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Abstract: Fibrous dysplasia (FD) is a mosaic skeletal disorder involving the development of benign,
expansile fibro-osseous lesions during childhood that cause deformity, fractures, pain, and disability.
There are no well-established treatments for FD. Fibroblast activation protein (FAPα) is a serine pro-
tease expressed in pathological fibrotic tissues that has promising clinical applications as a biomarker
and local pro-drug activator in several pathological conditions. In this study, we explored the ex-
pression of FAP in FD tissue and cells through published genetic expression datasets and measured
circulating FAPα in plasma samples from patients with FD and healthy donors. We found that FAP
genetic expression was increased in FD tissue and cells, and present at higher concentrations in plasma
from patients with FD compared to healthy donors. Moreover, FAPα levels were correlated with
skeletal disease burden in patients with FD. These findings support further investigation of FAPα as a
potential imaging and/or biomarker of FD, as well as a pro-drug activator specific to FD tissue.
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1. Introduction

Fibrous dysplasia (FD) is a mosaic skeletal disorder arising from acquired activating
variants in GNAS in skeletal stem cells during embryogenesis. When extra-skeletal tissues
are also affected, it is called McCune-Albright Syndrome (MAS, OMIM #174800). FD
results in the development of benign expansile fibro-osseous lesions in the skeleton during
childhood, leading to deformity, fractures, pain, and disability. As with most mosaic
disorders, the disease burden is highly variable, ranging from one single lesion (monostotic
FD) to the involvement of large portions of the skeleton (polyostotic FD). The histopathology
of FD lesions is characterized by the replacement of normal bone and marrow tissue by
fibrous tissue mixed with curvilinear trabeculae of poorly mineralized and hypercellular
woven bone. FD fibroblasts are highly proliferative abnormal bone marrow stromal cells
(BMSCs). These cellular changes are caused by the expression of hyper-signaling Gαs,
which produces increased intracellular cyclic adenosine monophosphate (cAMP), leading
to the abnormal differentiation and increased proliferation of BMSCs.

There are no well-established treatments for FD. FD BMSCs produce large amounts of
RANKL, promoting the local differentiation and activation of osteoclasts, which in turn
contribute to FD BMSC proliferation in a positive feedback loop [1]. Treatment with the
anti-RANKL monoclonal antibody denosumab, which dramatically inhibits osteoclastoge-
nesis, has shown promising therapeutic effects in a clinical trial [2]. But denosumab does
not discriminate between affected and unaffected skeletal tissue, decreasing osteoclasto-
genesis in the complete skeleton. Osteoclasts are necessary for bone homeostasis, so in
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principle this therapy should eventually be discontinued to allow normal bone modelling
and remodeling to resume. This is especially true for children, who are also the main
beneficiaries of FD therapy, but need osteoclasts for appropriate skeletal development.
Denosumab discontinuation leads to disease rebound and can cause severe hypercalcemia
due to the rapid reactivation of osteoclastogenesis [2,3]. In addition to denosumab, small
molecules that specifically target activated Gαs variants are being investigated, but most of
the molecules identified also have inhibitory action towards wildtype Gαs [4]. Since FD is
a mosaic disease, treatments that specifically target lesional tissue would greatly improve
these and other possible treatment drawbacks. Research that focuses on the development
of pro-drugs which are activated only within FD lesions may be an answer.

Fibroblast activation protein (FAPα) is a membrane-bound serine protease involved
in extracellular matrix degradation. It was originally identified within the stroma of solid
tumors, expressed by carcinoma-associated fibroblasts [5]. It can be naturally cleaved
and released into the circulation, and since its expression is relatively restricted to fibrotic
pathological processes, it has the potential to be utilized as both a circulating biomarker
and therapeutic target in an array of diseases involving fibrosis and inflammation [6].
Small molecules and monoclonal antibodies capable of targeting and inhibiting FAPα
were developed for cancer treatment. However, they failed to significantly improve dis-
ease progression in clinical trials to justify further research on their use as antitumor
agents [7–9]. Nevertheless, more recent literature has shown that radiolabeled FAPα in-
hibitors (68Ga-FAPI and 18F-FAPI) can be effective when used as medical imaging pan-
tumoral radiotracers in solid tumors [10,11]. FAPα is also a promising pro-drug activating
agent for engineered drugs [12–14] as it has both proteolytic cleavage site specificity [15],
and expression that is relatively confined to pathological fibrotic tissue.

This work follows our recent publication that screened released factors by FD BMSCs
that may have therapeutic or diagnostic interest [16]. Here, we report that patients with
FD have increased blood FAPα levels compared to healthy donors (HDs), and that there
is a clear association of these levels with their disease burden. In addition, we collected
and integrated FAP gene expression levels reported in previous publications and publicly
available FD-related mRNA expression data published by us, and others. In this search,
we found increased FAP mRNA levels in murine FD tissue and cells, as well as in patient-
derived FD cells when compared to HDs. We did not observe significant expression
changes in human BMSCs engineered to express Gαs

R201C. Lastly, we report that anti-
RANKL therapy decreased FAP expression in human and murine FD tissue.

2. Material and Methods
2.1. Literature Search

Independent searches and literature reviews were conducted by LNR, ZM and LFdC
between 6th August and 9th 2024, following the workflow in Figure 1, which resulted in
10 publications reviewed for FAP expression (Table 1). The full list of articles identified by
these searches is included as Supplementary File S1.

Table 1. Datasets reviewed for FAP expression.

Study [Ref] Sample Type GEO
Accession

mRNA
Expression
Technique

FAP
Expression
Measured?

FAP
Upregulation

Kim, HY, 2024 [17] Single cells from FD tissue GSE263294 scRNAseq Yes (scRNAseq) N/A, no control group

Kim, HY, 2024 [17] FD BSMC vs. normal
BMSC-derived organoids (culture) Not submitted qPCR No N/A

Michel Z, 2024 [16] Human FD and HD BMSCs GSE261360 RNAseq Yes Yes, FD vs. HD BMSCs

Michel Z, 2024 [16] Mouse BMSCs induced or not to
express Gαs

R201C GSE261360 RNAseq Yes No

De Castro LF, 2023 [1] Human FD tissue before and after
denosumab treatment GSE250357 RNAseq Yes Yes, FD vs.

denosumab-treated FD
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Table 1. Cont.

Study [Ref] Sample Type GEO
Accession

mRNA
Expression
Technique

FAP
Expression
Measured?

FAP
Upregulation

De Castro LF, 2023 [1]
Mouse FD tissue with or without
anti-RANKL treatment and same

site control bone
GSE250357 RNAseq Yes

Yes, FD vs.
anti-RANKL-treated

FD and vs. control bone

Persichetti, 2021 [18] FD biopsies GSE176243 Nanostring No N/A

Raimondo D,
2020 [19]

Human BMSC expressing
Gαs

R201C by lentiviral transduction GSE109818 Microarray Yes No

Onodera S, 2020 [20] GNAS p.R201H iPSC vs. WT iPSC Not submitted qPCR No N/A

Zhou S-H, 2014 [21] Human FD tissue vs. normal bone Not submitted Microarray No N/A

Piersanti S, 2010 [22] Human BMSC expressing
Gαs

R201C by lentiviral transduction Not submitted qPCR No N/A

Kiss J, 2010 [23] FD affected women’s tissue vs.
control women’s bone Not submitted qPCR No N/A

Lee C-H, 2008 [24] FD biopsies vs. GCT and
ABC biopsies Not submitted Microarray Unk * Unk

Abbreviations: FD = Fibrous dysplasia, N/A = Not applicable, BMSC = Bone marrow stromal cells, HD = Healthy
donor, FAP = Fibroblast activation protein, scRNAseq = Single cell RNA sequencing, RANKL = Receptor activator
of nuclear factor kappa-B ligand, iPSC = Induced pluripotent stem cell, GCT = Giant cell tumor, ABC = Aneurysmal
bone cyst, Unk = Unknown. * Assessed gene list not available in the publication or its references, FAP was not
reported as a differentially expressed gene in any of the sample groups assessed.
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2.2. Human Specimens

Forty-seven adult patients with FD were evaluated at the NIH Clinical Center as part of
a longstanding natural history protocol (NIH 98-D-0145, NCT00001727 in www.clinicaltrials.
gov). The study was approved by the NIDCR Institutional Review Board and all subjects
gave informed consent/assent. FD disease burden was calculated using a validated method
(Skeletal Burden Score [SBS]) [16]. This study includes patients undergoing treatment with
bisphosphonates, and those who paused therapy for more than a year before donating
blood for this study, who were considered off-drug (Table 2). Serum samples from 22 HDs
were purchased (Valley Biomedical, Winchester, VA, USA) and donors were considered to
have SBS = 0. The demographic information of both subject groups is reported in Table 2
and individual values are available in Supplementary File S2.

Table 2. Demographic data of plasma donors.

Fibrous Dysplasia
(FD) Patients Healthy Donors (HDs)

Subjects—n 47 22

Females—n (%) 30 (63.8%) 8 (36.4%)

Age—mean ± SD (range) 33 ± 13 (18–71) 42 ± 15 (18–70)

FD burden—mean ± SD (range) 37 ± 23 (2.8–75) 0

Currently on bisphosphonates—n (%) 10 (21%) 0

Any endocrinopathy—n (%) 35 (74%) 0

2.3. FAPα Determination

An FAPα Human ELISA Kit with a sensitivity of 12 pg/mL and range of 12–4000 pg/mL
was purchased from Abcam (Cambridge, UK, catalog number ab193701) and used to
measure FAPα in plasma samples according to the manufacturer’s instructions. Plasma
samples were diluted 200-fold prior to ELISA assay as recommended by the manufacturer.

2.4. FAP/Fap mRNA Expression Level Analyses

Expression data from publicly available datasets was obtained from NCBI GEO repos-
itory (Table 1) and differential expression of FAP between sample groups was calculated.
The methods for the obtention and characteristics of these samples are described in their
corresponding publications.

2.5. Statistical Analysis

Statistical analysis of data in Figure 2 is described in their respective publications. For
plasmatic FAPα levels and SBS data we used GraphPad Prism 9.00 (GraphPad Software,
Inc., La Jolla, CA, USA), and conducted group comparisons using unpaired, two-tailed
t-test after evaluating normality with the D’Agostino-Pearson test. Spearman correla-
tion was calculated for plasmatic FAPα levels and SBS. For these analyses, SBS in HDs
was considered 0. A linear regression of plasmatic FAPα determinations and SBS was
also performed.

www.clinicaltrials.gov
www.clinicaltrials.gov
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Figure 2. FAPα is produced by altered bone marrow stromal cells (BMSCs) in fibrous dysplasia (FD)
tissue, and its expression is normalized with anti-RANKL therapy. Data retrieved and adapted from
published studies and genetic expression datasets [1,16]. (A) FAPα is secreted by mouse BMSCs
cultures induced to express FD-causing Gαs

R201C (n = 5/group) [16]. (B) FAP expression is upregu-
lated in patient-derived FD BMSC compared to healthy volunteers (HD) BMSCs (n = 4/group) [16].
(C) Fap expression is upregulated in mouse FD lesions compared to healthy littermate bone tissue,
and anti-RANKL therapy normalizes its expression (n = 6 WT mice, 5 FD mice, 6 anti-RANKL-treated
FD mice) [25]. (D) FAP expression is downregulated in human FD tissue after anti-RANKL therapy
with denosumab (n = 6) [25]. Data is presented as averages and standard deviation in (A) and average
and standard error in (B,C).

3. Results

The literature search for high throughput mRNA expression analyses of FD tissue
and cultured FD cells resulted in 10 publications. Of these, five were excluded, as their
analysis did not include FAP. One study did not report FAP as a gene modulated in any
of the pathologies assessed and did not provide a list of genes measured [24]. One study
included FAP expression in single-cell RNAseq from three FD tissue samples, but did not
report differential expression in comparison to normal cells, and thus was excluded [17]
(Figure 1, Table 1). Three publications measured FAP expression as part of high throughput
mRNA datasets. One of these three studies is our previously reported article in which we
also demonstrated increased secretion of FAPα protein into the culture media of BMSCs
derived from a doxycycline-inducible FD mouse model [16]. This data has been reproduced
again in Figure 2A. In this study, bone marrow was plated, cleared from hematopoietic
cells by negative immunoselection of CD45+ cells to enrich BMSCs, and split in 6-well
plates. Some wells were induced in vitro to express Gαs

R201C by adding doxycycline in the
media, and media levels of FAPα were measured, showing a 4.4-fold increase in Gαs

R201C-
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expressing cultures compared to uninduced cultures. However, no significant differences
were found at the mRNA expression level in these cultures 48 h after initiating Gαs

R201C

expression induction. In the same study, using human cells, media FAPα levels did not
show a significant difference between FD and HD BMSCs. However, measurements of
additional well-known disease-associated factors in these samples also failed to show
significant differences to control cultures, likely due to the high variability involved in
the study of human samples from multiple donors, as discussed in the publication [16].
However, these human cultures showed a significant increase in FAP mRNA expression
(Figure 2B). On the other hand, analyses from an additional mRNA expression dataset
of human BMSCs engineered by lentiviral transduction to express Gαs

R201C showed no
changes in the expression levels of FAP [19].

In a different study we published [1,25], FD lesions were induced by the conditional
expression of Gαs

R201C in the appendicular skeleton of mice. RNAseq relative expression
analysis of the lesions in comparison to normal bone also showed a significant increase in
Fap expression, which was partially normalized after four weeks of anti-RANKL therapy
(Figure 2C). In the same publication, human FD biopsies from a Phase 1 clinical trial ob-
tained before and after denosumab (anti-RANKL monoclonal antibody) treatment showed
reduced expression of FAP after six months of denosumab therapy (Figure 2D).

With this preliminary evidence, we explored the role of FAPα as a biochemical
biomarker of FD, comparing its blood levels in 47 patients with FD to that of 22 healthy
donors (Table 1). FD patients showed plasmatic FAPα levels more than twice as high
as healthy donors (Figure 3A), which was strongly correlated with FD disease burden
(Figure 3B).
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Figure 3. Circulating FAPα concentration is significantly higher in plasma from fibrous dysplasia (FD)
patients than from the plasma of healthy donors (HD) and is associated with their disease burden.
(A) Level of FAPα in plasma from FD patients compared to HD. (B) Correlation of FAPα with skeletal
disease burden score of FD patients. HDs were considered to have a score of zero (absence of disease).
The line represents linear regression.

4. Discussion

The evidence reported here demonstrates that FAP has increased expression in FD
tissue, and more specifically, in abnormal FD BMSCs. Given its expression as a defining
characteristic of pathological fibrosis, its potential as a pro-drug cleaving activator, and
the availability of FAPα-targeting drugs with good tolerability in humans [7,8], FAPα
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has attracted the attention of researchers across disciplines studying disorders involving
fibrosis. This positions FAPα as an interesting translational research candidate in FD, with
potential to improve diagnosis and treatment.

FAPα may be useful in the imaging realm of disease workup, however, additional
studies are needed to show its performance compared to the current standard. Radiola-
beled FAPα inhibitors (68Ga-FAPI and 18F-FAPI) imaging by PET/CT have shown efficacy
in labeling a wide range of solid carcinomas via interactions with cancer-associated fi-
broblasts [10,11], and may improve lesional localization and activity measurement in FD.
Two bone-avid molecules, 99m-technetium-methylene diphosphonate (99mTc-MDP) and
more recently 18F-NaF [25] effectively demarcate skeletal FD lesions and are essential in
determining disease burden and guiding patient treatment plans. In addition, 18F-NaF
(and not 99mTc-MDP) accurately captures lesion activity through analysis of local standard
uptake values (SUV) which can be used as a measurement of lesion improvement [2].
However, considering that their mechanism of action involves integration with mineralized
tissue, it is unclear if these radiotracers have the capacity to target FD lesions with low or
absent mineral content. In contrast, radiolabeled FAPα inhibitors may offer visualization
for non-skeletal lesions in FD/MAS, i.e., intramuscular myxomas, or others that remain to
be characterized [26]. Indeed, 18F-FAPI PET/CT has already been tested on a patient with
FD [27] and it showed increased uptake in lesional tissue compared to 18F-Fludeoxyglucose,
which is a poor radiotracer for FD. Comparative studies imaging the same patients using
18F-FAPI and 18F-NaF PET/CT, the current standard, are necessary to better understand
the way these radiotracers perform in FD.

FAPα may also be useful as a biomarker. We demonstrated a correlation of FAPα
circulating levels and disease burden that is as strong as other well-known FD biomarkers
such as RANKL, the bone turnover markers alkaline phosphatase (ALP), osteocalcin,
C-terminal telopeptide of type I collagen (CTX-I), and N-terminal pro-peptide of type I
procollagen (PINP) [16]. Importantly, while bone turnover markers are associated with
virtually all skeletal pathologies, FAPα is highly specific for fibrotic tissue. Including FAPα
with bone turnover markers in FD diagnostic blood panels could provide both diagnostic
and prognostic insights for FD. Studies of FAPα in additional cohorts of FD patients may
confirm our observations.

FAPα has a relatively specific cleavage substrate that can be engineered as a pro-drug
lock, targeting activation in FAP-expressing diseased tissue. Pharmacologic research has
recently focused on tethering drugs to locking peptides, which allows their local activation
in target tissues [28]. This can be particularly beneficial in mosaic diseases which involve
variable regions of the body, rather than full organs or systems. FD’s unique fibro-osseous
histology shows production and rapid remodeling of large amounts of extracellular matrix
in which FAP is distinctively expressed. In addition, FAPα has a relatively specific substrate
cleavage site, allowing it to be recognized and cleaved by engineered drugs. Several proof
of principle study assays have been carried out to explore the capacity of FAPα as a local
pro-drug activator of engineered cytotoxic pro-drugs for cancer treatment, including the
combination with photoactivation in peptide-locked photosensitizers [12–14]. In addition,
MMP2 is another protease highly expressed in FD BMSCs [16,19,25,29]. However, it is more
broadly expressed in non-pathological tissues and its target cleavage site overlaps with
those of other metalloproteases. Nevertheless, an anti-TNFα antibody locked with a peptide
cleavable by MMP2/9 showed therapeutic effects equivalent to unmodified anti-TNFα in
a mouse model of rheumatoid arthritis, but animals treated with MMP2/9 activable pro-
drug lacked the systemic immunodepression secondary effects that animals receiving the
unmodified antibody showed [29]. Denosumab is an anti-osteoclastic, RANKL-neutralizing
antibody with demonstrated efficacy for FD treatment. However, it leads to a systemic
abrogation of osteoclasts, which are necessary for bone growth and turnover. This obliges
treatment discontinuation, which in turn generates a rapid rebound of resorption activity
and associated co-morbidities such as acute hypercalcemia and FD lesion reactivation.
With these considerations, creating a denosumab-like monoclonal antibody with a FAPα-
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cleavable peptide that only activates in FAP-expressing FD lesions could allow sustained
therapy by eliminating off-target effects and potentially promote local reactivation of
normal bone turnover as lesions normalize their cellular composition and reduce FAP
expression.

5. Conclusions

FAPα is a serine protease specifically expressed in FD that has potential to be used as
a disease biomarker in blood biochemical tests and medical imaging. Its relatively specific
target cleavage sequence makes it a promising candidate as a local pro-drug activator in
FD lesions. This exploratory study may open novel translational research avenues to test
the clinical applications enabled by FAPα in FD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13171434/s1, File S1: Search terms and results for the publi-
cations reviewed for high throughput mRNA expression data of FD cells and tissue; File S2: Individual
data of patients with FD and healthy donors for SBS, plasmatic FAPα levels, sex, age, presence of
endocrinopathies and ongoing bisphosphonate treatment.
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