluated, with their limitations noted. New biomarkers such as
NGAL, CysC, KIM-1, NAG, IL-18, and Gal3 show potential in identifying acute kidney
injury and some as prognostic markers. Ongoing research aims to better assess renal and
cardiac dysfunction, with future studies expected to validate these new biomarkers as
diagnostic and therapeutic targets.
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