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Abstract: Perivascular adipose tissue (PVAT) is a special deposit of fat tissue surrounding the
vasculature. Previous studies suggest that PVAT modulates the vasculature function in physiological
conditions and is implicated in the pathogenesis of vascular diseases. Understanding how PVAT
influences vasculature function and vascular disease progression is important. Extracellular vesicles
(EVs) are novel mediators of intercellular communication. EVs encapsulate molecular cargo such as
proteins, lipids, and nucleic acids. EVs can influence cellular functions by transferring the carried
bioactive molecules. Emerging evidence indicates that PVAT-derived EVs play an important role in
vascular functions under health and disease conditions. This review will focus on the roles of PVAT
and PVAT-EVs in obesity, diabetic, and metabolic syndrome-related vascular diseases, offering novel
insights into therapeutic targets for vascular diseases.
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1. Introduction

Perivascular adipose tissue (PVAT) is an adipose tissue deposit surrounding most of
the vasculature. PVAT releases a variety of adipocytokines and chemokines [1–4]. Under
physiological conditions, PVAT regulates vascular tone and reactivity by releasing various
biologically active factors, adipocyte-derived relaxing factors, and perivascular-derived
relaxing factors, which have anticontractile properties. However, in pathological condi-
tions, such as obesity, diabetes, and metabolic syndrome, PVAT becomes dysfunctional.
The secretory profile of PVAT changes with a reduced secretion of vaso-relaxing factors,
increased vasoconstricting factors, increased immune cell infiltration, and vascular smooth
muscle cell proliferation. These changes lead to PVAT inflammation, thereby detrimentally
affecting vasculature function. Studies found that PVAT mass is increased in obesity in both
animal models and humans [5–7]. In obese patients, PVAT mass correlates with visceral
adipose tissue mass, a known predictor of the development of metabolic disease [6,8]. PVAT
volume alone is associated with hypertension and aortic and coronary calcification [6,9]. All
of these findings suggest the involvement of PVAT in vascular physiology and pathology.

Inter-cell signaling between PVAT and the vasculature remains a mystery. Recent
studies have suggested that, apart from the secretory cytokines and chemokines factors,
PVAT also secretes extracellular vesicles (EVs) [10,11]. EVs are cellular-derived nano-sized
particles, carrying biologically active molecules that can regulate cell function. EVs can be
transferred horizontally to adjacent cells (paracrine signaling) or distant cells and organs
(endocrine–inter-organ signaling). They are key players in various physiological and
pathological processes, ranging from cancer metastasis to cardiovascular diseases [12]. In
this study, we reviewed the existing literature regarding the roles of PVAT and their derived
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EVs in the pathogenesis of vascular diseases. We discussed the therapeutic potential of
targeting PVAT and PVAT-EVs in vascular diseases and the challenges in this field.

2. PVAT: Anatomy and Physiology

PVAT is a specialized type of fat tissue that adjacently surrounds blood vessels such
as the aorta, coronary arteries, small and resistance vessels, and vasculature of the muscu-
loskeletal system [13], but is absent among cerebral vessels [14]. Though PVAT is universal
in that it surrounds vasculature, its volume and composition vary widely depending on
physiological and pathological conditions. This demonstrates how versatile and diverse
PVAT may be, and what innumerable effects it may elicit on surrounding tissue. Like most
adipose tissue, PVAT could be white adipose tissue (WAT) or brown adipose tissue (BAT).
For instance, the thoracic aorta is surrounded by brown PVAT while the abdominal aorta
PVAT shows the WAT-like phenotype [15]. Usually, WAT performs as an energy reserve
and is required for maintaining human homeostasis. WAT is regarded as the traditional
“unhealthy” fat, as experimental and clinical studies have shown that it is positively related
to cardiovascular diseases [16]. WAT has unilocular lipid droplets, fewer mitochondria, and
higher lipid storage capacity [17]. The unique surface markers of white adipocytes include
resistin, ASC-1, and FAB4 [18]. Different types of WAT include visceral adipose tissue and
subcutaneous WAT. Visceral WAT has been shown to negatively impact health due to its
inflammatory characteristics, which are linked to insulin resistance and cardiovascular
events. On the other hand, subcutaneous WAT has a higher expression of uncoupling
protein 1 (UCP-1) which reflects its ability to undergo browning [19]. Unlike WAT, BAT is
considered “good” fat and is utilized for heat production and anti-pathogenic effects. BAT
contains multilocular lipid droplets, a higher number of mitochondria, and thermogenic
capacity due to elevated UCP1 amounts anchored in its mitochondrial inner membrane [20].
Recently, it has been made apparent that the dichotomy between WAT and BAT is not
so stark. Studies show that WAT is manageable in conditions such as cold or adrenergic
stimulation [21] and is capable of “beiging” or adopting traits typically characteristic of
BAT such as expressing the UCP1 associated with thermogenic activity [22,23].

The main cells that compose adipose tissue are adipocytes. Besides adipocytes,
preadipocytes, fibroblasts, capillary endothelial cells, macrophages, and stem cells are
also present in adipose tissue. Similarly, PVAT also contains adipocytes, pre-adipocytes,
immune cells, fibroblasts, endothelial cells, stem cells, etc. The variety in the cellular
composition of PVAT corresponds to the diverse biomolecules it releases. PVAT can release
vasodilator and anticontractile factors including adiponectin [24] and angiotensin 1–7 [25].
PVAT can also release anti-inflammatory factors (angiopoietin-like protein 2, IL-10), pro-
inflammatory factors (IL-6 and TNF-a), microRNAs [26], reactive oxygen species, and
metabolites [27]. It is believed that the functions of PVAT are closely related to its released
factors via either paracrine or endocrine pathways. Such endocrine and paracrine effects
correspond with diverse effects on vasculature [27,28]. For example, adiponectin levels
are inversely proportional to visceral fat accumulation, insulin sensitivity, and risk of de-
veloping type 2 diabetes (T2D) [29]. In obese individuals, especially those with central
adiposity with a higher waist-to-hip ratio, the overall adiponectin level is less when com-
pared with non-obese individuals [30]. André Tchernof and colleagues have reported a
negative correlation between adiponectin release and omental adipose tissue area/total
body fat mass/omental adipocyte diameter in women undergoing elective surgery. This
correlation was not present in the subcutaneous adipose tissue [31]. The possible explana-
tion is that smaller, more insulin-sensitive omental adipocytes are more efficient in releasing
adiponectin when compared with larger omental fat cells. In addition, adiponectin also
plays important roles in atherosclerotic plaque formation [32], fatty acid oxidation, and
glucose uptake in muscle tissue [33].

Besides regulating the vasculature dilation and contraction, PVAT has also been shown
to be implicated in neointimal formation, vascular calcification, and arterial stiffness as
well as the pathogenesis of aneurysm [34], although the detailed mechanisms are not fully
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understood. Additionally, PVAT affects muscle functions. Turaihi and colleagues found that
removing PVAT from muscle blood vessels decreased glucose uptake by muscles, upregu-
lated proteins associated with cell stress and inflammation, and downregulated essential
mitochondrial proteins related to glucose metabolism [35], suggesting the roles of PVAT in
the vasoreactivity in muscles. Notably, studies have found that the crosstalk between the
PVAT and typical cells belonging to the vasculature is not one-sided. In times of oxidative
stress and inflammation, the vascular walls may release bioactive molecules, such as lipid
peroxidation products and inflammatory cytokines, which stimulate the anti-oxidative and
anti-inflammatory functions of PVAT. For instance, Komuro et al. have shown that beiging
of PVAT fine-tunes inflammatory response in a mouse model of endovascular injury [36].
Our recent study has revealed that exercise intervention can alleviate inflammation and
oxidative stress in thoracic aorta PVAT in type 2 diabetic mice [37]. It is worthwhile to note
that gender can influence PVAT functions. Clinical studies have found that perivascular and
pericardial adipose tissue are increased in women after menopause, and that the volume of
aortic PVAT positively correlates with the reduction in estradiol [38,39]. In addition to the
abovementioned functions of PVAT, various types of cells in PVAT can release EVs. This
will be the main point of discussion in this review.

3. Extracellular Vesicles (EVs)

EVs are small, membrane-bound vesicles released by cells into the extracellular envi-
ronment. There are three main classifications of EVs: exosomes, microvesicles (or micropar-
ticles), and apoptotic bodies. In general, EVs, including PVAT-derived EVs (PVAT-EVs)
have unique variations in properties like biogenesis, size, content, and function, which
vary on their subtype, cellular origin, and cellular status. Previous studies have suggested
adipose tissue-derived EVs are intercellular communicators for systemic metabolism regula-
tion. They can also influence insulin sensitivity, inflammation, and energy homeostasis [40].
Recently, a growing body of evidence has begun to suggest that PVAT-EVs play important
roles in regulating vascular homeostasis, blood endothelial and vessel functions, influence
vascular tone, and metabolic inflammation, as well as being involved in the development
of vascular diseases such as atherosclerosis [41,42].

3.1. PVAT-Derived Exosomes and Microvesicles: Biogenesis and Size

The biogenesis and release of PVAT-EVs share biological mechanisms similar to the
general cellular EV release [43]. Exosomes are EVs typically ranging from 30 to 150 nm in
diameter. The exact mechanism of exosome biogenesis from PVATs or other tissues or cells
is incompletely understood. So far, most studies have shown that exosomes are formed
through the endosomal membrane’s inward budding, which produces intraluminal vesicles
(ILVs) within multivesicular bodies (MVBs) [44–46]. The MVBs subsequently fuse with
the plasma membrane, releasing the intraluminal vesicles as exosomes. The endosomal
sorting complex required for transport (ESCRT), which includes four protein complexes
(ESCRT-0, -I, -II, and -III) and accessory proteins such as ALIX and VSP4, is one of the major
biogenesis mechanisms of exosomes [47,48]. It is reported that this complex causes ILVs
to be enclosed within MVBs by recognizing their ubiquitinated membrane proteins and
promoting their entry into the MVBs. Studies have also proposed that ILVs may be formed
through alternate mechanisms involving tetraspanin (e.g., CD9, CD63, CD81) and lipid
rafts [49].

Microvesicles, called microparticles or ectosomes, are EVs typically ranging from
100 to 1000 nm in diameter [12]. The outward budding and fission of the cellular plasma
membrane form microvesicles [50–53]. Studies suggest that shifts in intracellular calcium
levels due to factors such as mechanical stress, inflammation, or apoptosis are one of
the causes of this process. These shifts are thought to activate enzymes like calpain,
responsible for cytoskeletal rearrangement, cytoskeletal protein cleavage, and membrane
detachment/blebbing [50–53]. It is reported that, during membrane detachment/blebbing,
enzymes like scramblases and lipases promote phospholipids, such as phosphatidylserine,
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on the outer leaflet of the budding membrane, inducing membrane curving and formation
of vesicles. These budding vesicles are thought to take up biomolecules from the cytoplasm
before being split and released from the cell membrane through the contraction of actin
and myosin filaments.

3.2. PVAT-Derived Exosomes and Microvesicles: Uptake Pathways and Functions

The mechanisms of EV uptake vary depending on the specific type of EV and the
recipient cell. Studies have demonstrated that multiple pathways, such as direct interaction,
the fusion with the plasma membrane that is mediated by SNAREs and Rab proteins [54],
cell membrane fusion [55], receptor-mediated signaling, and endocytosis, are responsible
for the exosomes and microvesicles that alter the functions of recipient cells in the target tis-
sue. For instance, during cell–cell interaction, exosomes and microvesicles fuse with target
cell membranes and directly deliver their contents into the cytoplasm. During receptor-
mediated signaling, EVs utilize their surface proteins to communicate with receptors on
recipient cells. The endocytosis method involves exosomes and microvesicles becoming
engulfed by the recipient cell membrane and brought into the cell. The transmembrane lig-
ands on the exosome surface can bind directly with the surface receptors on recipient cells
and activate downstream signaling cascades to activate target cells. To exemplify, Guan et al.
have found that umbilical cord blood-derived exosomes expressing MHC-I and MHC-II
stimulate T cell proliferation to produce anti-tumor activity [56]. Mesenchymal stem cells
can uptake PC12-derived exosomes via clathrin-mediated endocytosis and micropinocyto-
sis pathways [57]. Bone marrow stromal cells could uptake myeloma-derived exosomes
using a caveolin-dependent pathway, associating micropinocytosis, and membrane fusion
pathway [58]. All of these findings suggest that the internalization pathways for exosomes
and microvesicles vary, depending on the EV subtype and target cells. Further, the EV
cellular origin and cellular status also significantly affect up-taken EV and its effects. For
instance, cardiac progenitor cell-secreted EVs are preferentially taken up by cardiomyocytes
and endothelial cells when compared with EVs that are released by fibroblasts and bone
marrow stem cells [59]. Papini et al. found that exosomes from sulforaphane pre-treated
fibroblasts (an edible class I HDAC inhibitor) exhibited approximately three times more se-
lective uptake by cardiomyocytes when compared with exosomes from untreated cells [60].
It is worthwhile to note that epigenetic food compounds such as sulforaphane may in-
fluence the acetylome of fibroblasts and cardiac progenitor cells [61], which in turn may
modulate EV biogenesis and release from PVAT fibroblasts. These findings inspire investi-
gation into PVAT-EV studies, as adipocyte progenitor cells and fibroblasts are present in
PVAT [62]. Understanding whether there is a specific incorporation preference for adipose
progenitor cell-derived EVs or fibroblast-derived EVs will help us manage PVAT-induced
vascular diseases.

As a result of the ability to carry and transport biomolecules [12], exosomes and
microvesicles have been found to participate in various biological processes. Besides re-
moving cellular detritus, the major role of exosomes and microvesicles is the conducting
of intercellular communication [63,64]. Exosomes and microvesicles, including PVAT-EVs,
have been shown to deliver proteins, lipids, and nucleic acids to recipient cells, which
affects target cell behavior and leads to various cascading effects. For instance, large
adipocyte-derived EVs can transfer lipogenic information to stimulate lipid storage in
small adipocytes [65]. PVAT-EVs from high-fat diet mice could trigger early-stage vascular
remodeling in C57BL/6J mice, mainly ascribed to their carried microRNA-221–3p [66].
Adipose tissue-derived EVs from ob/ob mice have been shown to induce insulin resis-
tance and promote pro-inflammatory cytokine secretion in control mice [10]. Zhang et al.
have found that adipocyte-derived EVs from obese mice carrying microRNA-155 induced
macrophage-to-pro-inflammatory phenotype change [67]. Given their role in intercellular
communication, exosomes and microvesicles are shown to be implicated in various phys-
iological and pathological processes within the body [12,63,64]. These processes include
immune regulation, tumor progression, neurodegenerative disease propagation, coagu-
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lation, and tissue regeneration/repair [12,68,69]. Regarding immune regulation, research
has revealed that exosomes and microvesicles can influence immunoregulation via anti-
gen presentation and the release of immunoregulatory proteins such as cytokines [70,71].
These proteins modulate the immune activity by stimulating or suppressing it. In the
context of tumor progression, studies suggest that, when exosomes and microvesicles are
released by cancer cells, they convey oncogenic proteins and miRNAs that can alter and
recruit local cells or cells in other regions of the body [72,73]. This enables cancer cells
to create a metastasis microenvironment, which can cause effects like cell proliferation,
angiogenesis, and immune system evasion. Research also reveals that cancer-derived EVs
can induce immunosuppressive responses that promote tumor progression. As a result
of their participation in cancer progression, exosomes and microvesicles can function as
biomarkers for diagnosing and monitoring cancer or serve as therapeutic targets for can-
cer. Several groups have reported that exosomes and microvesicles can induce immune
responses against tumors via antigen presentation and could be used as drug-delivery
vehicles. In neurodegenerative disease, exosomes can propagate misfolded proteins such
as amyloid-beta, tau, and alpha-synuclein [74]. These proteins promote the progression of
diseases like Alzheimer’s, Parkinson’s, and Huntington’s. Exosomes have also been found
to deliver inflammatory molecules such as cytokines, which induce a neuroinflammatory
response when presented to neuroimmune cells like microglia. Beyond promoting neu-
rodegenerative disease progression, exosomes have been revealed to have the potential
to provide neuroprotection against neurodegenerative diseases. Research indicates that
exosomes from mesenchymal stem cells can carry neuroprotective biomolecules such as
microRNAs, that promote neuronal survival and repair in ischemic rats [74]. Our group has
previously demonstrated that endothelial progenitor cell-derived microvesicles can elicit
favorable effects in a diabetic ischemic mouse model [75]. More recently, we have found
that exercise intervention can modulate the level and functions of endothelial progenitor
cell-derived EVs in hypertensive conditions [76], indicating a promising therapeutic target
for hypertensive-related cerebrovascular diseases such as ischemic stroke.

Microvesicles have been found to play a role in blood coagulation. Several groups
have demonstrated that microvesicles from platelets carry pro-coagulant phospholipids
and phosphatidylserine and tissue factor [68,69]. These molecules influence the coagulation
process by promoting thrombin production and clot formation, which is important for
coagulation processes such as hemostasis and thrombosis. Research also indicates that
EVs may play a crucial part in tissue regeneration and repair due to their ability to carry
and transport biomolecules associated with this process, such as growth factors, cytokines,
and microRNAs [77]. Studies have found that EVs rich in these molecules, such as those
from mesenchymal stem cells and endothelial progenitor cells, can promote regeneration
and repair in damaged tissue by inducing activities, cell growth/proliferation, and cell
survival [78–80]. They have also been found to aid regeneration and repair by regulating
immune responses [77]. Increasingly, studies have indicated the effects of these EVs in
improving various injuries such as wounds, heart, and liver injuries [77]. For example,
exosomes from mesenchymal stem cells appear to improve cardiovascular health in rats
after myocardial infarction by stimulating angiogenesis and inhibiting apoptosis [81].
Similarly, endothelial cell-derived microparticles could contribute to wound healing and
tissue regeneration by promoting angiogenesis [82].

Overall, exosomes and microvesicles are EVs formed via the inward and outward
budding of the plasma membrane, respectively. They are involved in various biological
processes, making them important research subjects, as gaining a deeper understanding of
their roles would improve their capacity for use in diagnosis and therapy.

4. Apoptotic Bodies: Biogenesis, Size, and Function

Apoptotic bodies are vesicles ranging from 500 to 2000 nm in diameter [83], and
are the largest EVs in size. They form during apoptosis. The formation process begins
with the initiation of apoptosis, triggered by internal stimuli (such as DNA damage)
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or external stimuli (such as cytokines) [84,85]. During this event, caspases, enzymes
that induce the disassembly of cellular components, cause effects such as cell shrinkage,
fragmentation, and membrane blebbing. As apoptosis progresses, these blebs split into
membrane-bound apoptotic bodies that contain sections of the cytoplasm. Apoptotic bodies
contain many cellular components, such as organelles, DNA fragments, protein fragments,
and histones [12]. Research indicates that the primary role of apoptotic bodies alongside
intercellular communication is preventing the release of harmful cellular contents. During
apoptotic cell clearance, apoptotic bodies containing cellular materials could be ingested
by phagocytes [84]. These play a major role in maintaining tissue homeostasis by safely
sequestering and removing cellular debris. They are involved in various processes, such as
apoptotic cell clearance, immunoregulation, and tissue remodeling [84,86,87]. Apoptotic
bodies have also been found to carry immunoregulatory materials that can influence anti-
inflammatory responses, immune tolerance, and immune homeostasis [87]. These findings
illustrate their potential biological functions.

In summary, exosomes, microvesicles, and apoptotic bodies are PVAT-EVs with dif-
ferent properties such as biogenesis, size, content, and function (Figure 1). They exist in
biological fluids such as blood and urine. The components and functions of EVs are distinct
for each EV cell source and cellular status. Upon secretion, PVAT-EVs could mediate both
paracrine and endocrine signaling by conveying their cargo, which consequently regulates
the behavior of recipient cells [88]. Therefore, they have been shown to play crucial roles
in a wide range of physiological and pathological processes, such as intercellular commu-
nication, immune modulation, apoptotic cell clearance, and vascular diseases, a function
which has been largely ascribed to their various biomolecule cargo, including proteins,
non-coding microRNAs, lipids, etc., making them important subjects for research.
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5. PVAT and PVAT-EVs in Obesity and Diabetic-Related Vascular Dysfunction

Obesity is characterized by excessive fat accumulation in adipose tissues leading to
weight gain. It is a major risk factor for T2D and contributes to its severity. Diabetes mellitus
is a comprehensive term for insulin-related metabolic diseases. Diabetes mellitus affects
approximately ten percent of Americans [89] and about 500 million people worldwide.
By 2030, this number is estimated to reach 578 million. By 2045, this proportion will
reach 700 million [90]. Type 1 diabetes (T1D) is an autoimmune disorder in which beta-
cell-induced destruction of insulin incites an insufficiency of the protein. It is typically
unpreventable and diagnosed in adolescence [91]. T2D, in contrast, is preventable and
often presents as selective insulin resistance resulting from poor diet and exercise choices.
Diabetes and its comorbidities, such as obesity and dyslipidemia, induce endothelial
dysfunction, inflammation, and blood coagulation. They are implicated in cardiovascular
diseases (CVD) like myocardial infarction and cardiomyopathy [92]. In fact, for individuals
with T1D or T2D, CVD is the primary cause of death [93]. Those with T1D are more prone
to coronary artery disease and peripheral artery disease, while those with T2D are more
likely to suffer from atherosclerosis and stroke [94].

Increasing evidence suggests that PVAT undergoes morphological changes in response
to obesity and diabetes. A study implementing data from the Framingham Heart Study
found that thoracic peri-aortic PVAT is correlated with body mass index and CVD [6]. Wang
and colleagues found that the mesenteric PVAT mass increased following 10 weeks of diet-
induced obesity in male C57BL6/J mice [95]. Similarly, Juha et al. observed that 8 months
of a high-fat diet can increase abdominal aorta PVAT by three-fold in C57BL/6 mice [5]. On
a more specific level, white PVAT around the abdominal aorta and iliac arteries increase
by 1.9 and 1.7-fold respectively, following a 7-week high-fat diet on Wistar rats [96]. In a
monogenic diabetic G protein-coupled estrogen receptor (GPER)-deficient mouse model,
12-month-old mice demonstrated a 3.6-fold increase of PVAT compared with wild-type
control [97]. This study also identified PVAT as a novel regulator of arterial vasoconstriction,
which acts through the release of adipose-derived contracting factors and likely contributes
to increased vascular tone by antagonizing vasodilation. This is also mirrored in the
hypertrophy of the adipocytes of abdominal PVAT in obesity conditions [98]. Increased
PVAT mass around vasculature is associated with decreased insulin sensitivity [99].

Besides mass changes, PVAT undergoes functional alterations in obesity and diabetic
conditions. For instance, obesity can also promote the phenotypic shift of thoracic aorta
PVAT from brown to white adipocytes [100]. PVAT in aged, high-fat diet conditions
demonstrates increased type 1 macrophage infiltration [101]. Such PVAT dysfunction is a
major contributing factor to obesity and diabetic-associated vascular dysfunction. Several
groups have observed that a high-fat diet can induce changes in PVAT functions. Bussey
et al. have found that the dilation capability of PVAT, acting contrary to administered
norepinephrine, is lacking in obese, high-fat diet conditions, and weight loss can reduce
the inflammatory conditions of PVAT during obesity in rats [102]. Meanwhile, they found
that the inflammatory factor expression was altered in obesity conditions by upregulated
TNF-alpha and downregulated eNOS, the latter of which holds a protective function against
oxidative stress. Chatterjee and colleagues have reported that a two-week high-fat diet
can induce significant downregulations of adiponectin, PPAR-gamma, and FABP4 while
upregulating leptin and MIP1-alpha and promoting inflammation in wild-type mice [103].
Almabrouk et al. found that a high-fat diet can inhibit the anticontractile activity of aortic
PVAT [104]. Similarly, another study has found that nitric oxide released by PVAT, which
in healthy conditions contributes to dilation of the vasculature, is remarkably decreased
in obese conditions in a rat obesity model [105]. Intriguingly, the offspring of high-fat
diet female mice also demonstrate decreased PVAT anticontractile activity [106]. In T2D
conditions, PVAT also exhibits macrophage infiltration and changes to a vasoconstriction
phenotype that aggregates endothelial dysfunction [107]. PVAT secretes less adiponectin
which directly or indirectly contributes to inflammation, oxidative stress, and insulin
resistance. Meijer et al. have revealed that PVAT from obese mice inhibits insulin-induced
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vasodilation, which could be blocked by targeting the inflammatory JNK pathway [108].
Our group has demonstrated that thoracic PVAT from diabetic mice has lower levels of
adiponectin and IL-10, with increased expressions of oxidative stress, IFN-r, TNF-α, and
IL-6 inflammatory cytokines, which influence aorta function in T2D diabetic mice [37].

The effect of clustered cardiovascular risk factors on PVAT function has also been
studied. DeVallance et al. have reported that metabolic syndrome impacts thoracic aorta
PVAT function, as evidenced by increased ROS production and pro-inflammatory cy-
tokines, associated with decreased endothelial-dependent dilation function in aorta in
obese Zucker rats [109]. Osaki et al. have found that endothelial-dependent relaxation
is compromised in a high-fat and high-sucrose diet-induced metabolic syndrome mouse
model. The impaired endothelial-dependent relaxation is caused by increased superoxide
production from the aorta and PVAT [110]. Similarly, PVAT-derived oxidative stress and
inflammation have been implicated in vascular dysfunction in a rat model of metabolic
syndrome as reflected by increased ROS production, pro-inflammatory changes, and de-
creased endothelial-dependent dilation in vasculature [7]. Notably, the altered function of
PVAT may be a link between obesity and hypertension, but the detailed mechanisms are
incompletely understood. Marchesi and colleagues have reported that the immune cells in
PVAT, such as macrophages/monocytes, can contribute to hypertension by administering
oxidative stress and related inflammation. They showed that PVAT loses its ability to
influence vasodilation in New Zealand obese mice that are predisposed to obesity, hyper-
glycemia, hyperinsulinemia, and hypertension [7]. Takemoria et al., have demonstrated
that the removal of PVAT corresponds with increased blood pressure, alluding to the critical
role that PVAT plays in blood pressure regulation [111]. Table 1 summarizes the potential
changes of PVAT in obesity, T2D, and metabolic syndrome conditions.

Table 1. Overview of anatomical and physiological changes in PVAT.

Disease Type of Change Effect Reference

Obesity Anatomical Increase in mass [5,6,95,96,98]

Shift from brown to white adipocyte phenotype [100]

Type 1 macrophage infiltration [101]

Physiological Loss of vasodilation effects [102,104,106,108]

Upregulated TNF-α, leptin, MIP1-α,
Downregulated eNOS, adiponectin, PPAR-γ, FABP4, [102]

Decreased NO production [105]

T2D Anatomical Increase in mass [97]

Macrophage infiltration [107]

Physiological Promotion of vasoconstriction rather than vasodilation [107]

Downregulated adiponectin [37,108]

Downregulated IL-10, Upregulated INF-r, TNF-α, IL-6 [37]

Metabolic syndromes Anatomical Loss of vasodilation effects [7,109,110]

Shift from brown to white phenotypes [109]

Physiological Increased ROS production [7,109,110]

Upregulated TNF-α, IL-1β, IL-6, IFN- γ, Downregulated
IL-4, IL-5, IL-10, IL-13, adiponectin [109]

Exercise is a non-pharmacological intervention approach to manage metabolic dys-
functions such as obesity and T2D. Exercise has been shown to restore TNF-α levels, elicit
anti-contractile effects and regulate adiponectin release [112]. The influences of exercise
intervention in PVAT are multi-faceted. Beyond promoting adiponectin production by
PVAT [113], exercise intervention can attenuate immune cell infiltration into PVAT, thereby
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improving vascular function [114]. Saxton and colleagues have found that exercise reduces
PVAT inflammation and increases β3-adrenoceptor and OCT3 expressions to improve
PVAT function in obesity [112]. Our group has reported that treadmill exercise can modu-
late macrophage phenotype, decrease superoxide production in PVAT, and increase NO
levels in the aorta in T2D mice [37]. Similar findings show that exercise intervention can
increase UCP-1 expression in the mesenteric artery PVAT in rats [115] and increase eNOS
expression and phosphorylation in obese rats [113]. Additionally, myokines, such as FGF21
and irisin, released from skeletal muscle can regulate PVAT function via paracrine [114].
These findings suggest the potential of targeting PVAT to treat vascular complications of
obesity and diabetes.

Recently, increasing evidence indicates that adipocyte-derived EVs link obesity and
diabetes, and their comorbidities. EVs released from adipose tissue-derived cells in obesity
or diabetic conditions, including adipocytes and macrophages, play a role in multiple
manners, including regulating inflammation, insulin sensitivity, and vasculature functions.
Wang et al. have reported that EVs and their cargo microRNAs mediate adipose tissue and
brain inter-organ communication, inducing the synaptic damage and cognitive impairment
associated with insulin resistance, and thus providing a promising strategy for pharmaceu-
tical interventions for cognitive impairment in diabetes [116]. Ying and colleagues have
revealed that obese adipose tissue macrophage-derived EVs containing microRNA-155 can
modulate insulin sensitivity [40]. Furthermore, Deng et al. have revealed that intravenous
administration of adipocyte-EV-induced systemic insulin resistance in lean mice, leading
to altered insulin signaling in visceral adipose tissue, liver, and muscle, and enhancing
the recipient animals’ inflammatory profile [10]. Camino and colleagues have reported
that the EVs that are shed by pathological adipocytes could spread pathology by stimu-
lating IL-6 and TNFα expression and promoting macrophage inflammation in recipient
healthy adipocytes [117]. Circulating adipose-derived EVs have been shown to transport
microRNA-99b, which is involved in regulating liver fibroblast growth factor 21, contribut-
ing to the control of metabolic homeostasis and systemic insulin resistance [26]. EVs from
obese subcutaneous or obese visceral deposits contain reduced levels of vascular endothe-
lial growth factor and matrix metalloproteinase-2, suggesting that they may have lowered
pro-angiogenic potential [118]. However, EVs released from adipose tissue-derived stem
cells are rich in microRNAs and can promote endothelial cells’ migration and invasion
abilities [119]. Hartwig et al. have identified 897 adipokines in adipocyte-derived EVs
isolated from lean or overweight women. These adipokines have been found to be strongly
associated with human metabolic diseases, including metabolic diseases like diabetes
mellitus, glucose metabolism disorders, and metabolic syndrome [120]. Another group
has reported that subcutaneous adipocyte-derived EVs of obese patients are enriched in
proteins implicated in fatty acid oxidation [121].

Li and colleagues have found that PVAT-EVs from high-fat diet mice carrying
microRNA-221–3p could trigger early-stage vascular remodeling in C57BL/6J mice, sug-
gesting the roles of PVAT-EVs in response to obesity-associated inflammation and vascular
remodeling [66]. Deng et al. have demonstrated that ob/ob mouse adipose tissue-derived
EVs could induce insulin resistance, promote differentiation of bone-marrow-derived
monocytes into macrophage, and increase pro-inflammatory cytokine secretion in control
mice [10]. Large adipocyte-released EVs can stimulate lipid storage in small adipocytes
by mediating the horizontal transfer of lipogenic information to promote lipogenesis and
adipocyte hypertrophy [65]. Zhang et al. have found that adipocyte-derived EVs from
obese mice induce M1 macrophage phenotype through secreted microRNA-155 [67]. It has
been observed that EVs secreted by obese adipose tissue stem cells contain impaired levels
of microRNA-126 [122]. As exercise can restore the vasodilation functions of PVAT [37,112],
the question of whether exercise could regulate the release and cargo of PVAT-EVs requires
further investigation. Additionally, as discussed above, Chang and colleagues have re-
vealed that the functions of PVATs vary from location to location, which is different from



Cells 2024, 13, 1309 10 of 19

classical adipose tissue. Whether exercise intervention affects PVAT differently in different
locations requires further investigation.

Overall, our knowledge of PVAT and PVAT-EVs has grown concurrently with the
increasing prevalence of obesity and diabetes. Current findings (Table 2) suggest that
obesity and diabetes could impact the functions of PVAT and the cargo package of PVAT-
EVs. Due to the proximity of PVAT to the associated blood vessels, PVAT and PVAT-EVs
could be a novel therapeutic target for interference with obesity and diabetes-related
vascular diseases.

Table 2. Potential roles of adipose-derived EVs in preclinical and clinical studies.

EV Source Disease State Containing Taken Up by Effect Reference

Adipose,
general T2D. N/A Brain cells Cause synaptic damage and

cognitive impairment. [116]

Obesity Downregulated vascular
endothelial growth factor Vasculature Decreased angiogenic

potential [118]

N/A VAT, liver,
muscle

Insulin resistance,
differentiation of monocytes
to macrophages, production

of pro-inflammatory cytokines

[10]

Human
subcutaneous
adipose tissue

Obesity

Proteins such as ECHA (a
subunit of the trifunctional

enzyme), HCDH
(hydroxyacyl-coenzyme A

dehydrogenase), etc.

Melanoma cells Fatty acids oxidation [121]

miR-155 Macrophages Shift toward M1 phenotype [67]

Adipose
tissue-derived
macrophages

Obesity miR-155 N/A Modulate insulin sensitivity [40]

PVAT Obesity miRNA-221 Vasculature Stimulate vascular
remodeling [66]

6. PVAT and PVAT-EVs in the Pathogenesis of Atherosclerosis

Atherosclerosis, a progressive cardiovascular disease, is characterized by the devel-
opment of lipid-comprised and fibrous lesions and calcification of the internal walls of
the vasculature. The pathogenesis of atherosclerosis is rooted in inflammation. Major
risk factors of atherosclerosis include increased blood cholesterol by way of low-density
lipoprotein (LDL) collection in vessels, hypertension, illicit substance misuse, and metabolic
disorders such as diabetes mellitus [123]. The pathogenesis of atherosclerosis begins with
stress applied to the endothelium, which serves as the barrier between vessel interiors and
deeper layers, including vascular smooth muscle cells (VSMCs), adventitia, and basement
membranes, which further separate vasculature from the interstitial fluid and tissue [124].
When stress is applied to endothelial cells, they can change from flat, long shapes into
round shapes, which makes the walls more likely to be constricted, undergo stress, and be
prone to lipid uptake and immune cell adhesion [125]. M1 macrophages can upregulate
the movement of LDLs into the intima layer, and the cholesterol transported within LDLs
promotes M1 macrophages to adopt the foam-cell phenotype. VSMCs can also uptake
LDLs to adopt foam cell phenotypes, primarily in the coronary artery. As atherosclerosis
progresses, this fatty area becomes known as a necrotic core, which becomes capped by
fibers [125]. Continuing disease progression is characterized by the increased apoptosis
of macrophages and VSMCs due to oxidative stress and lack of nutrients. Consequently,
inflammation prevails, eventually leading to calcification of the necrotic core. If the area
ruptures, thrombosis may develop, causing ischemia and damage [125].
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Increasingly, studies have demonstrated that PVAT is a double-edged sword. Under
physiological conditions, PVAT mainly secretes anti-inflammatory adipokines mediators
such as adiponectin, omentin, fibroblast growth factor-21, nitric oxide (NO), PVAT-derived
relaxing factors, and IL-10 [126]. Under disease conditions, PVAT secretes a large amount
of inflammatory adipokines mediators, such as leptin, tumor necrosis factor-α (TNF-α),
monocyte chemoattractant protein-1, interleukin-6 (IL-6), interleukin-1β (IL-1β), etc. [127].
PVAT could elicit favorable influences, such as anti-atherogenic effects [128], stemming
from its anti-contractile and anti-inflammatory effects. The selective deletion of PVAT
in mice can impair endothelial function and augment atherosclerosis [66], suggesting a
protective role of healthy PVAT. On the other hand, in disease conditions like diabetes or
obesity, PVAT becomes inflamed and dysfunctional and is implicated in the pathogenesis
of atherosclerosis and vascular remodeling [129]. Horimatsu and colleagues have demon-
strated that the transplantation of white PVAT isolated from high-fat-fed wild-type mice
onto the abdominal aorta of LDL-receptor knock-out mice promotes endothelial dysfunc-
tion and atherosclerosis in the remote thoracic aorta [130], suggesting the remote effects of
PVAT on the vessel. This study also supports the concept that PVAT does not require direct
contact to influence the vasculature, pointing to the potential role of PVAT-EVs.

Accumulating evidence suggests the importance of adipose tissue-derived EVs in
preserving cardiovascular physiology. Zhao and colleagues have reported that a period
of exercise of 4 weeks can induce the enlargement of brown adipose tissue and alter the
microRNA profiles of the adipose tissue released EVs. Furthermore, they have demon-
strated that the adipose-tissue-released EVs could regulate cardiomyocyte survival and
exhibit exercise cardioprotection in the context of myocardial ischemia/reperfusion in-
jury [131]. Similarly, another study has shown that brown adipose tissue-derived EVs
mediate the communication from brown adipose tissue to cardiac myocytes and cardiac
fibroblasts. It has been shown that treatment with exosomes from brown adipocytes
treated with a β3-AR agonist conferred protection against angiotensin II-induced cardiac
remodeling. The authors have further pinpointed iNOS as a critical cargo component of
EVs derived from beige adipocytes with β3-AR knockdown, and that it contributes to
cardiac fibroblast dysfunction and cardiac remodeling [132]. Additionally, medications
such as Ticagrelor, which reversibly targets ADP-mediated G protein-coupled purinergic
receptor P2Y12, and has been widely used in patients with acute coronary syndrome and
myocardial infarction, could modulate the functions of cardiomyocyte-derived EVs on
hyperglycemic cardiomyocytes through the alleviation of oxidative and endoplasmic retic-
ulum stress [133]. However, whether it could affect the texture and cellular proliferation of
PVAT and influence the release and function of PVAT-EVs requires more investigation.

Beyond the intercellular communication with cardiomyocytes, it is speculated that the
effects elicited by PVAT might be attributed to the crosstalk between PVAT-EVs and cells
residing within the vasculature. Earlier studies have demonstrated that EVs travel between
adipose tissue and endothelial cells. Flaherty III et al. have found that adipocyte EVs are
both an alternative pathway of local lipid release and a mechanism by which parenchymal
cells can modulate tissue macrophage differentiation and function [134]. Adipose-derived
mesenchymal stem cell-derived exosomes could protect endothelial cells from atheroscle-
rosis, an ability that is ascribed to their carried microRNA-342–5p [135]. Exosomes from
adipose-derived stem cells can promote VEGF-C-dependent lymphangiogenesis by directly
downregulating Smad7 and regulating TGF-b/Smad signaling in lymphatic endothelial
cells [136]. Indeed, several studies have revealed that cardiac lymphatics play impor-
tant roles in improving cardiac function [137], heart development, and ischemic cardiac
disease [138]. Smad7 is one of the major conductors of stem cell cardiogenesis. Down-
regulation of Smad7 is associated with enhanced cardiogenesis in mouse embryonic and
human mesenchymal stem cells [139]. Whether the stem and progenitor cells in PVAT may
contribute to cardiogenesis by releasing exosomes that contain factors targeting Smad7
is unclear. Some studies have shown that EVs released from inflammatory adipocytes
promote leukocyte attachment to vascular endothelial cells, suggesting the role of EVs in
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the setting of atherosclerosis [140]. Barberio et al. have found that adipocyte EVs regulate
macrophage cholesterol homeostasis by increasing macrophage cholesterol efflux, thereby
promoting the development of atherosclerosis [141]. Wang and colleagues have revealed
that adipocyte EVs can promote atherosclerosis plaque vulnerability and atherosclerosis by
inducing angiogenesis of the vasa vasorum in diabetic atheroprone mice [142]. For PVAT
specifically, Mangiferin, a traditional Chinese medicine for diabetes, has been found to
stimulate EV release from PVAT, which can improve endothelial cell migration, reduce
apoptosis, and prevent inflammation by decreasing IL-6 and TNF-α and blocking NF-
κβ [143]. Liu and colleagues have found that PVAT-EVs could regulate the expression
of macrophage cholesterol transporters [144]. Furthermore, they have demonstrated that
PVAT-EVs can reduce macrophage foam cell formation and that the underlying mechanism
is largely ascribed to the EV-carried miR-382–5p [145]. Nevertheless, Xie and colleagues
have found that EVs isolated from visceral adipose tissues elicited the opposite effect. These
EVs increase macrophage foam cell formation [146]. All of these findings demonstrate the
potential roles of PVAT-EVs in vascular health and disease progression (Figure 2).
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7. Conclusions and Perspectives

Increasing evidence indicates that PVAT plays an important role in the cardiovascular
system. It is a master endocrine organ, much more than a mechanistic support to the
vasculature. PVAT releases vaso-relaxing factors and anti-contractile factors to regulate the
functions of endothelial and smooth muscle cells in the vasculature. It is worthwhile to
note that recent studies have provided hints that PVAT can release EVs, including exosomes
and microvesicles, which may either enter circulation or transfer to nearby target cells
for intercellular communications. These findings open a window and shed light on the
therapeutic potential of targeting PVAT and PVAT-EVs in obesity and diabetic-associated
vascular diseases. However, research into PVAT-EVs is still in its infancy. There are
many gaps. One of these gaps is the scarcity of studies that comprehensively explain the
mechanisms and pathways through which PVAT-EVs influence the progression of different
vascular diseases. On the other hand, although increasing studies show that adipose
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tissue-derived EV profile changes in obesity, diabetes, and vascular disorders, there is
limited information on how EV biogenesis pathways are implicated in obesity and diabetic
conditions. Meanwhile, how these are altered to influence the release of EVs and their
cargo in individuals with obesity or diabetes is also largely unknown. Therefore, a better
understanding of how EVs, including PVAT-EV biogenesis pathways, are dysregulated in
obesity and diabetic conditions may allow the generation of targeted therapies to perturb
EV signaling and develop new EV diagnostic tests.

Given that PVAT becomes dysfunctional in obesity and diabetic conditions, restoring
PVAT function could improve cardiometabolic risk, leading to a decreased onset of vascular
damage and atherosclerosis development. Physical activity has been shown to restore
PVAT function in diabetic animal models. Nevertheless, the question of whether exercise
can improve the level and contents of PVAT-EVs and their potential effects on vasculature
has not been studied.

Finally, there is a shortage of clinical studies associated with PVAT and PVAT-EVs, as
most existing studies utilize mice models. Clinical studies would allow a deeper exploration
and understanding of the role of PVAT-EVs in cardiovascular disease. This would enable
further research to utilize PVAT-EVs as biomarkers or as therapy for vascular disease, which
is a potential future direction of PVAT-EV in vascular disease.
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