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Abstract: Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental condition with
several identified risk factors, both genetic and non-genetic. Among these, prenatal exposure to
valproic acid (VPA) has been extensively associated with the development of the disorder. The
zebrafish, a cost- and time-effective model, is useful for studying ASD features. Using validated
VPA-induced ASD zebrafish models, we aimed to provide new insights into VPA exposure effects
during embryonic development and to identify new potential biomarkers associated with ASD-
like features. Dose–response analyses were performed in vivo to study larval phenotypes and
mechanisms underlying neuroinflammation, mitochondrial dysfunction, oxidative stress, microglial
cell status, and motor behaviour. Wild-type and transgenic Tg(mpeg1:EGFP) zebrafish were water-
exposed to VPA doses (5 to 500 µM) from 6 to 120 h post-fertilisation (hpf). Embryos and larvae
were monitored daily to assess survival and hatching rates, and numerous analyses and tests were
conducted from 24 to 120 hpf. VPA doses higher than 50 µM worsened survival and hatching
rates, while doses of 25 µM or more altered morphology, microglial status, and larval behaviours.
VPA 50 µM also affected mRNA expression of inflammatory cytokines and neurogenesis-related
genes, mitochondrial respiration, and reactive oxygen species accumulation. The study confirmed
that VPA alters brain homeostasis, synaptic interconnections, and neurogenesis-related signalling
pathways, contributing to ASD aetiopathogenesis. Further studies are essential to identify novel ASD
biomarkers for developing new drug targets and tailored therapeutic interventions for ASD.

Keywords: autism spectrum disorder; valproate; valproic acid; zebrafish; autism models; microglia;
neuroinflammation; oxidative stress; mitochondrial respiration

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by
deficits in social communication and repetitive patterns of behaviour [1]. Impaired motor
activity and abnormal sensitivity to sensory stimuli have also been described in ASD [2].
Recent evidence suggests that autism has a global prevalence of approximately 65/10,000,
with the highest rates reported in the USA and South Korean populations [3]. ASD is
currently known to be a multifactorial disorder with several identified risk factors, both
genetic and non-genetic [4]. In some cases, ASD symptomatology is part of a genetically
determined syndrome, such as Rett syndrome, Angelman syndrome, tuberous sclerosis,
and neurofibromatosis [5]. However, a large proportion of ASD cases are idiopathic, and
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only about 20% are caused by known genetic mutations [6]. In addition, diagnostic criteria
for ASD are fairly broad due to the wide variability of types, timing, and severity of
symptoms [7].

Approximately 100 genes among more than 800 identified as risk-associated have
been related to the development of ASD [8,9]. Several of these genes are involved in
pathways associated with gene expression regulation, chromatin remodelling, and neuro-
and synaptogenesis [10,11]. Mounting evidence also links immune system dysregulation
and neuroinflammation to the aetiopathogenesis of ASD, with chronic immunological brain
dysfunction being identified both in humans with autism and in animal models of the
disease [12–14]. Interestingly, 80 of these genes are expressed in the amygdala, a brain
region implicated in the social component of ASD [15].

Neuroinflammation is a complex process involving glial cells (such as microglia and
astrocytes) and the production of inflammatory cytokines [16,17]. In detail, microglia are
the main resident immune system cells in the central nervous system (CNS) [18], and
they are activated to counteract detrimental stimuli, such as infection [19,20]. Beyond
their significant role in triggering and sustaining the neuroinflammatory response [21,22],
microglia play a key role in neurogenesis, synaptogenesis, and synaptic regulation [23],
reducing unnecessary synaptic connections early in life and, therefore, potentially becoming
an important player in ASD pathogenesis [24,25].

Although a significant part of ASD susceptibility can be explained by genetics, envi-
ronmental factors such as maternal and paternal age, preeclampsia, and maternal infection
and/or drug use during pregnancy also play a role [26]. Among these factors, prenatal ex-
posure to valproic acid or valproate (VPA) has been extensively linked to the development
of ASD [27]. Exposure to VPA during the first trimester of pregnancy is also associated with
an increased risk of congenital abnormalities, including neural tube defects and cardiac,
craniofacial, and skeletal abnormalities [28–31]. Notably, multiple reports showed a higher
risk of fetal abnormalities when the maternal VPA doses were above 1000 mg/day or when
blood concentrations were above 70 µg/mL, which corresponds to 485 µM [32]. VPA is
a short-chain fatty acid antiepileptic drug used to treat seizures and mood disorders [33].
Prenatal exposure to VPA, resulting in altering GABAergic system homeostasis, modulating
voltage-gated sodium and calcium channels, and inhibiting N-methyl-D-aspartate-induced
transient depolarisation and glutamatergic activity, affects several neurodevelopmental
pathways [33–36]. Furthermore, VPA suppresses histone deacetylase activity, affecting gene
expression and thus leading to transcription inhibition [37,38]. This interference with gene
expression has been associated with changes in neural plasticity, synaptic transmission, neu-
rogenesis, apoptotic processes, neuroinflammation, and mitochondrial metabolism [39–41],
all mechanisms found to be impaired in ASD [42]. It has, therefore, recently been suggested
that VPA may play a role in increasing oxidative stress and disrupting various physiological
processes, including neurodevelopment [43].

Various animal models, such as primates, rodents, birds, and more recently, the
zebrafish (Danio rerio), have been used to study ASD and to elucidate the biological mech-
anisms of action of VPA [44–47]. These models have exhibited features resembling the
human ASD phenotype, including motor and social behavioural deficits, increased anxiety,
and developmental abnormalities [48–50]. The zebrafish, in particular, is emerging as a cost-
and time-effective organism for reproducing and studying the features of autism [51–53]
and for identifying the factors leading to the development of ASD [2]. Because of the
developmental, anatomical, functional, and genetic similarities between the zebrafish and
mammalian nervous systems, the zebrafish is indeed a promising model organism in
neuropharmacological research [54]. Since the development of the zebrafish embryo is
similar to the early stages of human embryonic development, the zebrafish in vivo model
can be used as a chemical screening tool to investigate the interplay between genes and the
environment. Other advantages of this highly social and genetically tractable organism that
make it useful for translational studies include its external development, which makes it
easy to reproduce VPA exposure during pregnancy by adding VPA to the medium in which
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the zebrafish embryos and larvae grow [50]; the transparency of the zebrafish embryo,
which facilitates the use of non-invasive imaging techniques; and the availability of genetic
and non-genetic lines for studying ASD [52,55–58].

Zebrafish embryonically exposed to VPA (to model ASD) display anxiety, deficits
in social interaction, and increased neuroinflammatory profiles; they also exhibit autistic
locomotor phenotypes and several somatic and nervous system developmental abnormal-
ities [59–62]. Furthermore, VPA administration in zebrafish has been shown to impair
serotonergic and dopaminergic system development [63,64].

In this paper, we used validated VPA-induced ASD zebrafish models [2] to study
the larval phenotype, investigate the presence of neurodevelopmental impairments, and
highlight possible mechanisms underlying these features by exploring neuroinflamma-
tion and neurogenesis-related gene expression, as well as markers of oxidative stress and
mitochondrial dysfunction. We focused on understanding the possible role of microglial
activation in ASD by analysing microglial cells in vivo in a transgenic zebrafish line express-
ing enhanced green fluorescent protein (EGFP) in microglial and macrophagic cells. Finally,
we explored the potential impacts of VPA treatment on cardiac and optokinetic responses
to evaluate possible repercussions on the cardiovascular and visual systems. The novelty
of the research relies on providing new insights into the aetiology of ASD induced by VPA
exposure during embryonic development and identifying new potential biomarkers that
could be associated with ASD-like features through a comprehensive battery of molecular
and behavioural tests.

2. Materials and Methods
2.1. Ethical Regulations

The experimental procedures were conducted under the supervision and with the
approval of the Animal Care and Use Committee of the IRCCS Stella Maris Foundation
(Pisa, Italy) and in compliance with European Directive No. 63 of 22/09/2010 on the
protection of animals used for scientific purposes. Throughout the study, zebrafish embryos
and larvae up to five days post-fertilization were used, in line with the “3Rs” guiding
principles for research involving the use of laboratory animals [65].

2.2. Chemicals

Valproic acid sodium salt (CAS-No: 1069-66-5), tricaine (CAS-No: 886-86-2), (+)-
tubocurarine chloride pentahydrate (CAS-No: 6989-98-6), 1-phenyl-2-thiourea (PTU, CAS-
No: 103-85-5), low-gelling-temperature agarose (CAS-No: 39346-81-1), and methyl cellulose
(CAS-No: 9004-67-5) were obtained from Sigma-Aldrich (St. Louis, MO, USA). A 100 mM
stock solution of VPA was prepared by dissolving VPA in ultra-pure water. Experimental
solutions were freshly prepared in standard fish medium, which consisted of osmotic
water with 60 mg per litre of “Instant Ocean®” sea salt (Spectrum Brands, Blacksburg, VA,
USA). Drug doses were chosen on the basis of preliminary results and data obtained by
Chen et al. [2], ranging from 5 to 500 µM.

2.3. Animals

Adult wild-type AB strain (WT-AB) and transgenic Tg(mpeg1:EGFP) zebrafish from the
Department of Neurobiology and Molecular Medicine of the IRCCS Stella Maris Foundation
were used. Parental fish were maintained according to standard procedures [64], and once
spawned, eggs were collected and incubated at 28.5 ◦C in Petri dishes (Ø 10 cm, 40 eggs
per Petri) filled with 50 mL of egg water until 6 h post-fertilisation (hpf). Wild-type AB
fish were used for preliminary toxicity analysis to assess the effects of VPA on locomotor
behaviour, morphology, mitochondrial respiration rate, and reactive oxygen species (ROS)
accumulation, as well as for gene expression analysis. Transgenic fish were used primarily
to study microglial status in the CNS in vivo. Microglia were evaluated by pre-treating
transgenic embryos at 24 hpf with 0.003% PTU to inhibit pigmentation, as described
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elsewhere [66]. In this PTU-treated line, we also performed two tests in which larval
transparency is crucial: optokinetic response (OKR) and cardiac function tests.

2.4. Experimental Design

The experimental design had two phases. Initially, various doses of VPA (ranging
from 5 to 500 µM) were administered to WT-AB embryos by means of water exposure
in order to confirm the minimal effective concentration and to evaluate dose–response
toxicological effects on zebrafish development. Subsequently, Tg(mpeg1:EGFP) zebrafish
embryos were exposed to non-lethal doses of VPA (ranging from 5 to 50 µM) to assess
VPA effects on microglia, OKR, and heart rate. Treatments started at 6 hpf (gastrula
period, at approximately 50% epiboly stage) and lasted until 120 hpf. All experiments were
replicated thrice (40 individuals per replicate, 120 per treatment) to ensure the reliability
and consistency of results.

2.5. Measurements and Analyses

Throughout the experimental period, several parameters were measured and analysed.
Embryos and larvae were monitored daily to assess survival and hatching rates. The
following is a comprehensive overview of the tests and analyses conducted in the course of
the experimental trial.

2.5.1. Test of Embryo Locomotor Behaviour

Given the considerable sensitivity of the developing nervous system to drug exposure,
we first implemented a standardised behavioural test, namely, the tail-coiling test, as
described by Licitra et al. [50], to evaluate the effects of the compound on neurotransmission.
Briefly, movements of unhatched embryos at 24 hpf were directly video-recorded in their
rearing Petri dishes using a Leica M205FA stereomicroscope (Leica, Wetzlar, Germany)
connected to DanioScope software version 1 (Noldus Information Technology, Wageningen,
The Netherlands) for video analysis.

2.5.2. Morphological Evaluation

At 120 hpf, all groups from both lines underwent morphological evaluation, which in-
cluded measurements of body length, eye area, swim bladder area, and the presence/absence
of pericardial oedema. Larvae were first anaesthetised by immersion in a water bath con-
taining tricaine (0.168 mg/mL) and then individually placed in a transparent cavity slide
under the Leica M205FA stereomicroscope for image capture. Data analysis was performed
using DanioScope software. On the basis of morphological characteristics (as well as
survival and hatching rates), we identified two phenotypes of interest: mild (animals
administered VPA 25 µM) and moderate (VPA 50 µM).

2.5.3. Tests of Larval Locomotor Behaviour

Additional behavioural analyses were conducted in these mild and moderate VPA
phenotypes to further explore the biological effects of VPA on sensorimotor system devel-
opment. The locomotor behaviour analysis included an assessment of swimming under
different light conditions (visual motor response test) and following a stressful stimulus
(startle response test). The visual motor response test was performed on WT-AB hatched
larvae at 120 hpf using 96-well plates (1 larva per well in 300 µL of medium) placed in the
DanioVision apparatus connected with EthoVision XT17 software (Noldus Information
Technology, Wageningen, The Netherlands). Larval locomotion was analysed for 20 min
in the dark, followed by 10 min in the light and another 20 min in the dark. By exploring
larval behavioural phenotypes under both light and dark conditions, we were also able
to evaluate sensorimotor function, which is dependent on neuro-optic development, as
suggested by Tuz-Sasik et al. [67]. The startle response assay was used to assess fish stress
reaction. By using the DanioVision system connected with EthoVision XT17 software, the
locomotor behaviour of WT-AB zebrafish larvae could be evaluated before and after a
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stressful stimulus automatically generated by a tapping device (stimulus intensity was set
at the maximum level: 8/8). Locomotion was measured for a total of 20 min: 10 min in
normal conditions (undisturbed larvae) and 10 min after the stressful stimulus.

2.5.4. Mitochondrial Respiration Assay and ROS Analysis

In the two phenotypes of interest, mitochondrial respiration and ROS analysis were
conducted following the protocol outlined by Naef et al. [68]. The first assay was performed
at 120 hpf using the XF24 extracellular flux analyser (Seahorse Bioscience, North Billerica,
MA, USA). ROS levels were assessed using an in vivo carboxy-H2DCFDA fluorescent
probe (Abcam, Cambridge, MA, USA) at 30 hpf, according to Schindelin et al. [69]. To
this end, a lateral image of each larva was captured using a fluorescence microscope, and
the fluorescence intensity in the selected region of interest was quantified using ImageJ
64 software (Fiji, Los Angeles, CA, USA).

2.5.5. RNA Isolation and Quantitative Reverse Transcription Polymerase Chain
Reaction (qRT-PCR)

Total RNA was extracted from 30 larvae per group at 120 hpf using Quick RNA
miniprep (ZymoResearch, Irvine, CA, USA) according to the manufacturer’s instructions.
cDNA synthesis and qRT-PCR analysis were performed as described by Licitra et al. [70]. To
quantify relative mRNA expression, we used the Mic Real-Time PCR System (Bio Molecular
Systems, Upper Coomera, Australia) and the comparative ∆Ct method. All data were
normalised to the expression of the housekeeping gene, β-actin. Supplementary Table S1
lists the sequences of the primers used.

2.5.6. Microglia Analysis

To visualise active microglia in the nervous system, living larvae were anaesthetised
using tubocurarine (2 mM) and then embedded in 200 µL of 1.2% low-melting-point
agarose. To slow down dehydration, 200 µL of 5% methyl cellulose was used to cover
the agarose drop containing the larva. Image acquisition was performed using an LSM
700 confocal microscope (Zeiss, Jena, Germany). Z-stack images of mpeg1:EGFP larvae
were acquired with a step size of 2µm using a 20× objective and 220 µm thick sections.
Two independent operators manually counted the number of microglial cells in the larval
whole brains. Microglial cell sphericity was quantified using ImageJ 64 software with the
MorphoLibJ plugin [71]. To analyse the sphericity of microglial cells, six different areas
were selected per individual: one in the telencephalon, two in the optic tectum, and two in
the hindbrain (Figure S1).

2.5.7. Heart Rate

At 72 hpf, heart rate measurements were performed in all transgenic embryo groups,
following the procedure described by Runfola et al. [72]. Briefly, unsedated hatched larvae
were individually placed in a transparent cavity slide under the stereomicroscope, and 15 s
videos of the pericardial area of each fish were recorded at 30 frames per second. Heart
rate data analysis was conducted using DanioScope software.

2.5.8. Optokinetic Response Test

The OKRs of zebrafish larvae were measured according to Brockerhoff [73] to eval-
uate fish visual and oculomotor function and to characterise related neural pathway
defects [74,75]. This assay allows the measurement of larval eye movements (rapid re-
setting saccades) under visual stimulation. To this end, larvae were partially immobilised
in a 5% methyl cellulose solution on the surface of a reversed Petri dish (Ø 3.5 cm) placed
in the centre of the drum of the VisioBox (ViewPoint Behavior Technology, Lyon, France),
in which alternating black and white vertical stripes were digitally projected. Larvae
were placed in a dorsal-up position and in an X shape to prevent them from touching or
seeing each other (Figure S2). The number of eye saccades was measured using the specific
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Viewpoint automated software (PHI Visualize, version 5.29.0.180) (Physical Electronics,
Chanhassen, MN, USA).

2.6. Statistical Analysis

Survival and hatching rates were evaluated using the Mantel–Cox log-rank test. Other
data were analysed using either parametric or non-parametric methods depending on
the distribution of the response variable, assessed by means of the Shapiro-Wilk test. The
Kruskal–Wallis test with Dunn’s multiple comparisons test was used to analyse embryo
burst activity, morphology, larval heart rate, and OKR. The ordinary two-way ANOVA with
Tukey’s multiple comparisons test was used for the analysis of larval locomotor behaviour.
The unpaired t-test with Welch correction was used for mitochondrial respiration, ROS,
mRNA gene expression, and microglia analyses. Statistical significance was defined as
p ≤ 0.05, and all analyses were conducted using GraphPad Prism 9 (Graph-Pad Software,
San Diego, CA, USA).

3. Results
3.1. Survival and Hatching Rates: Worsened by VPA Doses Higher Than 50 µM

In WT-AB larvae, survival and hatching rates were similar between controls and fish
treated with VPA doses of up to 50 µM (Figure 1A,B). However, when doses of 100 µM or
more were used, significant worsening effects were observed. In particular, VPA 100 µM
reduced survival and hatching rates by 25 and 30%, respectively. VPA doses of 250 µM
or more prevented hatching and caused the death of all embryos within 72 hpf. Similarly,
VPA doses of up to 50 µM did not affect survival and hatching rates in Tg(mpeg1:EGFP)
(Figure 1C,D). Although survival and hatching rates of transgenic zebrafish were lower
than those of WT ones (–20%), VPA treatment at low doses showed similar effects in both
genetic lines.
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Figure 1. Effect of valproic acid (VPA) on zebrafish larval survival and hatching rates at up to 120 h
post-fertilisation (hpf) (n = 120 per group). (A) Kaplan–Meier survival comparison in WT-AB fish
showed a significant effect [log-rank (Mantel–Cox) test] of VPA treatment at 100 (p ≤ 0.05), 250, and
500 µM (p ≤ 0.0001) as compared with untreated controls (CTRL) as early as 24 hpf. (B) The hatching
rate of WT-AB fish was significantly affected [log-rank (Mantel–Cox) test] by VPA treatment with
doses of 100 (p ≤ 0.05), 250, and 500 µM (p ≤ 0.0001) at 72 hpf. (C,D) Survival and hatching rates of
Tg(mpeg1:EGFP) transgenic fish were not influenced by any tested treatment (p > 0.05).
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3.2. Embryo Tail-Coiling Behaviour: Reduced by VPA Doses Higher Than 50 µM

The tail-coiling test was performed in the WT-AB strain, and the results (Figure 2)
showed similar burst activity between controls and VPA-treated embryos up to the 50 µM
dose, with no significant differences observed between these groups. However, higher VPA
doses significantly reduced embryo burst activity compared with controls (p ≤ 0.0001),
suggesting a neurotoxic effect of the compound. In particular, the highest dose (500 µM)
almost suppressed all spontaneous side-to-side contractions of the embryo trunk inside
the chorion.
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Figure 2. Effect of valproic acid (VPA) on WT-AB embryo burst activity at 24 h post-fertilisation
(hpf) (n = 90 per group). The tail-coiling test results showed a significant reduction (**** p ≤ 0.0001,
Kruskal–Wallis test) in burst activity of embryos treated with VPA at doses higher than 50 µM
compared with untreated controls. Data are represented as individual values (lines indicate
means ± SEM).

3.3. Morphology: Affected by VPA Doses of 25 µM or Higher

Figure 3 shows representative images of untreated controls and VPA-treated larvae
of both genetic strains at 120 hpf, together with the analysed morphological parameters.
Larvae treated with VPA doses of up to 10 µM showed normal morphology (Figure 3A,F).
However, the use of 25 µM VPA was associated with a significant reduction in swim bladder
inflation, while partial and total failure to inflate the swim bladder was observed with
doses of 50 and 100 µM, respectively (higher dose analysed only in the WT-AB specimens).
In addition, both the 50 and the 100 µM VPA dose caused a decrease in larval eye size
and an increase in the rate of pericardial oedema, with the highest dose also causing a
significant reduction in larval body length.

3.4. Larval Locomotor Behaviour: Reduced by 25 µM VPA Dose and Suppressed by 50 µM
VPA Dose

Two behavioural tests were used to investigate the locomotor activity of larvae
(Figure 4), and both involved exposing the fish to a stressful stimulus. The results of
the first test (startle response test) showed that the controls and 25 µM VPA-treated fish
responded similarly in terms of decreased motor activity following the tapping stimulus,
whereas the larvae treated with the higher dose (50 µM VPA) did not show a significant
decrease in distance travelled following the mechanical stimulus. Overall, treatment with
VPA significantly reduced the locomotor performance of the larvae in a dose-dependent
manner, both in the pre- and post-tapping phases (Figure 4A). The results of the second
behavioural test (visual motor response) showed that both VPA doses reduced larval loco-
motor activity under both light and dark conditions (Figure 4B). In this case, too, controls
and 25 µM VPA-treated fish responded similarly in terms of significantly decreased motor
activity following the stressful stimulus (light condition), while larvae treated with the
higher dose (50 µM VPA) showed suppressed locomotion in both conditions (dark and
light) with any significant locomotor variation following the stressful stimulus.
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Two behavioural tests were used to investigate the locomotor activity of larvae (Fig-
ure 4), and both involved exposing the fish to a stressful stimulus. The results of the first 
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Figure 3. Effects of valproic acid (VPA) on larval morphology at 120 h post-fertilisation (hpf)
(n = 24 per group). (A) Representative images of WT-AB untreated controls and VPA-treated larvae.
(B–E) Morphological evaluation in WT-AB fish showed significant effects (* p ≤ 0.05, *** p ≤ 0.001,
**** p ≤ 0.0001, Kruskal–Wallis test) of VPA treatment at doses higher than 25 µM as compared
with untreated controls for all measured parameters. (F) Representative images of Tg(mpeg1:EGFP)
untreated controls and VPA-treated larvae. (G–J). Morphological evaluation of Tg(mpeg1:EGFP) fish
showed a significant effect (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, Kruskal–Wallis
test) of VPA treatment at 50 µM as compared with untreated controls for eye size, swim bladder
size, and presence of pericardial oedema. Data are represented as individual values (lines indicate
means ± SEM).

3.5. Mitochondrial Respiration and ROS Accumulation: Altered by 50 µM VPA Dose

In vivo mitochondrial respiration data revealed impaired mitochondrial bioenergetics
in 50 µM VPA-treated larvae compared with controls and 25 µM VPA-treated larvae,
as shown by significant reductions in ATP production and in both basal and maximal
respiration rates (Figure 5A–D). Furthermore, an approximately 20% increase in ROS
production was observed in 50 µM VPA-treated larvae compared with controls (Figure 5F).
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Taken together, these findings suggest an increment of oxidative stress in larvae treated
with VPA at the higher dose.
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Figure 4. Effects of valproic acid (VPA) on locomotor behaviour in WT-AB larvae at 120 h post-
fertilisation (hpf) (n = 24 per group). (A) Startle response data analysis showed significant dose-
dependent reductions of larval locomotor activity, both before and after the mechanical stimulation
(** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, two-way ANOVA test). (B) Visual motor response data
analysis showed significant dose-dependent reductions of larval locomotor performance in both dark
and light conditions (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, two-way ANOVA test).
Data are represented as means ± SEM.
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Figure 5. Effects of valproic acid (VPA) on WT-AB mitochondrial respiration at 120 h post-fertilisation
(hpf) and on reactive oxygen species (ROS) accumulation at 30 hpf (n = 12 per group). (A) Mitochon-
drial respiratory analysis showed a decreased oxygen consumption rate (OCR) in 50 µM VPA-treated
larvae compared with controls and 25 µM VPA-treated larvae. (B–D) ATP production and both
maximal and basal respiration rates were reduced in 50 µM VPA-treated larvae compared with
controls and 25 µM VPA-treated larvae (* p ≤ 0.05, ** p ≤ 0.01, t-test with Welch correction). Data are
represented as mean ± SEM. (E) Representative fluorescence images of ROS production in controls
and VPA-treated larvae, with red dotted lines indicating the region of interest. (F) Quantitative
analysis of ROS production showed a significant increase in 50 µM VPA-treated larvae compared
with controls and 25 µM VPA-treated larvae (**** p ≤ 0.0001, t-test with Welch correction). Data are
represented as individual values (lines indicate means ± SEM).
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3.6. mRNA Gene Expression: Altered by 50 µM Dose

Gene expression analysis (Figure 6) showed increases in the pro-inflammatory cy-
tokines interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) and decreases in anti-inflammatory
markers interleukin-4 (IL-4) and interleukin-10 (IL-10) in response to the administration
of 50 µM VPA. Neurogenesis- and neuronal activation-related genes neuroligin-3 (nlgn3),
neurexin-1 (nrxn1), c-fos, and nerve growth factor (ngf) were also downregulated in 50 µM VPA-
treated larvae compared with control and 25 µm VPA-treated larvae. Histone deacetylase-4
(hdac4), which is the VPA target gene, was downregulated in 50 µM VPA-treated larvae
compared with the control and 25 µM VPA-treated groups.
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Figure 6. Effects of valproic acid (VPA) on WT-AB larvae mRNA gene expression values at 120 h
post-fertilisation (hpf) (n = 90 per group). (A,B) Data analysis showed a significant upregulation of
pro-inflammatory cytokines (IL-1β and IL-6) in 50 µM VPA-treated larvae compared with controls
(* p ≤ 0.05, t-test with Welch correction). (C,D) Anti-inflammatory cytokines (IL-4 and IL-10) were
downregulated in 50 µM VPA-treated larvae compared with controls (* p ≤ 0.05, t-test with Welch
correction). (E–H) Neurogenesis- and neuronal activation-related genes (nlgn3, nrxn1, ngf, and c-fos)
were downregulated in 50 µM VPA-treated larvae compared with controls (* p ≤ 0.05 or ** p ≤ 0.01,
t-test with Welch correction). (I) Expression of the VPA-target gene (hdac4) was downregulated in
50 µM VPA-treated larvae compared with controls (* p ≤ 0.05, t-test with Welch correction). Data are
represented as means ± SEM. Abbreviations: ns = not significant.

3.7. Microglial Cell Status: Altered by 25 and 50 µM Doses of VPA

The in vivo whole-brain analysis of the transgenic line showed significant decreases
in the number of microglia in the two VPA-treated groups compared with the controls
(Figure 7A). Microglia can be classified into two types: classical (M1) and alternative
(M2), although there is a continuum of intermediate phenotypes. Analysis of microglial
morphology showed a significant increase in the rate of microglial cell sphericity in 50 µM
VPA-treated larvae (increase in the M1-like phenotype) compared with controls and 25 µM
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VPA-treated larvae (Figure 7B), suggesting an increase in pro-inflammatory microglial
activity in the group treated with the higher VPA dose.
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fertilisation (n = 3 per group). (A) Whole-brain analysis showed a significantly decreased number of
microglia in VPA-treated larvae compared with controls (** p ≤ 0.01, t-test with Welch correction).
(B) Analysis of microglial cell morphology showed significantly increased sphericity in 50 µM VPA-
treated larvae compared with controls and 25 µM VPA-treated larvae (** p ≤ 0.01, t-test with Welch
correction). Data are represented as means ± SEM. (C) Representative confocal images of microglial
cell morphology in controls and VPA-treated larvae.

3.8. Heart Rate: All VPA Doses Caused Increased Heart Rate

The heart rate analysis suggested that all VPA treatments caused tachycardia in trans-
genic zebrafish larvae at 72 hpf (Figure 8). Heartbeats per minute were significantly
increased in all VPA-treated fish compared with the untreated controls (p ≤ 0.0001). How-
ever, it is worth noting that the VPA 25 and 50 µM doses caused a significant increase in
heart rate compared with what was observed in the group treated with VPA 5 µM.
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3.9. Optokinetic Response: Altered by 25 and 50 µM Doses of VPA

The number of eye saccades under visual stimulation was significantly reduced in
VPA-treated transgenic zebrafish larvae compared with controls at 120 hpf. Larvae treated
with the 25 µM VPA dose showed approximately half the number of eye saccades per
minute recorded in controls, while saccades in 50 µM VPA-treated larvae were almost
abolished (Figure 9).
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Figure 9. Effects of valproic acid (VPA) on optokinetic response in Tg(mpeg1:EGFP) larvae at 120 h
post-fertilisation (n = 24 per group). Data analysis showed a significantly decreased number of
saccades per minute in VPA-treated larvae compared with controls (** p ≤ 0.01, *** p ≤ 0.001,
Kruskal–Wallis test). The difference was greater between the controls and the 50 µM VPA-treated
larvae (**** p ≤ 0.0001, Kruskal–Wallis test). Data are represented as individual values (lines indicate
means with 95% confidence interval).

4. Discussion

Animal models are invaluable tools in unravelling the complex mechanisms underly-
ing ASD and for exploring potential biomarkers and therapeutic strategies. The zebrafish,
due to its genetic, neurobiological, and behavioural similarities to humans, offers a power-
ful platform for elucidating the gene–environment interplay involved in the pathogenesis
of ASD. Previous studies have shown that by exposing zebrafish embryos to VPA (from
5 to 2000 µM) at critical stages of development, it is possible to simulate human prenatal
exposure to VPA and reproduce key features of ASD, such as social and cognitive deficits
and neurobiological alterations [2,63,76,77]. This study, focusing on two ASD-like zebrafish
phenotypes (one mild and the other moderate, obtained by exposing zebrafish embryos
to 25 µM VPA and 50 µM VPA, respectively), confirmed previous observations and pro-
vided comprehensive insights into the neurodevelopmental and behavioural effects of VPA
exposure in zebrafish larvae.

In line with several studies, we observed that exposure to VPA during embryonic
development can significantly impact fish survival. Chronic exposure to high doses of
VPA (25–100 µM) leads to reduced embryo hatching and increased mortality [2,47,78,79].
In addition to VPA concentration, the duration of exposure and the stage of embryo
development at the time it occurs also affect toxicological results. Data documenting the
effects of VPA in zebrafish are, therefore, characterised by a high degree of variability. The
route of administration of the molecule undoubtedly plays a central role, too. VPA can be
dissolved in water or in other solvents, such as ethanol or DMSO, both already known to be
toxic to fish [50]. In line with our results on survival and hatching rates, previous authors
did not observe significant effects when using VPA dissolved in water at doses of up to
50 µM [60,78], although sub-lethal effects were detected at a dose of 82 µM [78]. Conversely,
some authors reported no effect on mortality even at 1500 µM [2], while others observed a
significant effect on survival and hatching starting from VPA doses of 20–30 µM [47], with
survival totally suppressed at 640 µM [80].
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In our study, biometric evaluation demonstrated that exposure to VPA, particularly
at doses of 25 µM or more, significantly affects the morphology and development of ze-
brafish larvae, reproducing the human malformations linked to VPA exposure during
pregnancy. Interestingly, however, larvae treated with up to 10 µM of VPA displayed
normal morphology, confirming a dose-dependent effect of the compound on morpho-
logical features. Exposure to 25 µM resulted in a significant reduction in swim bladder
inflation, related to reduced development. Moreover, higher doses of VPA (50 and 100 µM)
led to partial and total failure to inflate the swim bladder, respectively, indicating more
severe disruption of embryonic development. These findings are consistent with previous
evidence that exposure to non-lethal concentrations of VPA during early embryonic stages
can induce morphological alterations, such as uninflated swim bladder, pericardial oedema,
and widespread developmental abnormalities, particularly at doses above 500 µM [2,80,81].
Overall, these findings underscore the teratogenic effects of VPA on zebrafish embryo
morphology and highlight the importance of considering dose-dependent responses when
assessing the developmental toxicity of VPA. On the basis of these toxicological and mor-
phological observations, we focused on the mild and moderate VPA-induced phenotypes
(the groups treated with 25 and 50 µM, respectively). The groups treated with doses lower
than 25 µM did not show any significant differences versus the untreated control group,
while higher doses caused severe toxic effects. The investigation of cardiac parameters
showed that VPA caused tachycardia at both the tested doses, as described in our previ-
ous research [50]. Cardiac anomalies are described in human newborns exposed to VPA
during prenatal development [82]. However, the available literature data on the effect of
VPA on zebrafish cardiac parameters are extremely limited. In a study where VPA doses
greater than 100 µM were used (sub-lethal concentration), a robust decrease in heartbeats
per minute was observed [83]. In the current work, treatment with 100 µM VPA caused
severe pericardial oedema and trunk blood congestion, compromising the whole cardiac
system. Some authors suggest that histone deacetylase inhibition, through aberrant gene
expression during cardiogenesis, might be the underlying cause of cardiac system dysfunc-
tion [83]. Further in-depth investigation is needed to clarify how VPA and ASD are linked
to cardiac impairments.

Although there appear to be no available data on the OKR in zebrafish larvae treated
with VPA or in other fish models of ASD, some authors have demonstrated that sub-lethal
levels of VPA decrease the retinotectal projection area in the optic tectum [77], potentially
compromising the visual system of exposed fish. Our OKR findings suggest that VPA
can reduce or even abolish visual function in these fish, which showed no significant
oculomotor responses to visual stimulation after treatment with high doses of VPA.

We confirmed that VPA impacts the behavioural phenotype of zebrafish embryos
and larvae, finding tail coiling to be reduced by exposure to the 100 µM dose of VPA and
totally suppressed by 500 µM. Similar results were reported by Joseph et al. [47], who
described a reduction in coiling behaviour after exposure to 80 µM VPA, with no coiling
produced by embryos exposed to doses of 320 µM or more. Changes in burst activity are
probably linked to perturbations in neurogenesis-related signalling pathways together
with abnormal neuronal development in the hindbrain, leading to impaired neuronal
hyperexcitability [79]. The locomotor behaviour of swimming larvae was also found to
be significantly affected by exposure to VPA, both in normal conditions and following
stressful stimuli (dark–light transition and tapping), with distinct responses observed at
different doses. In all vertebrates, locomotor behaviour represents a highly conserved
function, primarily generated by a network of neurons (Central Pattern Generators) located
in the spinal cord [76]. These neurons are mainly constituted by excitatory glutamatergic
motor neurons modulated by inhibitory GABAergic/glycinergic interneurons. Specifically,
the fine-tuned action of such neurons provides zebrafish with a coordinated muscle con-
traction, which enables their swimming. Also, proper locomotor behaviour is reached
by sensory system afferences, which display a modulatory role. Moreover, according to
circumstantial needs, these systems are modulated by different classes of neurotransmitters,
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mainly represented by the endocannabinoid system (modulation of adult swimming and
escape circuits), the dopaminergic system (modulation of overall swim levels according to
developmental stages), and the serotoninergic system (increasing swimming frequency in
the larval stage and decreasing swimming frequency during the juvenile/adult stage) [84].
In addition, in normal laboratory conditions, larval locomotor activity is influenced by
light conditions and transitions between light and dark environments [50], as well as other
stressful stimuli, both acoustic and mechanical. In line with our results, several studies have
reported impaired dark-flash responses in VPA-exposed larvae, suggesting deficiencies in
the underlying neural circuitry responsible for regulating locomotor behaviour [63,77,85,86].
Motor impairments have been identified as early signs of ASD [87]. In zebrafish larvae,
VPA exposure influences both excitatory and inhibitory neurotransmitter systems, con-
tributing to the observed alterations in locomotor response patterns [77]. This dysregulated
neural signalling may affect various behavioural aspects and motor functions. For instance,
the disruption of dopaminergic and GABAergic pathways, known to be modulated by
VPA [63,64], may contribute to the altered locomotor responses observed in affected larvae.

In the second part of the study, we explored the possible mechanisms through which
VPA might produce the altered phenotype and neurodevelopmental impairment that we
observed in zebrafish larvae.

First, we found that VPA treatment led to significant alterations in micro-oxygraphy
parameters, with a reduction in energy production and an increase in oxidative stress. This
result is in line with recent evidence suggesting that VPA induces mitochondrial dysfunc-
tion and, consequently, the generation of ROS [88]. Interestingly, prenatal VPA exposure in
rats seems to induce ASD-like behaviours, also via ROS accumulation and the activation of
pro-apoptotic pathways [89]. This cellular impairment may affect physiological neuronal
maturation and alter the developing brain [90]. Furthermore, impairments in mitochondrial
function have been associated with several neuropsychiatric disorders, including autism;
indeed, a recent meta-analysis emphasised the strong link between ASD and mitochondrial
metabolism [91] that has been highlighted by the detection of numerous mitochondrial
dysfunction biomarkers in the peripheral blood of people with autism [7,92]. In summary,
given the high mitochondrial presence in muscle and neuron cells, which are primarily re-
sponsible for locomotor activity, any impairment of bioenergetic dynamics could contribute
to the observed reduced swimming performance. However, the exact mechanisms by
which mitochondria contribute to the pathophysiology of neurodevelopmental disorders
remain poorly understood.

Second, we explored the effect of VPA on neuronal gene expression and microglial
activation since ASD animal model [93,94] and post-mortem human brain [95] studies
have revealed the downregulation of genes involved in synaptic function and neuronal
survival, as well as the upregulation of immune-related and pro-inflammatory genes. We
confirmed that VPA exposure downregulates genes related to neurogenesis and neuronal
survival (nlgn3, nrxn1, c-fos, and ngf ), findings that support the hypothesis that VPA could
act directly on the expression of genes classically related to ASD, like nlgn3 and nrxn1 [96].
In accordance with previous studies [97,98], the expression of the VPA target gene, hdac4,
was found to be downregulated. The inhibition of hdac4 has been shown to be essential in
inducing the behavioural and brain developmental alterations observed in VPA-related
ASD [99].

Regarding our analysis of neuroinflammation, we observed the increased expres-
sion of pro-inflammatory cytokines (IL-1β and IL-6) and the reduced expression of anti-
inflammatory cytokines (IL-4 and IL-10) in zebrafish larvae exposed to VPA versus controls.
Morphological analysis of microglial cells showed a reduction in the number of ramified
microglial cells and an increase in the number of spherical ones in larvae exposed to
VPA versus control larvae. The increase in pro-inflammatory cytokines, reduction in anti-
inflammatory cytokines, reduction in ramified microglia, and increased sphericity of the
microglial cells seemed to indicate a switch towards the M1 or pro-inflammatory phenotype
of microglia in larvae exposed to VPA compared with controls. In simple terms, microglia,
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depending on their activation state, can assume two different phenotypes, M1-like or
M2-like, the former being associated with pro-inflammatory cytokine production, ROS
production, and neuronal damage, and the latter creating a favourable environment for the
physiological functions of neurons, supporting the release of anti-inflammatory cytokines
and neurotrophic factors [20,100]. Consistent with our findings, Solso et al. [101] hypothe-
sised that an increase in the M1-like phenotype and a concomitant decrease in branching
microglia may underlie altered synaptic homeostasis, causing dysfunction in synaptic
interconnections and redundant cortical networks in the brains of people affected by ASD.
In recent work [88], exposure to an organophosphate showed similar results in zebrafish
larvae, with an increase in the sphericity of microglia and a decrease in the average number
of ramified microglia. Another recent study in mice confirms our results, indicating that
prenatal exposure to VPA causes a significant decrease in the number of microglia in the
primary motor cortex in the early stages of brain development: this early decrease in
microglia led the authors to hypothesise that dysregulated cortical synaptogenesis may
play a role in the aetiopathogenesis of ASD [102].

In this study, VPA dose–response effects on numerous biological features were ob-
served in zebrafish, and two different phenotypes of interest for ASD research were identi-
fied and extensively investigated. A mild phenotype was characterised by a slight delay
in body growth, but neither morphological and mitochondrial defects nor alterations in
neurodevelopmental or inflammation-related gene expression were identified. In this mild
phenotype, only a general impairment of locomotor and visual activity was highlighted,
along with a reduction in resident microglia. The second identified phenotype (obtained
by doubling the VPA dosage) displayed more severe features, namely a greater delay in
somatic, nervous, and visual system development and significant impairment of both
mitochondrial energy metabolism and ROS accumulation. Furthermore, gene expression
investigations and microglial assessments revealed a marked pro-inflammatory state in
moderate-phenotype individuals. These debilitating biological alterations led to reduced
locomotor and visual activity in response to sensory stimuli. It should also be noted that
VPA, at all the doses administered in the present study, caused an increased heart rate in
this animal model.

This study is subject to some limitations that could be addressed in future research.
For example, given the impaired locomotor behavioural response associated with the
higher dose of VPA administered, it might be useful to perform molecular investigations
focusing on neurotransmitter analysis. Furthermore, it could be interesting to analyse
motor neuron function, with the aim of shedding light on mechanisms of VPA-induced
functional impairment.

5. Conclusions

In conclusion, our study provides comprehensive insights into the neurodevelop-
mental and behavioural effects of VPA exposure in zebrafish larvae, highlighting its role
in modelling ASD-like phenotypes. By assessing a wide range of parameters, including
locomotor behaviour, neuroinflammatory markers, gene expression profiles, mitochondrial
function, and cardiac and visual responses, we were able to highlight the multifaceted im-
pact of VPA on embryonic development. Our findings support the notion that VPA-induced
alterations in neurodevelopmental processes, including microglial activation, oxidative
stress, and dysregulated gene expression, may have implications for elucidating the mech-
anisms involved in the pathogenesis of ASD. Moreover, the observed cardiac and visual
impairments highlight the effects of VPA exposure on various organ systems. The ASD
phenotypes identified and characterised here could become useful tools for ASD research
and drug/nutraceutical screening studies. These results also reinforce the usefulness of
zebrafish models in studying the complex interplay between genetic and environmental
factors in neurodevelopmental disorders. Future studies are essential to identify novel ASD
biomarkers and to develop both new drug targets and tailored therapeutic interventions
for ASD.
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