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Abstract: The combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) with endocrine
therapy (ET) is the standard-of-care for estrogen receptor (ER)-positive, HER2-negative (ER+/HER2−
advanced/metastatic breast cancer (mBC). However, the impact of CDK4/6i on circulating immune
cells and circulating tumor cells (CTCs) in patients receiving CDK4/6i and ET (CDK4/6i+ET) remains
poorly understood. This was a prospective cohort study including 44 patients with ER+/HER2−
mBC treated with CDK4/6i+ET in either first or second line. Peripheral blood samples were col-
lected before (baseline) and 3 months (t2) after therapy. Immune cell’s subsets were quantified
by flow cytometry, and microfluidic-captured CTCs were counted and classified according to the
expression of cytokeratin and/or vimentin. Patients were categorized according to response as
responders (progression-free survival [PFS] ≥ 6.0 months; 79.1%) and non-responders (PFS < 6.0
months; 20.9%). CDK4/6i+ET resulted in significant changes in the hematological parameters, in-
cluding decreased hemoglobin levels and increased mean corpuscular volume, as well as reductions
in neutrophil, eosinophil, and basophil counts. Specific immune cell subsets, such as early-stage
myeloid-derived suppressor cells, central memory CD4+ T cells, and Vδ2+ T cells expressing NKG2D,
decreased 3 months after CDK4/6i+ET. Additionally, correlations between the presence of CTCs
and immune cell populations were observed, highlighting the interplay between immune dysfunc-
tion and tumor dissemination. This study provides insights into the immunomodulatory effects of
CDK4/6i+ET, underscoring the importance of considering immune dynamics in the management of
ER+/HER2− mBC.

Keywords: advanced breast cancer; CDK4/6 inhibitor; circulating tumor cell; ER+/HER2− breast
cancer; immunomodulation; metastatic breast cancer; myeloid-derived suppressor cell; peripheral
immune cell
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1. Introduction

Advanced/metastatic breast cancer (mBC) remains a virtually incurable disease with
a 5-year survival rate of approximately 38% [1]. In recent years, a notable advance in the
standard-of-care for estrogen receptor-positive/human epidermal growth factor receptor
2-negative (ER+/HER2−) mBC has been the combination of cyclin-dependent kinase
4/6 inhibitors (CDK4/6i) with endocrine therapy (ET). The benefit of these agents extends
to both first- and second-line settings, improving progression-free survival (PFS) and
overall survival (OS) with manageable adverse events [2–6].

CDK4/6i inhibit the complex cyclin D1-CDK4/6, preventing the phosphorylation and
subsequent inactivation of retinoblastoma protein. This blockade inhibits the release of
E2F, leading to cell cycle arrest in the G1. Therefore, CDK4/6i play an important role in
controlling cancer cell proliferation. CDK6 is particularly important in the differentiation of
hematopoietic precursor cells [7], and thus the use of CDK4/6i may result in neutropenia.
Unlike chemotherapy, this neutropenia is a consequence of cell cycle arrest and not apopto-
sis. Palbociclib or ribociclib, in contrast to abemaciclib, are associated with neutropenia of
any grade in more than 70–80% of patients [2–6]. However, the impact of this cell arrest on
hematological cells is not well understood. Further research is needed to clarify the effects
of CDK4/6i on hematological cells and in the immune system.

It has been shown that unbalanced tumor-infiltrating immune cells within the tumor
microenvironment (TME) can contribute to tumor growth and correlate with an unfavorable
clinical outcome in many types of cancer, including breast cancer (BC). For example,
tumor-infiltrating cytotoxic T cells (CD8+) and natural killer (NK) cells have been shown
to promote an anti-tumor response [8,9], whereas total CD4+ T cells, regulatory T cells
(Treg), and myeloid-derived suppressor cells (MDSCs) are considered pro-tumorigenic and
suppress CD8+ T cells and NK cells [8,10].

Regarding the presence of these cells in the peripheral blood of BC patients, previous
studies have reported a lower percentage of circulating CD4+ and CD8+ T cells compared
to those infiltrating the TME of the same patients [11]. However, each T-cell subtype
(CD4+, CD8+, Vδ1+, and Vδ2+) comprises a variety of subpopulations, including effector
(Eff), effector memory (EM), central memory (CM), and naïve cells, with specific functions.
Table 1 summarizes the immunophenotypic signatures and major functions of the various
T-cell subtypes investigated in this study, highlighting the diverse roles and phenotypic
characteristics of these cells within the immune system.

Table 1. Immunophenotypic signature and role of various T-cell subtypes.

Signature Role

T cell subtype

CD4 T cells
[12] CD3+ CD4+

T-helper cells

- Belong to the adaptive T-cell immunity.
- Support the cytotoxic T-cell differentiation and

function.

CD8 T cells
[13] CD3+ CD8+

Cytotoxic T cells

- Recognize and kill tumor cells by secreting
effector cytokines (IFN-γ, TNF-α) and cytolytic
molecules (granzyme B, perforin).

Treg cells
[12,14–17] CD3+ CD4+ FoxP3+

Regulatory T cells

- Major subset of CD4+ T cells.
- Regulate immune activity.
- Suppress the anti-tumor immune effector

response in TME.
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Table 1. Cont.

Signature Role

T cell subtype

γδ T-cells
[18–24]

A subset of T cells that express a T-cell receptor
composed of a γ and a δ chain.

- Innate-like features.
- Recognize and kill tumor cells by secreting

effector cytokines (IFN-γ, TNF-α) and cytolytic
molecules (granzyme B, perforin). Regulate the
immune response through cytokine
production, with both pro-inflammatory and
regulatory effects.

Vδ1 CD3+ Vδ1+ Mostly found in mucosal and epithelial tissues.

Vδ2 CD3+ Vδ2+ Mostly found in circulation.

eMDSCs
[14,25,26]

CD3− CD16−
CD14− CD11b+

Early-stage myeloid-derived suppressor cells

- Immature progenitors of Mo-MDSCs. A subset
with the ability to suppress the anti-tumor
effect of cytotoxic cells.

Functional state

Naïve [27] CD45RA+ CD27+
Naïve cells

- Once activated, naïve cells can induce clonal
expansion and effector and cytolytic function.

Eff [27] CD45RA+ CD27−

Effector cells

- Facilitate optimal immune responses against
invading microbes and tumor antigens.

- Cytotoxic effect.

EM [27–29] CD45RA− CD27−

Effector memory cells

- Major circulating memory cells.
- Express effector molecules such as IFN-γ and

perforin.

CM [28,29] CD45RA− CD27+

Central memory cells

- Mediate the persistent tumor immunity in the
long term.

- Higher proliferative capacity than EM.
- Mainly express high levels of IL-2.
- Have the ability to expand and differentiate to

effector and effector memory subsets

CM, central memory; Eff, effector; EM, effector memory; eMDSCs, early-stage myeloid-derived suppressor cells;
IL-2, interleukin-2; IFN-γ, interferon -γ; Mo-MDSCs, monocytic myeloid derived suppressor cells; TCR, T-cell
receptor; TME, tumor microenvironment; TNF-α, tumor necrosis factor α.

Circulating tumor cells (CTCs) are shed into the bloodstream, leaving the primary
tumor or metastatic sites, with the capacity to evade and colonize new organs. Therefore,
CTC detection holds promise for the real-time monitoring of the tumor progression [30].

The aim of this study was to characterize changes in circulating immune cell subsets in
mBC patients treated with CDK4/6i plus ET (CDK4/6i+ET) and to investigate how these
changes are associated with clinical outcomes.

2. Materials and Methods
2.1. Study Design and Eligibility Criteria

This study is a subgroup analysis of patients enrolled in the ONCODYNAMICS
BioBanking (ODB) project, which aims to support precision medicine in cancer by evalu-
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ating tumor clonal evolution, host immune response, and circulating biomarkers. From
July 2017 to April 2023, patients with ER+/HER2− mBC were enrolled in a unicentric
prospective cohort. All patients were treated with CDK4/6i in either first- or second-line
in combination with an aromatase inhibitor (AI) or fulvestrant until disease progression
or unacceptable toxicity. Pre- or peri-menopausal women underwent ovarian function
suppression (OFS) with a gonadotropin-releasing hormone (GnRH) agonist. Demographic,
clinical, and pathological data were collected. Clinical staging was performed at baseline
using contrast-enhanced computed tomography (CT) and, if clinically indicated, magnetic
resonance imaging or positron emission tomography (PET). Clinical benefit and objective
tumor response were assessed by the medical doctor according to RECIST 1.1 criteria every
3–4 months or as clinically indicated [31]. Additional details on the inclusion and exclusion
criteria for this sub-analysis are described in the Supplementary Materials S1.

Patients were categorized as responders (Resp, PFS ≥ 6.0 months) or non-responders
(NResp, PFS < 6.0 months) to CDK4/6i+ET, using the European Society for Medical Oncol-
ogy Clinical Practice Guideline definition of primary resistance to ET for mBC [1].

Peripheral blood samples were collected in ethylene diamine tetra acetic acid be-
fore (baseline) and 3 months after (t2) therapy initiation. Analytical blood findings were
retrieved from medical records initiation.

2.2. Peripheral Blood Mononuclear Cell Isolation and Immune Cell Characterization

Peripheral blood mononuclear cells (PBMCs) were isolated from patients’ whole
blood on the day of collection. Each blood sample was mixed 1:1 vol/vol with phosphate-
buffered saline (PBS) 1× and Histopaque-1077 Hybri-Max (Sigma-Aldrich, Irvine, UK),
followed by centrifugation at 800× g for 30 min with brake set to off. The PMBC ring
was carefully transferred to a new tube and mixed with RPMI-1640 (supplemented with
10% fetal bovine serum [GibcoTM,, ThermoFisher scientific, Burkington, ON, Canada], 5%
penicillin-streptomycin [GibcoTM], 1% HEPES [GibcoTM], 1% sodium pyruvate [GibcoTM],
and 1% MEM-NEAA [GibcoTM]).

Immune cell populations were identified as previously described [21]. Gating strategy
is depicted in Figure S1. To quantify B cells, T cells, NK cells, natural killer T (NKT) cells,
and myeloid lineage cells by flow cytometry, a standard protocol for CD3, CD14, CD16, and
CD19 staining was used. Vδ1, Vδ2, CD4, CD8, FOXP3, and CD45RA expression was used
to differentiate total γδ T cells (Vδ1+, Vδ2+), αβ T cells (CD4+, CD8+), and Treg (subtypes
I, II, and III) cells. Staining for CD27 and CD45RA was performed to identify effector (Eff),
effector memory (EM), central memory (CM), and naïve populations of γδ T and αβT cells.
Cytokine-positive cells (TNF-α, IFN-y, and IL-17) were also quantified after standard 3 h
stimulation with 2 mg/mL BFA (Enzo Life Sciences Inc., Farmingdale, NY, USA), 40 µg/mL
PMA (Enzo Life Sciences Inc.), and 80 µg/mL ionomycin (Enzo Biochem Inc., Farmingdale,
NY, USA).

The anti-human fluorescently labeled mAbs used are indicated in Table S1.
Samples were acquired on a BD LSR-Fortessa 2 (BD Biosciences, Milpitas, CA, USA)

with daily quality control monitored with Sphero™ Rainbow Calibration Particles (8 peaks)
(BD Biosciences). Analysis was performed using FlowJoTM v10.6.2 software.

2.3. Serum IFN-γ Levels

Serum IFN-γ levels were measured in the baseline sample of 32 patients by ELISA
(InvitrogenTM, Bender MedSystems GmbH, Vienna, Austria) according to the manufac-
turer’s instructions.

2.4. CTC Isolation and Characterization

A sample of 7.5 mL whole blood was injected at 160 µL/min into a dedicated
microfluidic device designed to isolate CTCs based on size and deformability (Patent:
PCT/EP2016/078406), as previously described [32,33]. The retained cells were washed
with PBS 1× and fixed with formalin 4%, permeabilized with 0.25% Triton in PBS 1×,
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blocked with 2% BSA in PBS 1×, and stained with an antibody cocktail (mouse mono-
clonal anti-human pan cytokeratin FITC (1:200, C11, Sigma-Aldrich); mouse monoclonal
anti-human vimentin eFluor 570 (1:50, V9, eBioscience™) and mouse monoclonal anti-
human CD45 Alexa Fluor 647 (1:50, 35-Z6, Santa Cruz Biotechnology, Inc., Dallas, TX,
USA), containing DAPI (10 µg/mL), for 1 h at room temperature. Each cell was imaged
under fluorescence microscopy at 20× magnification for phenotypical analysis. First, a
cell location and segmentation script was implemented to obtain the data used in the
cell classifier plugin. Next, an automated CTC classifier was developed in-house and
employed to classify isolated cells (for research use only) to maximize standardization.
This implemented framework combined the automated image analysis of fluorescence
microscopy images with human expert revision and validation. CTCs were identified as
DAPI+/CD45− and CK+ or Vim+ or CK+/Vim+ cells, as previously described [33,34].

2.5. Statistical Analysis

Descriptive statistical analysis was performed. The Mann–Whitney–Wilcoxon test
was used to compare the percentage of each immune cell population, IFN-γ serum levels,
blood counts, and tumor markers (CEA, CA15.3, LDH) between Resp and NResp patients
at baseline.

The point-biserial correlation was used to assess the correlation between the percentage
of immune populations, IFN-γ serum levels, blood counts, tumor markers (CEA, CA15.3,
LDH), and the presence/absence of CTCs [35]. A very strong correlation was considered
when 0.8 < r ≤ 1, a strong correlation when 0.6 < r ≤ 0.8, and a moderate correlation when
0.4 < r ≤ 0.6.

A significance level of 0.05 was considered appropriate for all analyses. All variables
analyzed are depicted in Table S2.

Statistical analysis was performed using R (version 4.2.1) and RStudio (version 2023.12.1
+402) using the following R packages, data.table, ggplot2, ggpubr and dplyr.

2.6. Ethics

This study was conducted in accordance with the tenets of the Declaration of Helsinki,
good clinical practice, and local regulations. The protocol was approved by the Ethics
Committee of Centro Hospitalar Universitário Lisboa Norte (Ethical Committee approval
no 343). Written informed consent was obtained from all participating patients.

3. Results

A total of 44 patients were eligible for statistical analysis; 34 (77.3%) were classified as
Resp and 10 (22.7%) as NResp. The median follow-up for the entire cohort was 38.07 months
(95% confidence interval [CI] 30.26–41.74).

3.1. Baseline Characteristics of the Study Population

The baseline clinical and pathological characteristics of the study cohort population
are summarized in Table 2. All patients were female, with a median (range) age at study
entry of 56.5 (27–88) years. More than half of the patients were post-menopausal at baseline
(n = 28, 63.6%), and the majority of patients were treated in the first-line setting (n = 33,
75.0%). Non-special type (NST) carcinoma was the most common histologic sub-type
(72.7%), with 90.0% of tumors being intermediate-high grade, 59.1% having high Ki67
(≥20%), and almost two-thirds having no HER2 expression (HER2 0, 65.9%). More than
70% of patients had disease-free survival (DFS) > 24 months, with 18.2% having de novo
metastatic disease.
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Table 2. Clinicopathological characteristics of the study cohort population.

Responders Non-Responders Total p-Value

34 (77.3%) 10 (22.7%) 44 (100.0%)

Female, n (%) 34 (100.0) 10 (100.0) 44 (100.0) -

Histology, n (%)

NST 25 (73.5) 7 (70.0) 32 (72.7) 0.850

Lobular 6 (17.6) 2 (20.0) 8 (18.2)

MD 3 (8.8) 1 (10.0) 4 (9.1)

Grade, n (%)

1 1 (2.9) 1 (10.0) 2 (4.5) 0.686

2 17 (50.0) 6 (60.0) 23 (52.3)

3 11 (32.4) 3 (30.0) 14 (31.8)

MD 5 (14.7) 0 (0.0) 5 (11.4)

ER

Median (range) 100.0 (25.0–100.0) 90.0 (5.0–100.0) 95.0 (5.0–100.0) 0.174

MD, n (%) 10 (29.4) 2 (20.0) 12 (27.3)

PR

Median (range) 40.0 (0.0–100.0) 15.0 (1.0–100.0) 30.0 (0.0–100.0) 0.970

MD, n (%) 8 (23.5) 2 (20.0) 10 (22.7)

Ki67

Median 30.0 (5.0–75.0) 20.0 (5–40.0) 27.5 (5–75) 0.189

<20, n (%) 5 (14.7) 3 (30.0) 8 (18.2) 0.287

≥20, n (%) 21 (61.8) 5 (50.0) 26 (59.1)

MD, n (%) 8 (23.5) 2 (20.0) 10 (22.7)

HER2, n (%)

0 23 (67.6) 6 (60.0) 29 (65.9) 0.848

1+ or 2+ ISH non-amplified 6 (17.6) 4 (40.0) 10 (22.7)

HER2-negative (unclassified) † 5 (14.7) 0 (0.0) 5 (11.4)

DFS

De novo 7 (20.6) 1 (10.0) 8 (18.2) 0.747

≤24 mo 3 (8.8) 1 (10.0) 4 (9.1)

>24 mo 24 (70.6) 8 (80.0) 32 (72.7)

Median (range), mo * 85.6 (8.0–245.3) 80.69 (15.1–131.3) 84.4 (8.0–245.3) 0.064

Symptomatic at metastatic disease diagnosis, n (%)

Yes 15 (44.1) 2 (20.0) 17 (38.6) 0.759

Previous CT, n (%)

(Neo)Adjuvant setting 17 (50.0) 7 (70.0) 24 (54.5) 0.533

Metastatic setting 2 (5.9) 1 (10.0) 3 (6.8) 0.650
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Table 2. Cont.

Clinicopathological characteristics at baseline

Age at baseline, years

Median (range) 57 (27–78) 50.5 (36–71) 56.5 (27–88) 0.305

Menopausal status at baseline, n (%)

Pre- or peri-menopausal 12 (35.3) 4 (40.0) 16 (36.4) 0.786

Post-menopausal 22 (64.7) 6 (60.0) 28 (63.6)

Number of metastatic sites at baseline

Median (range) 1.5 (1.0–3.0) 1.0 (1.0–4.0) 1.0 (1.0–4.0) 0.226

1 metastatic site 17 (50.0) 9 (90.0) 26 (59.1) 0.024

≥2 metastatic sites 17 (50.0) 1 (10.0) 18 (40.9)

Metastatic sites at baseline, n (%)

Bone only 11 (32.4) 6 (60.0) 17 (38.6) 0.114

Bone 22 (64.7) 7 (70–0) 29 (65.9) 0.756

Lung 8 (23.5) 1 (10.0) 9 (20.5) 0.351

Liver 11 (32.4) 4 (40.0) 15 (34.1) 0.654

CNS 0 (0.0) 1 (10.0) 1 (2.3) 0.062

CDK4/6i therapy line, n (%)

First 26 (76.5) 7 (70.0) 33 (75.0) 0.678

Second 8 (23.5) 3 (30.0) 11 (25.0)

ET used in combination with CDK4/6i, n (%)

AI 23 (67.6) 5 (50.0) 28 (63.6) 0.308

Fulvestrant 11 (32.4) 5 (50.0) 16 (36.4)

OFS ¥ 8 (23.5) 2 (20.0) 10 (22.7) 0.827

CDK4/6i, n (%)

Ribociclib 13 (38.2) 3 (30.0) 16 (36.4) 0.605

Palbociclib 18 (52.9) 5 (50.0) 23 (52.3)

Abemaciclib 3 (8.8) 2 (20.0) 5 (11.4)

BTA, n (%) 16 (47.1) 6 (60.0) 22 (50.0) 0.295

ECOG-PS at baseline, n (%)

0 22 (64.7) 7 (70.0) 29 (65.9) 0.640

≥1 7 (20.6) 1 (10.0) 8 (18.2)

MD 5 (14.7) 2 (20.0) 6 (15.9)

BTA, bone-targeted agent; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; CNS, central nervous system; CT,
chemotherapy; DFS, disease-free survival; ECOG-PS, Eastern Cooperative Oncology Group Performance Status;
ET, endocrine therapy; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; MD, missing data;
mo, months; n, number; NST, non-special type; OFS, ovarian function suppression; PR, progesterone receptor.
* for patients M0 at diagnosis; † HER2-negative not otherwise specified; ¥ OFS in combination with ET (either AI
or fulvestrant) for pre-/peri-menopausal patients.

Both the Resp and NResp groups were well balanced with respect to demographic
and clinicopathological characteristics (Table 1). Although more patients in the NResp
compared to the Resp group presented with bone-only disease at baseline, this difference
was not statistically significant (60.0% vs. 32.4%, p = 0.114).
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The analysis of baseline blood samples showed that Resp patients exhibited signifi-
cantly lower levels of carcinoembryonic antigen (CEA) (median CEA 3.4 vs. 11.0 ng/mL for
Resp and NResp, respectively; p = 0.0077, Figure 1A); and higher basophil counts (median
basophil count 0.02 vs. 0.03/L for Resp and NResp, respectively; p = 0.0054, Figure 1B).
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(NResp, red) patients for (A) carcinoembryonic antigen (CEA); (B) basophil counts; (C) effector Vδ2 T
cells. The lines within each box represent the median values, the boxes’ limits indicate the first and
third quartiles, and the whiskers represent the smallest and largest values within 1.5 times the IQR
from the first and third quartiles. p-values were determined using the Mann–Whitney–Wilcoxon test
and p < 0.05 was considered significant.

Regarding peripheral immune cell populations, Resp patients had significantly more
effector (CD45RA+ CD27−) Vδ2 T cells than NResp patients at baseline (p = 0.0394, Figure 1C).

In Table S2, all p-values are depicted for all analyzed variables.

3.2. Immune Cell Populations Correlate with the Presence of CTCs

The point-biserial correlation was used to evaluate the relationship between the pres-
ence (≥1) or absence (0) of CTCs at baseline and circulating immune cell subsets, blood
parameters, and IFN-γ serum levels. A subset of 22 patients was eligible for analysis
(Figure 2).

The presence of CTCs (≥1) at baseline showed a strong negative correlation with
effector CD8+ T cells (r = −0.69, p = 0.0004; Figure 2A) and a moderate negative correlation
with Vδ1 T cells (r = −0.47, p = 0.0287; Figure 2B), effector Vδ1 T cells (r = −0.46, p = 0.0310;
Figure 2C), and NKG2D-expressing Vδ1 cells (r = −0.47, p = 0.0263; Figure 2D). Noteworthy,
a moderate negative correlation was found with the effector/total memory CD8 T-cell
ratio (r = −0.44, p = 0.0414; Figure 2E) and the effector/central memory CD8 T-cell ratio
(r = −0.48, p = 0.0242; Figure 2F). In contrast, a strong positive correlation was found for
central memory CD8 T cells (r = 0.68, p = 0.0005; Figure 2G). In addition, a moderate
positive correlation was also observed in naïve and central memory Vδ1 T cells (r = −0.47,
p = 0.0287; Figure 2H,I).

Higher serum IFN−γ levels were negatively correlated with the presence of CTCs
(r = −0.43, p = 0.0447; Figure 2J).

In Table S3, all p−values are depicted for all analyzed variables.
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Figure 2. Significant correlations between CTCs (presence or absence at baseline with immune subsets
and serum IFN−δ. (A) effector CD8+ T cells; (B) Vδ1 T cells; (C) effector Vδ1 T cells; (D) Vδ1 T cells
expressing NKG2D; (E) ratio CD8Eff/CD8Mem; (F) ratio CD8Eff / CD8CM; (G) central memory
CD8+ T cells; (H) naïve Vδ1 T cells; (I) central memory Vδ1 T cells; (J) serum IFN−δ. The absence of
CTCs at baseline is represented as an orange boxplot and the presence of CTCs at baseline (≥1) is
represented as a green boxplot. The lines within each box represent the median values, the boxes’
limits indicate the first and third quartiles, and the whiskers represent the smallest and largest values
within 1.5 times the IQR from the first and third quartiles. p-values and r-coefficients were determined
using point-biserial correlation and p < 0.05 was considered significant.

3.3. Impact of CDK4/6i Treatment Plus ET on Immune Populations

Next, we aimed to assess the impact of therapy on analytical blood findings and
immune cell populations, by analyzing paired blood samples collected at baseline and after
3 months of the treatment beginning (t2) (n = 23).
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Regarding whole blood count (WBC), at t2, there was a notable decrease in hemoglobin
(Hb) levels (median Hb 13.1 and 11.9g/dL at baseline and t2, respectively; p = 0.0003,
Figure 3A) and a concurrent increase in mean corpuscular volume (MCV) (median 89.3
and 94.7fL at baseline and t2, respectively; p = 0.0008, Figure 3B). Additionally, at the
3-month timepoint, reductions in leucocyte, neutrophil, eosinophil, and monocyte counts
were observed (leucocytes: median 5.92 and 3.20 × 109/L at baseline and t2, respectively;
p < 0.0001, Figure 3C; neutrophils: median 3.16 and 1.34 × 109/L at baseline and t2,
respectively; p = 0.0001, Figure 3D; eosinophils: median 0.11 and 0.05 × 109/L at baseline
and t2, respectively; p = 0.0043, Figure 3E; monocytes: median 0.33 and 0.23 × 109/L at
baseline and t2, respectively; p = 0.0130, Figure 3F).
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Figure 3. Impact of 3 months (t2) of CDK4/6i+ET on (A) hemoglobin levels (g/dL); (B) mean
corpuscular volume (MCV; fL); (C) leucocyte counts (×109/L); (D) neutrophil counts (×109/L);
(E) eosinophil counts (×109/L); and (F) monocyte counts (×109/L). Baseline is represented as a
blue boxplot and t2 is represented as a green boxplot. The lines within each box represent the
median values, the boxes’ limits indicate the first and third quartiles, and the whiskers represent the
smallest and largest values within 1.5 times the IQR from the first and third quartiles. p-values were
determined using the Wilcoxon test and p < 0.05 was considered significant.

In Table S4, all p-values are depicted for all analyzed variables.
Furthermore, changes in circulating immune cell populations were also highlighted

in the analysis. A decrease was observed in early-stage MDSCs (eMDSCs; p < 0.001;
Figure 4A), central memory CD4+ T cells (p = 0.0078; Figure 4B), and Vδ2 T cells expressing
NKG2D (p = 0.0122) after 3 months of treatment (Figure 4C).
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Figure 4. Impact of 3 months (t2) of CDK4/6i+ET on circulating immune cell subsets: (A) early-
stage myeloid-derived suppressor cells (eMDSCs); (B) central memory CD4+ T cells; and (C) Vδ2
T cells expressing NKG2D. Baseline is represented as blue boxplot and t2 is represented as green
boxplot. The lines within each box represent the median values, the boxes’ limits indicate the first
and third quartiles, and the whiskers represent the smallest and largest values within 1.5 times the
IQR from the first and third quartiles. p-values were determined using Wilcoxon test and p < 0.05
was considered significant.

3.4. Variation in Immune Cell Subsets According to Response to CDK4/6i Plus ET

To understand how WBC and immune cell subsets varied with CDK4/6i+ET and
if this variation was dependent from clinical response to therapy, paired baseline and t2
samples were compared between Resp (n = 20) and NResp (n = 3) patients.

After 3 months of treatment, lower levels of eMDSCs were found in the NResp patients
(p = 0.0087, Figure 5A), accompanied by leukocytosis (p = 0.0466, Figure 5B) and basophilia
(p = 0.0142, Figure 5C).
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Figure 5. Comparison between Resp and NResp patients 3 months after the start of CDK4/6i+ET (t2)
for (A) early-stage myeloid-derived suppressor cells (eMDSCs); (B) leucocyte counts (×109/L); and
(C) basophil counts. NResp patients are shown as red box plots and Resp patients are shown as blue
box plots. The lines within each box represent the median values, the boxes’ limits indicate the first
and third quartiles, and the whiskers represent the smallest and largest values within 1.5 times the
IQR from the first and third quartiles. p-values were determined using the Mann–Whitney–Wilcoxon
test and p < 0.05 was considered significant.

Additionally, to evaluate the immune dynamics between t2 and baseline in the Resp
and NResp patients, the baseline value was subtracted from the t2 value in both groups.
There was a significant difference between baseline and t2 for the Treg III subset, which
was higher in NResp patients (p = 0.0124, Figure 6A), indicating a decrease at t2 in NResp
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patients. Although not statistically significant, Treg I decreased in Resp patients at t2
(p = 0.0556; Figure 6B), making the difference between the two time points less than in
NResp patients. These changes were accompanied by an increase in the CD8+ T cells
expressing NKG2D in Resp (p = 0.0294; Figure 6C).
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Mann-Whitney-Wilcoxon test and p < 0.05 was considered significant.
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4. Discussion

The present study aimed to identify the alterations in circulating immune cell subsets
in patients with ER+/HER2− mBC undergoing CDK4/6i+ET and to investigate their
association with clinical benefit, namely PFS.

Baseline characteristics were well balanced between the therapy responder and non-
responder groups. Notably, responders had higher baseline basophil counts and a greater
presence of effector Vδ2 T cells (Vδ2+ CD45RA+ CD27−) compared to non-responders.

Additionally, significant changes were identified in peripheral blood immune cell
populations following CDK4/6i+ET. A decrease in neutrophil, eosinophil, and basophil
counts was observed, suggesting the occurrence of hematological changes consistent with
CDK4/6 inhibition. This finding is consistent with previous reports [3,36–40]. Changes in
the specific immune cell subsets, namely effector Vδ2+ T cells, were also observed, further
contributing to the understanding of the immunomodulatory effects of CDK4/6i+ET. In
addition, correlations between the presence of CTCs and immune cell subsets at baseline
were observed, shedding light on the interplay between immune dysfunction and tumor
progression in mBC.

Despite the well-established prognostic significance of various clinical parameters
in ER+/HER2− mBC, this study disclosed intriguing findings. Typically, patients with
unfavorable prognostic factors—such as endocrine resistance, the presence of visceral
metastases, previous use of chemotherapy, or higher ECOG-PS—would be expected to
have a poorer treatment response and prognosis [41,42]. However, the absence of significant
imbalances in these parameters between therapy responders and non-responders in this
cohort suggests potential underlying mechanisms influencing the treatment response
beyond conventional prognostic factors.

Human γδ T cells may have a dual function in cancer, both contributing to carcino-
genesis and participating in anti-tumor immunity. The Vδ2+ population is heterogeneous
and capable of producing pro-inflammatory cytokines, such as TNF-α, IFN-γ, IL-17, IL-9,
and IL-10. To the best of the authors’ knowledge, the impact of effector Vδ2+ T cells on
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mBC outcomes under CDK4/6i+ET was not previously investigated. Zoledronic acid has
been reported triggering the activation and proliferation of Vδ2+ T cells, thereby inhibiting
cancer cell growth [19,21]. However, all patients in this study only received denosumab as
a bone-targeted agent (BTA), making this an unexpected increase. Mariani et al. showed
that non-responders have a higher frequency of effector Vδ T cells, while responders have
a lower frequency. Even when considering total Vδ T cells and acknowledging that Vδ2+ T
cells are the most common γδ T-cell subtype in circulation [22], the results of this study are
consistent with the findings reported in Mariani’s study. A low frequency of effector Vδ2+
T cells has been reported in glioblastoma [43]. In addition, relapsed patients with acute
lymphoblastic leukemia tend to have a lower frequency of effector Vδ2+ T cells compared
to disease-free patients [18].

CDK4/6i induce a dysregulation of the immune system in ER+/HER2− mBC patients,
which has been extensively described by several authors [16]. The polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSCs; CD16− CD14− CD11b+ CD33+) play an
important role in immune inhibition in the cancer microenvironment, while their role in
circulation is still unclear. In the present study, a significant decrease in this population was
observed three months after initiation of CDK4/6i+ET. This finding supports the previously
described hypothesis of immunosuppression induced by this therapy [19,44]. In contrast,
in 51 patients with mBC, a reduction in total MDSCs was observed without treatment
specificity [45].

A decrease in central memory CD4+ T cells was observed 3 months after starting
CDK4/6i+ET. Memory cells are a heterogeneous population with a long lifespan and
immunologic memory [28]. A decrease in the central memory subset may be due to
conversion to effector memory and then effector T cells. In the patients from the RIBECCA
trial, no significant difference in central memory CD4+ T cells was found [46]. In our
study, a reduction in Vδ2+ T cells expressing NKG2D was found after three months of
CDK4/6i+ET. NKG2D is a lectin-like receptor type-2 gene expressed by γδ T, CD8+ T,
NK, and NKT cells, allowing their recognition of the tumor and triggering their cytotoxic
response [23,47]. This suggests that a reduction observed three months after the start of
treatment may reflect a stabilization of the population within the immune response.

The correlation between the presence and absence of CTCs at baseline with immune
populations and blood parameters was also investigated in this study. Because CTCs are
continuously shed from the tumor into the bloodstream and have a very short half-life,
they reflect the phenotype and genotype, as well as the heterogeneity of the tumor of origin.
As such, it is relevant to understand how they may be related to clinical outcomes, changes
in host immune cells, and disease progression, increasingly moving towards precision
medicine [44,48].

The presence of CTCs was positively correlated with Vδ2 naïve T cells and central
memory Vδ1+ and CD8+ T cells in this study. While naïve T cells have no effector function,
central memory T cells have a higher proliferative capacity and induce differentiation into
effector cells [26,27,49]. A negative correlation was observed in effector (CD8+ and Vδ1 T
cells), Vδ1+ expressing NKG2D and Vδ1 total T cells. This finding could be explained by
the accumulation of CTCs due to less anti-tumor activity [50].

IFN-γ is a well-known effector cytokine mainly produced by T and NK cells [51]. In
this study, a negative correlation was found between IFN-γ and the presence of at least one
CTC, in agreement with another study [52].

Several studies have classified FoxP3+ Treg cells into three subpopulations: Treg I
(CD45RA+ FoxP3lo), Treg II (CD45RA− FoxP3hi), and Treg III (CD45RA− FoxP3lo) [46,47].
This study’s findings have shown a slight decrease in the Treg I subpopulation in responders,
which was associated with response and good prognosis. These cells remain in a resting
state until stimulation and subsequent activation. Treg III cells, also known as non-activated
Treg cells, have reduced immunosuppressive activity in circulation [46,47]. In this cohort,
an increase in Treg III cells was observed from baseline to t2 in patients responding to
CDK4/6i+ET.
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The present study has several limitations that should be acknowledged. First, the
heterogeneity within the study population, including variations in endocrine sensitivity
and lines of treatment (including both first- and second-line setting), may have introduced
confounding factors with a potential impact on result interpretation. Despite our efforts to
mitigate this through a prospective cohort design and accepting patient referrals to increase
sample size, variability remains inherent in real-world evidence studies and not all patients
underwent a second blood draw. The reasons for this included disease progression before
the scheduled second collection, patient refusal, and disruptions caused by the COVID-19
pandemic. Consequently, the lack of follow-up blood samples may have limited the ability
to capture longitudinal changes in immune cell populations and investigate their association
with treatment response. Furthermore, the relatively small cohort size may have affected
the statistical power and generalizability of the study findings. These constraints, frequent
in academic initiatives, underscore the need for larger, more homogeneous patient cohorts
and careful data collection protocols in future studies to draw more robust conclusions.

In conclusion, this study provides valuable insights into the effects of CDK4/6i+ET
therapy on immune cell dynamics in patients with ER+/HER2− mBC. Despite baseline
heterogeneity, CDK4/6i+ET induced significant alterations in hematological parameters
and immune cell subsets. The findings of this study also suggest a complex interplay
between immune dysfunction and tumor dissemination, as evidenced by correlations
between the presence of CTCs and specific immune cell populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13161391/s1, Table S1: anti-human fluorescently labeled
mAbs used for FACS analysis; Figure S1: FACS gating strategy; Table S2: significance of variables for
the baseline characteristics; Table S3: correlation of immune cell populations with the presence of
CTCs; Table S4: significance of the impact of CDK4/6i treatment on immune populations; Table S5:
variation in immune cell subsets according to response to CDK4/76i.
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