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Abstract: Background: Prostate cancer is the second most common cancer in males worldwide, and
its incidence is rising. Early detection is crucial for improving the outcomes, but the current screening
methods have limitations. While prostate-specific antigen (PSA) testing is the most widely used
screening tool, it has poor specificity, leading to a high rate of false positives and unnecessary biopsies.
The existing biopsy techniques are invasive and are associated with complications. The liquid biopsy
methods that analyze the biomarkers in blood or other bodily fluids offer a non-invasive and more
accurate alternative for detecting and characterizing prostate tumors. Methods: Here, we present a
novel liquid biopsy method for prostate cancer based on the identification of specific proteins in the
extracellular vesicles isolated from the blood of patients with prostate cancer. Results: We observed
that a specific combination of sEV proteins is a sensitive indicator of prostate cancer. Indeed, we
found that the number of clusters expressed by specific combinations of either intra-vesicular (STAT3
and CyclinD1) or surface proteins (ERBB3, ALK, and CD81) allowed us to significantly discriminate
the patients with prostate cancer from the individuals with hyperplasia. Conclusion: This new liquid
biopsy method has the potential to improve prostate cancer screening by providing a non-invasive
and more accurate diagnostic tool.
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1. Introduction

According to the Global Cancer Observatory (GCO) of the International Agency for
Research on Cancer (IARC), prostate cancer (PCa) is the second most commonly diagnosed
cancer in men worldwide, after lung cancer. In 2020, there were an estimated 1.4 million
new cases of PCa, accounting for 7.3% of all the new cancer cases in men. The incidence
of PCa varies widely by region, with the highest rates observed in developed countries,
such as in North America, Europe, and Australia, and lower rates observed in developing
countries in Asia and Africa [1,2].

The early and accurate diagnosis of PCa is crucial for effective treatment and improved
patient outcomes [3,4]. Over the years, various diagnostic approaches have been employed
to detect and characterize PCa, aiming to strike a balance between the identification of
aggressive tumors requiring intervention and the avoidance of unnecessary treatments for
indolent tumors.

The diagnosis of PCa traditionally involves a combination of screening, clinical eval-
uation, and confirmatory tests. Prostate-specific antigen (PSA) testing has been widely
utilized as a screening tool due to its convenience and availability [5,6]. However, PSA
testing has limitations in terms of specificity, leading to a considerable number of false
positive results and subsequent invasive procedures such as biopsies [7–9]. To address this,
additional clinical parameters, such as digital rectal examination (DRE) and patient-specific
factors (e.g., age and family history), are considered in the decision-making process.

Confirmatory tests, such as transrectal ultrasound (TRUS)-guided biopsy, have long
been the gold standard for diagnosing PCa. This invasive procedure involves obtaining
small tissue samples from the prostate gland for pathological examination. However,
TRUS-guided biopsy is not without limitations. It may miss small or hard-to-reach tumors,
resulting in false negative results and delayed diagnosis. Moreover, the procedure carries
potential risks, including infection and bleeding, emphasizing the need for alternative
diagnostic approaches [10].

Advances in medical technology and the understanding of PCa biology have led to
the development of novel diagnostic methods. Magnetic resonance imaging (MRI) has
emerged as a valuable tool in PCa diagnosis, providing detailed images of the prostate
gland and aiding in the detection and characterization of suspicious lesions. Furthermore,
MRI fusion-guided biopsies have shown promise in improving the accuracy of targeted
biopsies, minimizing unnecessary procedures and better identifying clinically significant
tumors. While magnetic resonance imaging (MRI) is a valuable tool in the diagnosis and
evaluation of PCa, it also has certain limitations, such as dependency on an operator to
obtain results [11,12], costs [12], and availability [13].

Liquid biopsy, a non-invasive diagnostic approach, has gained significant attention
in recent years. By analyzing various biomarkers, such as circulating tumor cells (CTCs),
circulating cell-free DNA (cfDNA), and extracellular vesicles (EVs), liquid biopsies offer
the potential for early cancer detection, monitoring treatment responses, and assessing
tumor heterogeneity. This approach may revolutionize PCa diagnosis by providing a more
precise, timely, and affordable assessment of disease in the initial phase. In particular, EVs
may be considered a consistent source of tumor-derived biomarkers due to their prevalence
in body fluids and to the stability offered by the phospholipid bilayer that protects the
tumor-originated molecules from degradation [14]. Some different examples of EV- based
analysis have been proposed for PCa [15–19]. Both blood [17–19] and urine [15,16] EVs
have been investigated for their potential role in PCa diagnosis. While both the EV sources
can be potentially used in the clinics, blood and urine EVs have different features that
may impact their actual usage in different clinical setting for PCa diagnosis and manage-
ment. Blood-based liquid biopsy methods offer significant advantages over urine-based
approaches, particularly in the realm of early cancer diagnosis protocols [20]. One of the
key advantages lies in the stability of tumor markers in blood samples, a characteristic
that remains consistent regardless of the time of day the sample is collected. The reliability
of blood-based methods, in fact, is underscored by the absence of fluctuations caused by
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external factors, such as hydration, diet, or medication, which can significantly impact the
composition of urine samples and lead to variability in tumor marker concentrations. The
EV cargo comprises lipids, proteins, and nucleic acids (both DNA and several types of
RNA) [21–23]. These molecules are specifically associated with the EVs produced by cells.
Vesicles are thus diffusible elements representing, at least in part, the molecular landscape
of the cells that release them. There are many molecular pathways that have been specifi-
cally associated with prostate cancer. While many of the proteins related to these pathways
failed to be used as target for therapeutic intervention, their significant modulation in PCa
suggests a possible use as biomarkers for early diagnosis. HERBB3, ALK, STAT3, and
CyclinD1 are among the most commonly investigated proteins involved in PCa dynamics.
HERBB3 is one of the principal activators of HER2 according to its ability to heterodimerize
upon the binding of a large number of ligands. It has been demonstrated that ERBB sig-
naling is implicated in CRPC [24]; nevertheless, clinical trials of ERBB-targeting therapies
failed to demonstrate antitumor activity [25]. It is very important to note that unlike other
tumors, genomic aberrations in the ERBB/HER genes are uncommon in prostate cancer [26].
This indicates that augmented expression, rather that mutagenic activation, is a specific
feature that must be considered when using ERBB3 as a potential biomarker for PCa. In
a similar way, it has been suggested that an increased level of ALK activity, which also
involves CyclinD1, is strongly associated to the acquisition of an aggressive phenotype
in the prostate cells [27,28]. Another common hallmark of prostate carcinogenesis is also
represented by STAT3 signaling activation [29].

Differently from other members of the tetraspanins family, the role of CD81 in cancer
development has been only recently explored more in detail. It is involved in solid tumors,
including in hepatocellular carcinoma [30], gastric cancer [31], breast cancer [32–34], os-
teosarcoma [35], and melanoma [36], even though it acts in an apparently contradictory
fashion. However, most researchers agree in depicting its deregulation that is prone to
triggering tumor progression both in vitro and in vivo, so it has been successfully tested as
a therapeutic target in breast cancer [33]. Moreover, human tissue analysis itself has dis-
played a closer correlation between CD81 overexpression and tumor specimens compared
to that of the non-malignant ones [36,37]. Altogether, such evidences make CD81 deserving
of further investigations, particularly in PCa, where has been just partially explored [37].

In this work, we investigated the feasibility of the blood-based liquid biopsy approach
for diagnosis support in suspected early-onset PCa. The method is based on the evaluation
of specific blood sEV protein markers assessed by super-resolution microscopy. This
method is reproducible and sensitive enough to precisely estimate the number of single-,
double- and triple-positive EVs, and a specific algorithm has been developed to discriminate
the tumor samples from the hyperplasia ones.

2. Materials and Methods
2.1. Patient Enrollment, Blood Samples, and Plasma Isolation

This study received ethical approval from the “Catania 2” ethical board (protocol num-
ber 699/C.E. of 18/11/2020) and from all the ethical review boards of each participating
center. The inclusion criteria were being aged ≥ 18 and having a PSA between 2.5 and
10 ng/mL, a definitive diagnosis of prostate adenocarcinoma (PCa) (for the prostate cancer
group) or benign prostatic hyperplasia (BPH) (for the BPH group), no evidence of metasta-
sis, and a SARS-CoV-2 negative status. Written informed consent was obtained from each
patient before any study-related assessments. The exclusion criteria included patients with
tumors other than prostate cancer and patients with viral pathologies, such as hepatitis,
HIV infections, or other conditions, that could affect the study results or compromise the
safety of the procedures. A total of 54 individuals (42 patients with PCa and 12 individuals
with BPH) were enrolled in this multicenter study involving five participating prostate
cancer centers.
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Blood samples, each containing 10 mL, were collected from all the participating
individuals using RNA Complete BCT tubes (Streck, La Vista, NE, USA) to prevent the
degradation of extracellular vesicles (EVs). These samples were then sent from each
participating recruitment center to the central laboratory for further processing.

Upon arrival at the central laboratory, the samples were centrifuged at room tem-
perature (RT) for 10 min at 1600× g to remove the cellular components. The resulting
supernatant, referred to as plasma, was carefully separated from the cell pellet using a
Pasteur pipette. Subsequently, the plasma was subjected to a second centrifugation step for
10 min at 3000× g to eliminate any remaining cell debris.

The processed plasma samples were divided into 1-milliliter aliquots and stored at a
freezing temperature of −80 ◦C for subsequent analyses.

2.2. Extracellular Vesicle Isolation

For the isolation of extracellular vesicles (EVs), 1 mL single aliquots of frozen plasma
samples were rapidly thawed at 37 ◦C, and then immediately placed on ice for the sub-
sequent procedures. The samples were diluted in a 1:1 ratio with cold PBS, and then
underwent sequential centrifugation conducted at 4 ◦C.

First, the diluted plasma was centrifuged for 10 min at 4000 rpm to remove any
remaining cells. The resulting supernatant was subjected to further centrifugation for
30 min at 10,500 rpm to eliminate cellular debris and large EVs. Before proceeding with
ultracentrifugation (UC), the plasma was filtered through a 0.22 µm filter to eliminate
any impurities.

Small EVs were isolated through ultracentrifugation (60 min, 200,000× g) using a
Sorvall Discovery 90SE ultracentrifuge equipped with a Thermo Scientific (Waltham, MA,
USA) TH-660 Titanium swinging bucket rotor. Subsequently, the sEVs were washed with
PBS and underwent another ultracentrifugation step lasting 60 min at 200,000× g.

The resulting pellet was resuspended in 100 µL of cold PBS and stored at −80 ◦C.
For the quantification of sEV-associated proteins, 10 µL of the EV suspension was used in
accordance with the Pierce BCA protein assay kit (Thermo Scientific) protocol. Absorbance
was measured using a spectrophotometer at 562 nm, and the protein concentration was
determined using a BSA standard curve.

2.3. Extracellular Vesicle Characterization
2.3.1. Nanoparticle Tracking Analysis

The size and concentrations of EVs derived from both the PCa and BPH plasmas were
determined by Nanoparticle Tracking Analysis (NTA) using ZetaView (software version:
8.05.10; Particle Metrix GmbH, Meerbusch, Germany) according to the manufacturer’s
protocol.

2.3.2. Scanning Electron Microscopy (SEM)

EV morphology was studied using a scanning electron microscope Gemini Field
Emission SEM Carl Zeiss SUPRATM 25 (FEG-SEM, Carl Zeiss Microscopy GmbH, Jena,
Germany) in Inlens mode using a 3 kV electron beam. SEM samples were prepared as
follows: the EVs recovered from 200,000 g pellet were resuspended in 500 µL di H2O, and
then a 50 µL aliquot of EV suspension was dropped onto pin stubs coated with PELCO
carbon conductive tabs and let dry at room temperature.

2.3.3. Western Blot (WB)

Jurkat cells and EV extracts were processed as reported by Leggio et al. [38]. Briefly,
the cells and EVs were lysed in RIPA buffer (10 mM Tris HCl pH 7.2 (Fisher Scientific,
Hampton, NH, USA, BP152); 150 mM NaCl (Sigma Aldrich, St. Louis, MO, USA, S7653); 1%
Sodium deoxycholate (Sigma Aldrich, 30970); 0,1% (for cells) or 3% (for EVs) SDS (Sigma
Aldrich, 71736); 1% Triton X-100 (Sigma Aldrich, T8787); 1 mM EDTA pH 8 (VWR chemicals,
Avantor, Radnor, PA, USA, E177-100ML); 1X Complete Protease inhibitor cocktail (Roche,
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Basel, Switzerland, 04693116001); and 1 mM Phenylmethanesulfonyl fluoride solution
(PMSF, Sigma Aldrich, 93482). Totals of 7 µg of Jurkat cell lysate and 30 µg of EV lysates
were loaded into 4–12% Bis-Tris plus gels (Invitrogen, Waltham, MA, USA, NW04125BOX)
in reducing conditions. The proteins were transferred onto a PVDF membrane. All the
primary and secondary antibodies are listed in Table 1. Jurkat cells were used as the positive
control for CD45.

Table 1. List of antibodies used in WB.

Antibody Dilution Brand Catalog Number

Mouse monoclonal anti-CD45 1:500 R&D Systems MAB14303

Mouse monoclonal anti-Alix (3A9) 1:1000 Cell Signaling Technology 2171S

Mouse monoclonal anti-β-Actin 1:10,000 Sigma Aldrich A1978

HRP-conjugated anti-mouse secondary antibody 1:10,000 Dako P0447

2.3.4. Super-Resolution Microscopy

Three-dimensional (3D) direct stochastic optical reconstruction microscopy (dSTORM)
was employed for the analysis of extracellular vesicles (EVs) using the Nanoimager S
Mark II microscope from ONI (Oxford Nanoimaging, Oxford, UK). This microscope was
equipped with a 100×, 1.4 NA oil immersion objective, an XYZ closed-loop piezo 736 stage,
and three emission channels split at 473/488 nm, 561 nm, and 640 nm.

The experiments were conducted using the EV Profiler Kit from ONI (product code:
EV-MAN-1.0, Oxford Nanoimaging, Oxford, UK) following the manufacturer’s protocol.
In brief, the assay chip’s surface was initially activated by applying 5 µL of Surface Solution
S3 to each lane and incubating for 10 min at room temperature (RT). Afterward, excess S3
was removed by washing with W1 Wash Solution, and then 10 µL of S4 Surface Solution
was pipetted into each lane and incubated for an additional 10 min at RT.

The EV capture process was carried out as follows: 6 µL of sEV suspension was added
to a mixture consisting of 3 µL of W1 and 1 µL of C1 Capture Supplement, resulting in a
final reaction volume of 10 µL. This mixture was then distributed among the lanes and
incubated for 30 min at RT to capture the EVs. The unbound sEVs were subsequently
removed by washing with W1, followed by 10 min incubation with 20 µL of F1 Fixation
Solution at RT.

After washing, each lane underwent 10 min incubation with 10 µL of either P1 solution
(for permeabilization and blocking) or N1 solution (for blocking) to facilitate the staining
of intra-vesicular or surface targets, respectively. As per the recommendations, an initial
working solution with a 1:20 dilution of each antibody in W1 was prepared. A total of 1 µL
of this solution was added to 9 µL of either P1 or N1 solution to achieve a final dilution of
1:200. Subsequently, 10 µL of the antibody solution was added to each lane and incubated
for 50 min at RT, with the chip protected from light.

Following another washing step, 20 µL of F1 was applied and incubated for 10 min.
Finally, 50 µL of BCubed imaging buffer was added to each lane, and image acquisition
was immediately initiated.

Three channels (640 nm, 561 nm, and 473/488 nm) of dSTORM data were sequentially
acquired at 30 Hz in total reflection fluorescence (TIRF) mode, with four acquisitions for
each sample. Bead slide calibration was performed before each imaging session to align
the fluorescent channels, ensuring a channel mapping precision smaller than 12 nm.

All the images were analyzed using algorithms developed by ONI via their CODI
website platform https://alto.codi.bio/ (accessed on 14 February 2023) to minimize back-
ground noise and remove low-precision and non-specific co-localization. sEV population
phenotypes (triple-, double-, or single-positive for each channel) and the number of clusters
for each phenotype were determined and analyzed separately.

https://alto.codi.bio/
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All the described reagents were supplied in the kit, including the fluorescent antibodies
anti-CD9-CF®488A, anti-CD63-CF®568, and anti-CD81-CF®647. In addition, P1/N1 buffers
from EV Profiler 2 Kit (product code: EV-PROFILER-2.0, Oxford Nanoimaging, Oxford, UK)
were kindly supplied separately by the ONI company. Additionally, custom antibodies,
such as anti-ErbB-3/HER3-AF®555 (Bioss Antibodies, bs-1454R-A555), anti-ALK-AF®488
(Bioss Antibodies, bs-0097R-A488), anti-STAT3-AF®555 (Bioss Antibodies, bs-3429R-A555),
and anti-Cyclin D1-AF®488 (Bioss Antibodies, bs-0623R-A488), were used.

2.4. Statistical Analysis

The intra-vesicular and surface targets raw counts were first normalized through log2
scaling in order to reduce the range of data and make their distribution more symmetric.
Welch’s t-test was used for the quantitative comparison of inter-sample means. Contin-
gency tables and receiver operating characteristic (ROC) curves were used to evaluate
the biomarkers classification performances. K-means was used as unsupervised learning
technique to identify clusters in our dataset. The number of clusters for K-means was
chosen using the Elbow method by selecting the best value that minimizes the within-
cluster sum of squares. Benjamini–Hochberg correction was used for post-hoc analysis.
The results were considered statistically significant when the p-value was less than 0.05.
The data were analyzed using R (v4.2.2) [39] and R studio (v2022.12.0 Build 353) [40] to
compare both the single and combined intra-vesicular or surface targets. The employed
packages were ROCR [41] for the analysis of ROC curves, ggpubr [42], and ggplot2 [43] for
data visualization.

3. Results
3.1. EV Characterization

The sEV pellets isolated from all the patients with BPH and PCa, whose clinical char-
acteristics are reported in Table 2, underwent characterization for size and concentration
using Nanoparticle Tracking Analysis (NTA) to ensure their suitability for dSTORM anal-
ysis. No significant differences in vesicle size and concentration were observed between
the two sample types. In fact, as reported in Figure 1A, the size and concentration of EVs
derived from both the BPH and PCa plasma were around 150 nm and 1.9 × 1010 and
5.4 × 1010 particles/mL, respectively. Moreover, further characterization using scanning
electron microscopy revealed a moderate level of homogeneity in terms of morphology
and size. All the samples exhibited the enrichment of vesicle populations, with an average
size of approximately 100 nm (Figure 1B).

Additionally, as highlighted by Western Blot analysis, the sEV pellets from both
the representative PCa (1 and 2 in Figure 1C) and BPH (3 and 4) samples expressed
different concentration of the EV lumen protein Alix, sustaining its vesicular nature and
intracellular origin. Moreover, the absence of CD45 in the EV lysates confirmed the absence
of hematopoietic contamination that may arise from blood EV isolation. On the contrary, as
expected, CD45 is significantly expressed in the Jurkat cells, an immortalized line of human
T lymphocyte cells, lysate.
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Figure 1. EV characterization. (A) Nanotracking analysis of PCa and BPH samples showing EV size
and concentration. (B) Representative images of sEV acquisitions by SEM at different magnifications.
(C) Western Blot analysis on Jurkat (J) and vesicular lysates (1, 2, 3, and 4) to detect CD45, Alix,
and β-actin. Abbreviations: PCa: prostate cancer; BPH: benign prostate hyperplasia; sEVs: small
extracellular vesicles; SEM: scanning electron microscopy; J: Jurkat cell lysate; M: marker.

Table 2. Patients’ clinic characteristics.

Total Samples N

Prostate Adenocarcinoma
(PCa) 42

Benign Prostate Hyperplasia
(BPH) 12
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Table 2. Cont.

Total Samples N

GLEASON SCORE
6 (3 + 3) 11
7 (3 + 4) 16
7 (4 + 3) 11

Not recorded 4
STAGING

T2a 6
T2b 1
T2c 20
T3a 4
T3b 5
N0 10
Nx 18
N1 4

T-N not recorded 6
M0 1
M1 0
Mx 13

M not recorded 28
PSA MEDIAN (IQR)

total 6.46 (4.43–9.26)
PCa 6.60 (4.51–9.24)
BPH 5 (3.07–8.18)

AGE MEDIAN (IQR)
total 67.50 (63–72.75)
PCa 67.50 (62.25–72.75)
BPH 67.50 (65.25–72.25)

3.2. Selected Vesicular Marker Expression Allows Us to Discriminate PCa from BPH Samples

Super-resolution microscopy was also used to study the expression of selected surface
(CD81, ERBB3, and ALK) and intra-vesicular proteins (STAT3 and CyclinD1) in the sEVs
isolated from the plasma of all the patients with PCa and BPH (Figure 2). Figure S1 in the
Supplementary Materials shows representative super-resolution acquisitions, pie charts
of distribution, and cluster counts for those markers, which were not significant in the
following experiments.

The quantitative comparison of the number of clusters expressed by intra-vesicular
and surface proteins was conducted individually or in coexistence. The cluster counts for
intra-vesicular proteins show the statistically significant overexpression (p < 0.05) of STAT3
in the tumor group compared to that in the hyperplasia one (Figure 3C). Moreover, the
other markers show significant differences when associated with STAT3 (Figure 3D–F),
except for STAT3 and CyclinD1 (Figure 3E), where the difference is not significant. Surface
proteins such as ERBB3 and ALK, both alone and combined with CD81 (Figure 3A,B) show
significant differences in their expression within the two different sample types. In contrast,
the other sEV proteins showed no significant different expression between the PCa and
BPH samples (Figure S2). The comparison of PSA values between the subjects with PCa
and BPH is not statistically significant p = 0.22 (Figure S6A), confirming that PSA does not
reflect the group conditions.
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and surface proteins was conducted individually or in coexistence. The cluster counts for 
intra-vesicular proteins show the statistically significant overexpression (p < 0.05) of 
STAT3 in the tumor group compared to that in the hyperplasia one (Figure 3C). Moreover, 
the other markers show significant differences when associated with STAT3 (Figure 3D–
F), except for STAT3 and CyclinD1 (Figure 3E), where the difference is not significant. 
Surface proteins such as ERBB3 and ALK, both alone and combined with CD81 (Figure 
3A,B) show significant differences in their expression within the two different sample 
types. In contrast, the other sEV proteins showed no significant different expression be-
tween the PCa and BPH samples (Figure S2). The comparison of PSA values between the 
subjects with PCa and BPH is not statistically significant p = 0.22 (Figure S6A), confirming 
that PSA does not reflect the group conditions. 

Figure 2. Super-resolution microscopy-based EV characterization. Representative images of single
sEVs expressing only one (single labelling) of the analyzed markers (A) and co-expressing two (B) or
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three (C) markers contemporarily (double and triple labelling, respectively). Super-resolution mi-
croscopy field of view of sEVs isolated from PCa sample with scale bar of 20 µm (D). Pie charts
of BPH surface-only (E) and surface/intra-vesicular (F) markers distribution and of PCa surface-
only (G) and surface/intra-vesicular (H) ones. Surface-only (I) and surface/intra-vesicular (J) cluster
counts for both types of all analyzed samples. Abbreviations: sEVs: small extracellular vesicles; PCa:
prostate cancer; BPH: benign prostate hyperplasia; AF: alexa fluor dye; CF: cyanine-based far red
fluorescent dye.
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The power of the EV targets shown in Figure 3 to distinguish the tumor samples
from the hyperplasia ones was studied using ROC curves (Figure 4). The number of
EVs containing both STAT3 and CD81 had a higher area under the curve (AUC) of 0.78
(Figure 4D). The second wider region was that of STAT3 and CD81 with the presence of
CyclinD1, where the AUC = 0.77 (Figure 4F). Instead STAT3 alone had an AUC = 0.73
(Figure 4C), and STAT3 with CyclinD1 had an AUC = 0.71 (Figure 4E). Similarly, some
surface proteins are accurate in distinguishing prostate conditions; in particular, ERBB3
and ALK alone and in conjunction with CD81 show, respectively, AUCs of 0.74 and 0.77
(Figure 4A,B). We further evaluated the ability of PSA to classify PCa and BPH better than
the other markers (Figure S6B), obtaining poor results (AUC = 0.67).
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Figure 4. The receiver operating characteristic curves for the intra-vesicular and surface targets. ROC
curves for intra-vesicular and surface targets with the most differentiated counts: ERBB3, ALK (A);
ERBB3, ALK, and CD81 (B); STAT3 (C); STAT3 and CD81 (D); STAT3 and CyclinD1 (E); and STAT3,
CyclinD1, and CD81 (F).

Table 3 shows the contingency tables for all the proteins of interest and their per-
formance metrics associated with the selected threshold (Table S1 for non-discriminant
ones). Consultation of Table 2 indicates that the best vesicular targets with the highest
discriminating power between PCa and BPH is the combination of STAT3, CyclinD1, and
CD81, which achieves the best performance in terms of the overall classification of positive
and negative samples, as specified by the highest accuracy. Figure S3 shows the ROC curves
for targets with similar counts in the two groups, which can be seen from the diagonal-like
curve expressing no discrimination between the tumor and hyperplasia samples.

To better analyze the discriminative ability of the surface and intra-vesicular proteins,
unsupervised cluster analysis was conducted using k-means to better visualize the similar
groups. For the intra-vesicular dataset, Elbow’s method suggests six clusters, and Figure 5
shows their distribution. The first thing to note is the distance from the tumor samples to
the hyperplasia samples. Cluster #6 had most of the hyperplasia samples, and a few of them
also belong to cluster #5. The tumor samples however clustered into five different groups,
which are likely to define a different clinical status, as discussed below. Furthermore, the
variation in clinical characteristics seems to underline the aggregation of some BPH samples
with the PCa clusters, and vice versa. Despite the clear influence, we cannot retrieve the
clinical information to verify the correctness of our hypothesis.
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Table 3. Contingency tables with cutoff values and performance metrics for markers: ERBB3 and
ALK; ERBB3, ALK, and CD81; STAT3; STAT3 and CD81; STAT3 and CyclinD1; and STAT3, CyclinD1,
and CD81.

PCa BPH Sensitivity Specificity Accuracy

ERBB3, ALK ≥ 10.03 30 3
0.75 0.71 0.72

ERBB3, ALK < 10.03 12 9

ERBB3, ALK, CD81 ≥ 8.15 31 3
0.75 0.73 0.74

ERBB3, ALK, CD81 < 8.15 11 9

STAT3 ≥ 8.07 29 3
0.75 0.70 0.71

STAT3 < 8.07 12 9

STAT3, CD81 ≥ 5.72 28 3
0.75 0.68 0.69

STAT3, CD81 < 5.72 13 9

STAT3, CyclinD1 ≥ 9.36 27 4
0.66 0.65 0.66

STAT3, CyclinD1 < 9.36 14 8

STAT3, CyclinD1, CD81 ≥ 8.08 31 2
0.83 0.75 0.77

STAT3, CyclinD1, CD81 < 8.08 10 10
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3.3. sEV Protein Marker Correlation with Clinical Features

All the surface and intra-vesicular counts were also evaluated against clinical parame-
ters such as the Gleason grade and cancer staging. A statistically significant difference was
found in the ERBB3 and CD81 levels, showing a higher value in GS7(4 + 3) compared to
that of the GS7(3 + 4) samples, p = 0.043 (Figure 6).
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Figure 6. Cluster counts according to Gleason score for ERBB3 and CD81 markers. Boxplots show
higher ERBB3 and CD81 levels in GS7(4 + 3) than those in GS7(3 + 4). These p-values were not
adjusted due to small sample size. Symbol “•”represent values out of ±1.5 * IQR.

No other relevant differences were found in protein occurrences, varying the Gleason
score (Figure S4). No significant differences were found even when PSA was considered as
discriminant of the Gleason grade (Figure S6C).

Then, we assessed the relationship between cancer staging and the cluster counts
without relevant findings. In the Supplementary Materials, Figure S5K,L shows the largest
differences between the intra-vesicular and surface markers under study; the values of
STAT3 and CyclinD1 in tumor stage 3a compared to those in stage 3b are statistically
significant (p = 0.047), as is ERBB3 in combination with the ALK differences in expression
levels between tumor stages 2c and 3a (p = 0.031). Finally, stage 2a has a higher level of
expression than that of stage 3a, which is statistically significant (p = 0.049) for the ERBB3,
ALK, and CD81 triplets. All the other markers show no statistically significant differences
(Figure S5A–J), and this was the same for the PSA (Figure S6D).

Finally, the last parameter studied was the ratio of surface and intra-vesicular proteins
with respect to the PSA. Analysis shows a statistically significant p-value with a weak-to-
moderate correlation between the PSA values with those of CD81 alone and with ALK
(Figure 7A,B).
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Figure 7. Correlation plots of surface markers with PSA values. The presented plots highlight the
correlation between the PSA values and the cluster counts for both the CD81, ALK surface protein (A)
and CD81 alone (B), showing a weak-to-moderate but statistically significant correlation.

4. Discussion

PSA testing is not suitable for population-based screening due to its low-level speci-
ficity for prostate cancer, and, in the last few years, it has resulted in misdiagnosis and
consequent overtreatment.

When used for PCa screening in men aged between 50 and 74, 16% of individuals
are positive for a high PSA level, but three out of four men with a high PSA level are
cancer-negative according to biopsy [44]. This is a clear indication of a significant lack of
specificity. Moreover, a low PSA result is not always associated with the absence of prostate
cancer [45]. MRI has improved the current PCa diagnostic scenario, but the impact on PCa
management is still limited.

Liquid biopsy (LB) is emerging as an exciting and revolutionary technology pro-
gressively navigating its way into clinical practice. Despite the existence of a plethora of
potent and high-throughput tests, liquid biopsy’s capacity to significantly impact clinical
management beyond mere prognostication for PCa remains somewhat constrained. The
principal hurdle impeding LB’s seamless integration into clinical decision making lies
in the low reliability of circulating molecular signals since copious amounts of genomic
and transcriptomic data furnished by LB pose a formidable challenge in deciphering the
meaningful signals amidst the background noise, thereby making the construction of this
robust process a complex endeavor. However, as our understanding of integrating the
knowledge concerning multiple concurrent molecular changes continues to evolve, the
translation of this wealth of information into clinically actionable steps is anticipated to
become increasingly attainable.

The points of greatest interest concern the possibility of a highly specific, minimally
invasive test that has a predictive value equal to or greater than that of multiparametric
magnetic resonance imaging (MRI). The ultimate, yet-to-be-achieved goal is to confidently
diagnose the presence of prostate cancer without resorting to a prostate biopsy. Another
unresolved point is how to predict the progression of a diagnosed tumor, especially in cases
of lesions classified as Gleason 6, as such events are often considered clinically insignificant,
and therefore are initiated into so-called active surveillance.

EVs have proven to be very interesting vehicles for molecular markers. Their impor-
tant physiological function as carriers for long-distance signaling is utilized in pathological
processes, playing key roles connected to tumor progression. This specific biological rele-
vance makes them particularly significant, even when seeking specific signals of clinical
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interest for diagnostic or prognostic purposes. Furthermore, extracellular vesicles are
particularly stable, and consequently, the molecular markers associated with them are theo-
retically less prone to modifications and fluctuations that could impact the reproducibility
of measurements.

It is important to remember that although liquid biopsy through urine analysis is
undoubtedly less invasive than blood-based biopsy, the latter is not affected by the con-
centration changes that the analyzed markers undergo during different times of the day.
These variations, which are also subject to individual hydration conditions, can make the
characterization of quantitative markers such as vesicular proteins complex.

Since EVs may reflect the molecular composition of the releasing cells, in this study,
we assessed the feasibility of employing protein markers that are known to have an al-
tered abundance in prostate cancer cells in blood-isolated EVs. Since the marker-related
differences in patients with cancer and healthy individuals are quantitatively limited, and
thus very specific, the importance of a very sensitive quantification method is fundamental.
Super-resolution microscopy can evaluate the number of sEV expressing specific antibodies
with really high precision and confidence, thus allowing for the powerful classification of
samples according to their molecular profiles.

It has been shown that STAT3 is involved in the progression of prostate cancer [46].
Similarly, cyclinD1 has been repeatedly associated with the aggressiveness of prostate

cancer and its tendency to cause bone metastases [47], while the overexpression of ALK
has been observed in advanced prostate tumors [48]. The increase in these markers in sEVs
of the patients with PCs compared to that of those individuals with BPH is consistent with
those observations. On this basis, further studies will be necessary to evaluate whether
these vesicular markers are predictive of tumor aggressiveness, and therefore, support
the therapeutic strategy. In this study, for the first time, these specific tumor markers are
evaluated in the sEVs of patients with prostate cancer using a sensitive and specific method,
suggesting that there is a relationship between their biological role in tumor cells and their
significant presence in vesicles.

While this study is limited to the classification of patients according to their diagnosis,
the biology of the signature may be suggestive of potential applications for disease mon-
itoring. This will require additional investigations on a different cohort of patients with
longer follow-up specifically aimed at prognosis evaluation.

5. Conclusions

In this study, we explored, as a proof of concept, the possibility of utilizing the
quantification of blood-derived sEV proteins, both internal and surface, to classify patients
with PCa and BPH. The sEV markers were selected on the hypothesis that the cellular
proteins that are known to be overexpressed in cancer may be overrepresented in the
circulating sEVs population. This marks the first instance of employing super-resolution
microscopy to develop such a liquid biopsy approach. The sensitivity and robustness
of measurement, along with the obtained results, suggest that this technology could be
adapted for routine and sensitive applications, such as the differential diagnosis of prostate
cancer. Although the limited case series prevents the exact estimation of the accuracy of
the proposed application system, the data indicate that the quantitative combination of
multiple protein markers enhances the classification power of the method. Moreover, the
ability to utilize very small sample volumes suggests that the technique may offer specific
advantages in the protocols, requiring repeated sampling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13151286/s1, Figure S1: Super-resolution microscopy-based
EV characterization with markers not showing significant differences; Figure S2: Intra-vesicular and
surface markers without statistically significant differences between neoplastic conditions; Figure S3:
Receiver operating characteristics curves for intra-vesicular and surface markers not statistically
significant; Table S1: Contingency table with cutoff values and performance metrics for markers:
ALK; CD81; CD81 and ALK; CD81 and CyclinD1; CyclinD1; ERBB3; ERBB3, and CD81; Figure S4:
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Cluster counts for Gleason classification (not statistically significant markers); Figure S5: Cluster
counts grouped by tumor staging for intra-vesicular and surface markers; Figure S6: PSA values
related to all clinical conditions under study; Dataset S1: EV counting raw data generated by CODI.
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