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Abstract: LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition
with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden
death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A
nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and
differentiation. The molecular mechanisms of the disease are not completely understood, and there
are no definitive treatments to reverse progression or prevent mortality. We investigated possible
mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family
with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant
iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from
her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from
Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our
bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells
in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference
found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation
for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data
integration and comparative analyses of Patient and Control cells found cell type and lineage-
specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation.
Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in
pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis,
CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling
in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN,
PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation,
and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western
blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and
EPDC provided support for dysregulation of genes and pathways, many previously associated with
Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings
support disruption of epigenomic developmental programs, as proposed in other LMNA disease
models. We recognized other factors influencing epigenetics and differentiation; thus, our approach
needs improvement to further investigate this mechanism in an iPSC-derived model.
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1. Introduction

Lamins are intermediate filament proteins of the nuclear lamina that interact with
chromatin and the inner nuclear membrane and are distributed throughout the nucleo-
plasm [1,2]. Lamins have diverse roles in both nuclear structure and function, including
gene expression, chromatin regulation, cell proliferation, and differentiation [1,2]. Epige-
nomic roles involve heterochromatin binding and genome organization through lamina-
associated domains (LADs) [3,4]. In humans, nuclear lamins are A-type lamins (Lamin
A and C isoforms encoded by the LMNA gene) and B-type lamins (lamin B1, encoded
by LMNB1, and lamin B2 and B3, encoded by LMNB2) [1,2]. B-type lamins are constitu-
tively expressed, and A-type lamins are expressed temporally during development in most
differentiated cells [5,6].

Despite LMNA expression in most differentiated cells, LMNA mutations primarily
affect mesoderm-derived lineages in diseases collectively called laminopathies [1,7]. LMNA-
related dilated cardiomyopathy (DCM), the heart-specific laminopathy, is an autosomal-
dominant condition with ventricular enlargement, systolic dysfunction, and conduction
system disease often resulting in heart failure or sudden death [8]. Despite clinical severity,
the molecular mechanisms of LMNA-related DCM are not completely understood, and
there are no definitive treatments to reverse progression or prevent mortality.

For heart and striated muscle laminopathies, two interconnected mechanisms are
proposed to explain cell type-specific effects of lamin mutations: the ‘mechanical stress’
hypothesis, based on nuclear structure, and the ‘gene expression’ hypothesis, based on
nuclear function [1,7,9]. In the ‘mechanical stress’ hypothesis, LMNA mutations alter
the lamina structure, leading to the mechanical fragility of nuclei and cell dysfunction.
In the ‘gene expression’ hypothesis, LMNA mutations dysregulate nuclear chromatin
organization and gene transcription to alter cell function [1,7,9]. The ‘gene expression’
hypothesis involves epigenomic defects, affecting normal cell differentiation, in which
LMNA mutations uncouple the LAD from peripheral heterochromatin to alter genome
organization and unlock aberrant genes and pathways [10–12].

For LMNA-related DCM, the ‘gene expression’ hypothesis is supported by com-
parisons of LMNA-mutant and control cells across three main types of experimental
models: mouse models, patient heart tissue, and induced pluripotent stem cell (iPSC)
models [1,7,9,11,12]. From LMNA-mutant mouse models, evidence supports cell-signaling
dysregulation, including the hyperactivation of the TGF Beta [13,14] and AKT-mTORC1
signaling pathways [15], as well as dysregulated differentiation pathways, including
epithelial–mesenchymal transition (EMT) [16]. From LMNA patient heart tissue, evidence
also supports dysregulation of signal transduction and gene expression including the TGF
Beta/BMP signaling pathway and BMP4 overexpression [17,18].

While evidence from numerous mouse models and limited patient heart tissue sup-
ports the ‘gene expression’ hypothesis for LMNA-related DCM, another valuable approach
involves Patient-derived iPSC models, where somatic cells from patients are reprogramed
into iPSCs [19] that can be directly differentiated in vitro into cardiomyocytes (iPSC-CMs)
for analyses [20]. From LMNA Patient-derived iPSCs, evidence supports the dysregulation
of PDGF signaling associated with open chromatin [21], non-cardiac lineage expression
with chromatin compartment changes [22], and non-myocyte lineage expression with LAD
changes [23]. Furthermore, the analysis of LMNA knockdown iPSC-CM during differentia-
tion found a premature increase in cardiogenesis genes [24]. These studies [13–18,21–24] do
provide much support for the ‘gene expression’ hypothesis; however, the results obtained
using traditional techniques (e.g., bulk RNA-sequencing) may be inconsistent. For samples
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with ‘previously unappreciated levels of heterogeneity,’ such techniques, which average
measurements across all cells in a sample, may obscure cell type-specific findings [25].

More recently, measurements at single-cell resolution are used in cardiovascular
studies to evaluate the cell heterogeneity of cell samples and heart tissues and to dissect cell
type-specific mechanisms in normal and disease processes [26]. To study normal processes,
many recent studies used single-cell RNA-sequencing (scRNA-seq) to evaluate normal gene
expression and developmental pathways in human iPSC [27,28] and during differentiation
to cardiomyocytes [29–36]. In contrast, single-cell analyses to study disease processes such
as LMNA-related DCM are limited and include our initial study of patient iPSC-CM [37],
a large DCM single nuclei RNA-seq (snRNA-seq) study with heart tissue from 12 LMNA
patients [38], and scRNA-seq studies in Lmna Q353R mutant mouse model and heart tissue
from one LMNA Q353R patient [39].

To evaluate cell heterogeneity and cell type and lineage-specific mechanisms for
LMNA-related DCM, we analyzed a Patient-derived iPSC disease model using scRNA-
seq at multiple time points during CM differentiation. This extends our studies fo-
cused on a unique family with DCM with a heterozygous LMNA c.357-2A>G splice-site
mutation [37,40,41] by testing the ‘gene expression’ hypothesis that lamin A/C haploinsuf-
ficiency may be associated with the dysregulation of epigenomic developmental pathways
and the expression of genes with important roles in the nuclear function. Here, we describe
our scRNA-seq bioinformatic workflow with serial, cell type-specific data processing, report
our results from extensive multi-level analyses of the differentiation of Control iPSCs and
LMNA Patient iPSCs, and discuss our evidence to support the ‘gene expression’ hypothesis,
along with the challenges of LMNA disease modeling, using Patient-derived iPSCs.

2. Materials and Methods
2.1. Generation and Validation of Control and Patient iPSC Lines

Using standard methods, we generated and validated eight total iPSC lines
(Supplementary Text, Table S1), each derived from dermal fibroblasts, as reported [41].
Of the eight iPSC lines, we generated seven iPSC lines from the study family [40]: three
LMNA-mutant iPSC lines from three affected members heterozygous for the LMNA c.357-
2A>G splice-site mutation (Patient) and four non-mutant iPSC lines from three unaffected,
LMNA mutation-negative members to serve as sex and age-matched controls (Control).
For Control A1, we generated two iPSC lines, CA1-A [41] and CA1-B [37], from indepen-
dent clones (A and B), as reported. For Control A2, revival of cryopreserved cells had
low viability; therefore, we generated Unrelated Control 2 iPSCs using purchased dermal
fibroblasts from a healthy male (CC-2511, Lot No. 0000293971, Lonza, Basel, Switzerland).
We conducted fibroblast collection and culturing, DNA extraction, LMNA genotyping, and
Whole Exome Sequencing (WES), as previously described [40,42].

2.2. In Vitro iPSC-CM Differentiation and Cell Collection

Using two standard protocols (A and B) (Figure 1A, Supplementary Text), we differ-
entiated three iPSC lines (CA1-A, CA1-B, PA1) for serial scRNA-seq and six iPSC lines
(CA1-B, U2, CA3, PA1, PA2, PA3) for Western blot. Protocol-A used Cardiomyocyte (CM)
Differentiation Methods (Version 1.0) from the Allen Institute of Cell Science [43] based on
the modulation of Wnt/beta-catenin signaling using the GSK3 inhibitor CHIR99201 and the
Wnt inhibitor IWP2 [44]. Protocol-B used a Gibco PSC CM Differentiation Kit (A2921201,
TFS), as described [37]. To generate iPSC-CMs, we used both protocols for scRNA-seq and
only Protocol-A for Lamin A/C Western blots (WBs).
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cell samples (8 from CA1 and 4 from PA1), across seven time points, for scRNA-seq. Using Protocol-
A, we differentiated six iPSC lines (CA1-B, U2, CA3, PA1, PA2, PA3) and collected six cell samples 
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Figure 1. Study design. (A) iPSC differentiation into cardiomyocytes. Using standard protocols,
Protocol-A and Protocol-B, we differentiated three iPSC lines (CA1-A, CA1-B, PA1) and collected
12 cell samples (8 from CA1 and 4 from PA1), across seven time points, for scRNA-seq. Using Protocol-
A, we differentiated six iPSC lines (CA1-B, U2, CA3, PA1, PA2, PA3) and collected six cell samples
(3 from controls and 3 from patients) at Day 19 for Western blot analysis. (B) scRNA-seq bioinformatics
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workflow. We used standard pipelines and software packages for data processing and analyses.
Three main steps were involved: I. data processing for initial read processing/mapping and sequential
quality control processing of raw data sets; II. data analysis for identification of main cell types and
possible cell subtypes by unsupervised clustering, annotation, and subset analyses; III. data combining
and comparative analyses of samples (Patient vs. Control) for cell type and lineage differentially
expressed genes (DEGs) and gene set enrichment.

2.3. Serial scRNA-seq Studies Using 10× Genomics Platform

During differentiation of three iPSC lines (CA1-A, CA1-B, PA1), we collected 12 total
cell samples (8 CA1 and 4 PA1 samples) across seven time points (Day 0, 2, 4, 9, 16, 19, and
30) (Figure 1A, Supplementary Text). Sample Set-A consisted of four unpaired Control
samples derived from the iPSC line CA1-A, collected at Day 2, 4, 9, and 30. Sample Set-B
consisted of four paired samples derived from the iPSC lines CA1-B (Control) and PA1
(Patient), differentiated in parallel, and collected at Day 0, 9, 16, and 19. Immediately after
collection, we transferred cell samples to the UCI Genomics High-Throughput Facility for
processing using the droplet-based chromium system [45] and Chromium Next GEM Single
Cell 3′ Kit v3 (10× Genomics, Pleasanton, CA, USA). The facility conducted multiplex
sequencing using NovaSeq 6000, with the goal of obtaining at least 50,000 raw reads per cell.

2.4. scRNA-seq Bioinformatics Workflow

Our workflow (Figure 1B) used standard pipelines [46–48] and bioinformatics software
packages (Table S3) involving three steps: Step-I, data processing; Step-II, data analysis;
and Step-III, data combining and comparative analyses. These steps used two general
types of data: 1. single-sample data: individual data for each of the 12 samples; 2. com-
bined data: merged (non-integrated) and integrated data from combining multiple sets
or subsets of data (Supplementary Text). Since we used two different protocols—A and
B (Figure 1A)—we first determined what cell types and possible subtypes are generated
across both protocols in individual and merged data for all 12 samples (Sample Set-A
and Set-B). To determine differential expression between Patient and Control cells, we
then identified shared cell types in integrated data from paired samples (Sample Set-B)
generated from Protocol-B. For two samples, CA1-B and PA1 at Day 19, we reported results
for sarcomeric α-actinin expression by immunocytochemistry (ICC) staining and initial
scRNA-seq analysis [37].

2.5. Lamin A/C Western Blot

To compare lamin A and C protein levels in Control and Patient cells, we conducted
WB, as described [49], and quantitative analyses [50]. Using Protocol-A (Figure 1A), we
differentiated three iPSC pairs as biological replicates (BRs): three Patient-derived iPSCs
(PA1, PA2, PA3) and three Control iPSCs (CA1-B, U2, CA3) to Day 19 (Supplementary Text).

3. Results
3.1. Validated iPSC and Confirmed Identification of Cell Samples for scRNA-seq

We used eight validated iPSC lines, including three LMNA Patient (PA1, PA2, PA3)
and five Control (CA1-A, CA1-B, CA2, CA3, U2) iPSC lines (Table S1). Validation results
included normal karyotype at passage number 9 or above, normal pluripotency by ICC
staining for pluripotent stem cell markers [41], and normal ICC staining for germ layer
markers in EB for all eight iPSC lines (Figure S1). We differentiated seven iPSC lines and
excluded one line (CA2) due to poor cell viability. Prior to scRNA-seq, each cell sample
collected had cell viability of 78% or greater. Results for allelic expression of 22 coding
SNV (10 autosomal and 12 XL SNV), compared to fibroblast genotype, confirmed the
identification of the 12 cell samples collected for scRNA-seq (Figure S2).
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3.2. Processed Data: 110,521 (88%) High-Quality Cells of 125,554 Cells Collected
(Workflow Step-I)

To identify high-quality cells, our bioinformatics workflow (Figure 1B) began with
read processing, followed by sequential quality control (QC) processing for each of the
12 cell samples. For single-sample data and combined data, the parameters and results are
provided in (Supplementary Text, Tables S4–S6, Figure S3).

3.3. Complex Heterogeneity with Ten Main Cell Types in Control Samples, Eight Shared Cell Types
between Paired Samples, and Multiple Possible Cell Subtypes (Workflow Step-II)

To identify main cell types and possible subtypes generated across both protocols and
conditions, our workflow (Figure 1B) involved clustering, annotation, and subsetting using
marker panels (88 total genes, Table S8) of processed data for 12 samples (8 Control and
4 Patient: 110,521 total cells). For single-sample data (Table S7, Figure S4A) and combined
data (Figures 2 and S4B), the results are provided as two stages: individual analyses of
singlet data for the main cell types (Figure S5) and subcluster analyses of subset data for
possible cell subtypes (Supplementary Text, Figure S6).
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Figure 2. Complex heterogeneity: main cell types and shared subtypes. Our scRNA-seq bioin-
formatics workflow included analyses of combined data: merged data (top panel) and integrated
data (bottom panel). Each panel consists of four UMAP plots from left to right, with clusters marked
and colored by time point, pre-annotation cluster number, main cell type or shared subtype, and imbal-
ance score. To summarize results from our individual analyses, we created merged (non-integrated)
data (top panel) by combining processed single-sample data for all 12 samples (110,521 total cells)
across all seven time points: D00, D02, D04, D09A/B, D16, D19, and D30 (first plot). To compare
Patient and Control samples, we created integrated data (bottom panel) by combining processed
subset data for six pairs of ‘balanced’ cell types/subtypes (75,330 total cells) at four time points: D00,
D09B, D16, and D19 (1st plot). Unsupervised clustering (2nd plots) found 49 clusters in merged
data and 17 clusters in integrated data. Using known markers (3rd plots), we identified 10 major
cell types: pluripotent cells (PP), mesendoderm (ME), cardiogenic mesoderm (CMESO), endoderm
(ENDO), ectoderm (ECTO), endothelium (ENDOTH), cardiac progenitors (CPs), cardiomyocytes
(CMs), epicardium-derived cells (EPDCs), and unknown (UNK) cells in merged data, as well as multiple
possible shared subtypes in integrated data. Using condiments [51], we calculated the “Imbalance Score”
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of each cell to assess if nearby cells had the same condition (last plots). We defined ‘balanced’ cell
types/subtypes, as shared cells with low imbalance scores, which were then selected for comparative
analyses between Patient and Control cells.

From our individual analyses, we identified ten main cell types in the Control samples
and eight conserved cell types between paired samples (Figures 2, S4A and S5, Table S7).
In the Control samples (Figure S5B), we identified ten main cell types: 1. pluripotent
cells (PP), 2. mesendoderm (ME), 3. cardiogenic mesoderm (CMESO), 4. endoderm
(ENDO), 5. ectoderm (ECTO), 6. endothelium (ENDOTH), 7. cardiac progenitors (CPs),
8. cardiomyocytes (CMs), 9. epicardium-derived cells (EPDCs), and 10. unknown (UNK)
cells. Of these, we found eight (PP, ENDO, ECTO, ENDOTH, CP, CM, EPDC, UNK)
conserved in four Patient samples (D00, D09B, D16, D19) (Figure S5C) and two cell types
(ME and CMESO) identified only in the Control samples (D02 and D04). For all 12 samples,
we found clusters with unclear results and assigned these cells to the “Unknown” category
(UNK). At this initial stage, we found CM consisting of two possible subtypes: clusters
with high expression of multiple known CM markers (CM-A) and clusters with lower
expression of fewer CM markers, except for TTN, and higher levels of %Mt (CM/UNK-B).

3.4. Four Shared Main Cell Types: PP, CP, CM, EPDC with Primarily ‘Balanced’ Cell Subtypes in
Integrated Patient and Control Data (Workflow Step-III)

The final step in our workflow (Figure 1B) focused on the creation and evaluation
of two types of combined data to summarize and evaluate our results: integrated data
of paired samples for differential expression analysis and merged data (non-integrated).
For the combined data of the paired-sample data (Figure S7A, Table S9), the results are
provided for individual analyses (n = 4 pairs: 89,269 total cells) in Figure S8 and subcluster
analyses (n = 11 pairs: 88,420 total cells) in Figure S9.

To identify ‘balanced’ cell types/subtypes for differential expression analysis between
conditions, we created combined data: integrated and merged data for each pair of the
Patient and Control samples (D00, D09B, D16, D19) and conducted both individual and
subcluster analyses for the shared cell types and subtypes (Figure S7A,B). Overall, our
analyses found that the Patient and Control cells clustered separately by condition in the
merged data and clustered together by shared cell type/subtype in the integrated data
(Figures S8A and S9A). From our individual analyses of integrated data (Figures S7A,B
and S8B, Table S9, Excel Table S1-3, S1-5 and S1-6), we identified eight shared cell types
(PP, ENDO, ECTO, ENDOTH, CP, CM, EPDC, UNK), the same cell types conserved in
single sample data (Figure S5, Table S7, Excel Table S1-1). From our subcluster analyses
(Figure S9B,C, Table S9, Excel Table S1-4), we also found the same 19 possible subtypes in
six cell types (PP, ECTO, CP, CM, EPDC, UNK) in both the single-sample data (Figure S6,
Table S7, Excel Table S1-2) and the integrated data. However, of eight shared cell types,
imbalance scoring identified one cell type (CP) with all ‘balanced’ subtypes, four cell types
(PP, ECTO, CM, EPDC) with both ‘balanced’ and ‘imbalanced’ subtypes, and three cell types
(ENDO, ENDOTH, UNK) with all ‘imbalanced’ subtypes (Table S9B). Overall, four shared
cell types (PP, CP, CM, EPDC) in the integrated data had mostly ‘balanced’ cell subtypes.

3.5. Cell Type-Specific Differential Expression: LMNA DCM-Related Gene, X-Linked Genes
Including the Non-Coding XIST RNA, and Multiple Imprinted Genes (Workflow Step-IIIA)

From four shared main cell types (PP, CP, CM, EPDC) in the integrated data, we
selected 14 primarily ‘balanced’ subtypes (71,541 total cells) (Table S9B) for differential
expression and enrichment analyses (Table 1, Figure S10A–C). Across these 14 subtypes,
we found similar average proportions of Patient (52%) and Control (48%) cells and total
proportions of overexpressed DEGs (25,551 of 53,548: 48%) and underexpressed DEGs
(27,997 of 53,548: 52%) in the Patient cells compared to the Control cells.

Among the top cell type DEGs, we found that our DCM study gene LMNA underexpressed
in Patient cells compared to Control cells (Figures 3 and S10D, Excel Table S2-1 and S2-2). We
found that LMNA was underexpressed in 12 of the 14 shared cell subtypes and as a top-ten



Cells 2024, 13, 1479 8 of 34

threshold DEG in two subtypes: D19 CM-A1 and D19 EPDC. Across all 14 subtypes from
Days 0 to 19, LMNA expression increased, with the highest expression levels in CMs and
EPDCs. At D19, both the Patient CMs and EPDCs had lower LMNA expression compared
to the Control cells. In addition, the Patient cells showed primarily monoallelic expression
from only the normal allele when we examined the heterozygous LMNA coding SNV
(C>T, rs4641) (Table S1, Figure S2A, Excel Table S4-1). In contrast, we did not identify
B-type lamin genes, LMNB1 and LMNB2, as threshold DEGs. Expression was limited to
PPs and EPDC/CP cells for LMNB1 and to PPs for LMNB2, with no differences between
Patient and Control cells (Figure S10D), and with biallelic LMNB2 expression in Patient
cells (Figure S2A).
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Figure 3. Cell type-specific differentially expressed genes (cell type DEGs): top DEGs. Our
comparative analyses (Patient vs. Control cells) included cell type-specific differential expression
and enrichment using integrated data at four time points: D00, D09B, D16, and D19. We identified
cell type DEGs in six pairs of ‘balanced’ cell types/subtypes, with 75,330 total cells. Left panel: heat
map for top DEGs in main cell types for 38,150 (51%) Control cells and 37,180 (49%) Patient cells.
Top DEGs included LMNA, 11 X-linked (XL) genes, and six imprinted genes. Right panel: violin
plots with boxplot by sample, day, and cell type for LMNA, XL genes, XIST and GPC3, and imprinted
genes, SNRPN and MEG3. Overall, these results show Patient compared to Control cells had LMNA
underexpressed in both CMs and EPDCs at Day 19, limited XIST expression for all time points and
shared cell types, XL gene GPC3 overexpressed in CM/CP and EPDCs, SNRPN underexpressed for
all time points and most shared cell types, and MEG3 overexpressed in PPs and EPDCs.

The top cell type DEGs also included underexpressed X-linked (XL) genes, including
XIST, the non-coding RNA gene that initiates X chromosome inactivation (XCI) [52], and
PIN4, an isomerase-encoding gene with roles in cell cycle progression and chromatin
remodeling [53] (Figures 3 and S10D, Excel Table S2-1 and S2-2). Of the 47 genes identified
as top ten underexpressed threshold DEGs, we found two (4%) XL genes: XIST and PIN4.
We found PIN4 underexpressed in 11 of the 14 shared cell subtypes and as a top ten
threshold DEG in only D00 PP-A1A2, the cell subtype with the highest expression levels
(Figure S10D). In contrast, we found XIST as the only gene ranked in the top ten threshold
DEGs shared in all 14 subtypes. For all time points and shared cell types, we detected no
expression or lower expression levels of XIST in the Patient cells compared to the Control
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cells (Figure 3 and S10D). In addition, despite limited XIST expression in Patient cells, we
detected a primarily monoallelic expression using heterozygous coding SNV in seven XL
genes known to be subject to XCI (Figure S2B, Excel Table S4-2).

Top cell type DEGs also included multiple overexpressed XL genes, including GPC3, en-
coding Glypican Proteoglycan 3, a cell-surface glycoprotein involved in growth regulation [54].
Of the 71 genes found as top ten overexpressed threshold DEGs, we found nine (13%)
XL genes: PCSK1N, SMPX, RBBP7 (TXLNG), CD99, RPS4X, DIAPH2, MORF4L2, PRPS1,
and GPC3 across seven of the 14 shared cell subtypes (Excel Table S2-2). For overex-
pressed XL DEGs, the expression patterns varied across seven cell subtypes. For example,
we found as a threshold DEG, GPC3, in two cell subtypes: D09B CM-A and D19 EPDC
(Figures 3 and S10D); four genes, RBBP7 (TXLNG), DIAPH2, MORF4L2, and PRPS1, in only
one subtype: D00 PP-A1A2; and both CD99 and RPS4X in three subtypes: D09B CP-A,
D09A CM-A, and D19 EPDC (Excel Table S2-1 and S2-2). In addition, we detected biallelic
expression of CD99 in Patient cells using a heterozygous coding SNV (C>T, rs1136447)
(Figure S2B). Since CD99 is known to escape XCI [55], we might expect this result; however,
the proportion of allelic expression differed. In Patients cells, we detected equal total
expression of each allele (total read count = 3528, C 51% and T 49%) compared to skewed
expression of one allele (total read count = 3342, C: 81% and T:19%) in the Control cells
(Excel Table S4-2). We also found similar results for another gene known to escape XCI,
EIF2S3, and for two genes with variable XCI escape, PLS3 and TMEM187 (Figure S2B,
Excel Table S4-2).

Top cell type DEGs included five imprinted genes, including SNRPN at chr15q11.2
and MEG3 at chr14q32.2 (Figure 3, Excel Table S2-1 and S2-2) [54]. Of the 47 genes found
as top ten underexpressed threshold DEGs, we found four (9%) paternally expressed
imprinted genes: SNRPN, PWAR6, NDN, and PEG10, with SNRPN shared in nine subtypes
(Excel Table S2-2). Of the 71 genes found as top ten overexpressed threshold DEGs, we
found one (1%) maternally expressed imprinted gene, MEG3, in two subtypes: D00 PP-
A1A2 and D19 EPDC (Excel Table S2-2). Across all 14 subtypes from Days 0 to 19, PP
cells had the highest SNRPN expression, which then decreased in other shared cell types
(Figure S10D). Similar to the XIST expression, for all time points and shared cell types,
we detected lower expression levels of SNRPN in the Patient, compared to the Control
cells, except for the CM/UNK cells (Figure 3). Likewise, for two other imprinted genes at
chr15q11.2, we found PWAR6 as an underexpressed DEG in 13 of 14 subtypes, a threshold
DEG in six subtypes, a top ten DEG in four cell subtypes, an NDN as an underexpressed
DEG in 11 of 14 subtypes, a threshold DEG in seven subtypes, and a top ten DEG in four cell
subtypes (Excel Table S2-2). For PEG10 at 7q21, we found variable results across 14 subtypes,
with underexpression in seven and overexpression in four subtypes, as well as identification
as a top ten threshold underexpressed DEG in only D16 CM-A1A2 (Excel Table S2-2). For
MEG3, despite limited expression at all time points (Figures 3 and S10D), we found MEG3
as a top ten overexpressed threshold DEG in two subtypes: D00 PP-A1A2 and D19 EPDC
(Excel Table S2-2). For these imprinted genes, we could not determine allelic expression
due to the lack of informative coding SNV.

3.6. Cell Type-Specific Pathway Enrichment: Dysregulation of Gene Expression and Development
of Cardiac Progenitors and Cardiomyocytes (Workflow Step-IIIA)

Using enrichment analysis of top cell type DEGs (Table 1, Figure S10A,C), we
found evidence for the dysregulation of gene expression and developmental pathways
by ORA (Excel Table S2-3) and GSEA (Excel Table S2-4). For most shared cell types
(Table 1, Figure S10A,C), our results by ORA supported differences in gene regulation
(Excel Table S2-3), involving dosage compensation, epigenetic regulation, and heterochro-
matin formation, attributed to underexpression of three DEGs: LMNA, XIST, and NDN in
Patient cells. Specifically, D00 PP-B and D09B EPDC, were enriched for dosage compen-
sation by the inactivation of the X chromosome (GO:0009048, GO:0007549), as expected,
attributed to XIST underexpression. Similarly, D09B CP-B and D19 EPDCs were enriched
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for epigenetic regulation of gene expression (GO:0040029), attributed to the underexpres-
sion of up to three DEGs: XIST, NDN, and LMNA. For D19 EPDCs, the underexpression of
NDN and LMNA also resulted in enrichment for heterochromatin formation (GO:0031507,
GO:0070828).

Using the enrichment analysis of top DEGs, we also found evidence for differences in de-
velopmental pathways between Patient and Control CPs and CMs (Table 1, Figure S10A,C),
attributed to DEG subsets encoding transcription factors, signaling proteins, and structural
components of cardiac muscle cells and sarcomeres [54,56]. First, we found differences in
CP subtypes at Day 9 by ORA (Excel Table S2-3). D09B CP-A was enriched for ventricular
cardiac muscle cell development or differentiation (GO:0055015, GO:0055012), attributed to
the underexpression of two DEGs, our DCM-study genes LMNA and NKX2-5. In contrast,
for D09B CP-B, overexpression of two DEGs, KRT19, encoding a keratin intermediate
filament protein, and MYL9, encoding a myosin light chain, resulted in enrichment for
myofibril assembly (GO:0030239) and striated muscle cell development (GO:0055002).

For CMs at Days 16 and 19, our results supported differences in developmental and
differentiation pathways (Table 1, Figures 4 and S10A,C). For D16 CM-A1A2, among
top enriched gene sets by ORA (Excel Table S2-3), we found muscle organ development
(GO:0007517), attributed to underexpression of 13 DEG, including NKX2-5 and WNT2,
encoding a highly expressed WNT-signaling protein during cardiac differentiation [57] and
cardiac muscle contraction (GO:0060048, GO:0006941) and actin filament-based movement
(GO:0030048), attributed to the underexpression of 8 to 11 DEGs including CACNA1D
and CACNA1G, encoding voltage-sensitive calcium channels [54]. For D16 CM-A1A2, we
found muscle cell development and differentiation (GO:0055001, GO:0042692, GO:0051146)
by ORA, attributed to overexpression of 23 to 31 genes, including four sarcomeric genes,
ACTC1, ACTN2, CSRP3, and MYH7, as well as Hallmark EMT by GSEA (NES = 1.49,
FDR = 0.007) (Excel Table S2-4), attributed to the upregulation of 23 DEGs, including the
EMT genes CDH2 and XL TIMP1 [58]. For all CM-A subtypes, Patient cells had a higher me-
dian module score for EMT compared to the Control cells at Day 16 (Figures 4A and S10E).

For D19 CM-A1 (Figure 4B), among the top enriched gene sets, we found striated
muscle cell differentiation (GO:0051146) and myofibril assembly/sarcomere organization
(GO:0030239, GO:0045214) by ORA (Excel Table S2-3), attributed to the underexpression
of 7 to 15 DEGs, including LMNA and two genes, SYNPO2L and MYOZ2, encoding
actin binding proteins. For D19 CM-A1, we found cardiac muscle and heart contraction
(GO:0060048, GO:0006941, GO:0003015, GO:0060047, GO:0006936) by ORA, attributed to
the overexpression of 14 to 21 DEGs including five sarcomere genes: MYBPC3, MYL2,
MYL3, TCAP, and TNNI3 and Hallmark myogenesis by GSEA (NES = 1.59, FDR = 0.0074)
(Excel Table S2-4), attributed to the upregulation of 37 DEGs, including the XL DMD
Dystrophin gene and seven sarcomere protein-encoding genes: LDB3, MYBPC3, MYL2,
MYL3, TCAP, TNNC1, and TNNT2. For all CM-A subtypes, Patient cells had a higher
median module score for myogenesis compared to the Control cells at Day 19 (Figure S10E).

3.7. Cell Type-Specific Pathway Enrichment: Dysregulation of Cell Signaling, Metabolism, and
Proliferation (Workflow Step-IIIA)

Using enrichment analysis of top Cell Type DEG (Table 1, Figure S10A,C), we found evi-
dence for dysregulation of signaling, metabolism, and cell cycle control by ORA (Excel Table S2-3)
and GSEA (Excel Table S2-4). For signaling, our results included enriched pathways involv-
ing TGF Beta signaling for CM and mTORC1 signaling for EPDC at Day 16 (Figure 4A),
attributed to DEG subsets encoding secreted proteins, regulatory factors, and downstream
targets [54]. Among the top enriched gene sets in D16 CM-A1A2, we found the trans-
membrane receptor serine/threonine kinase signaling pathway (GO:0007178) by ORA
(Excel Table S2-3) and Hallmark TGF Beta signaling by GSEA (NES = −1.60, FDR = 0.039)
(Excel Table S2-4), attributed to the underexpression or downregulation of 7 to 13 DEGs,
including SMAD6, ID1, ID2, and ID3, encoding negative regulatory factors [54]. For CM-A1
and A2, the Patient cells had a lower median module score for TGF Beta signaling com-
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pared to the Control cells at Day 16 (Figures 4A and S10E). In contrast, D16 EPDC was
enriched for Hallmark Mtorc1 signaling by GSEA (NES = 1.35, FDR = 0.011), attributed
to the upregulation of 43 DEG, including the mTORC1 regulation gene DDIT4 (REDD1)
and the metabolic genes HK2, PGK1, ENO1, and GAPDH for glucose; LDHA for lactate;
and PHGDH and SHMT2 for amino acid metabolism. For EPDC-A1, A2, and B, Patient
cells had a higher median module score for Mtorc1 signaling compared to Control cells
(Figures 4A and S10E).

Our enrichment results supported dysregulation in cell metabolism involving oxida-
tive phosphorylation (OXPHOS), glucose, and nucleotides for different cell types and time
points (Table 1, Figure S10A,C). At Days 0 and 9, our results supported decreased OXPHOS
for Patient PP and CP and increased glycolysis for Patient EPDC (Figure S10C) compared
to the Control cells, attributed to DEG subsets encoding key enzymes, components, and
regulators of the electron transport chain (ETC) and glycolysis [54]. For D00 PP-A1A2,
we found mitochondrial oxidative metabolism (GO:0019646, GO:0042773, GO:0042775,
GO:0006120, GO:0022904) among the top enriched gene sets by ORA (Excel Table S2-3),
attributed to three underexpressed DEGs: DNAJC15, NDUFA3, and NDUFA6. Similarly,
D09B CP-A was enriched for Hallmark oxidative metabolism by GSEA (NES = −1.74,
FDR = 0.00016) (Excel Table S2-4), attributed to the downregulation of 46 DEGs including
multiple ETC-encoding genes. For D09B CP-A, the Patient cells had a lower median module
score for oxidative metabolism compared to the Control cells (Figure S10E). In contrast, for
D09B EPDC, we found glycolytic metabolism (GO:0061621, GO:0061718, GO:0006735) by
ORA, attributed to the overexpression of PFKP, encoding phosphofructokinase in the first
committing step of glycolysis.

At Day 16, our results for CMs supported (Figure 4A) metabolic differences, consis-
tent with increased glucose metabolism and OXPHOS. For D16 CM-A1A2 using GSEA
(Excel Table S2-4), we found Hallmark glycolysis (NES = 1.45, FDR = 0.020), attributed
to the upregulation of 27 DEG, including HK2 and ENO2, encoding enzymes for glucose
metabolism and Hallmark oxidative metabolism (NES = 1.57, FDR = 3.86E−05), attributed
to the upregulation of 72 DEGs, including multiple ETC-encoding genes and three DEGs
overlapping glycolysis. For all CM-A subtypes, Patient cells had a higher median mod-
ule score for both glycolysis and oxidative metabolism compared to the Control cells at
Day 16 (Figures 4A and S10E). Likewise, for D16 CM-A1A2 by ORA (Excel Table S2-3),
we found mitochondrial oxidative metabolism (GO:0019646, GO:0042773), attributed to
16 overexpressed ETC-encoding genes, including COX6A2, COX7A1, and CYCS, not found
by GSEA.

In contrast to CM at Day 16, our results for EPDCs supported increased glucose and
nucleotide metabolism for the Patient, compared to the Control EPDCs, consistent with
metabolic selection by lactate enrichment [59]. For D16 EPDCs (Figure S10C), we found
purine ribonucleotide metabolism (GO:0009150, GO:0006163, GO:0072521, GO:0019693) and
generation of precursor metabolites and energy (GO:0006091) by ORA (Excel Table S2-3),
attributed to the upregulation of 11 to 12 DEGs, including PFKP, TPI1, PKM, and GAPDH,
encoding enzymes for glycolysis and gluconeogenesis, and TKT, HINT1, and PAICS, encod-
ing enzymes for nucleotide metabolism.

In addition, for CM at Day 16, we found differences in cell proliferation (Figure 4A). D16
CM-A1A2 was enriched for Hallmark Myc targets V1 by GSEA (NES = 1.47, FDR = 0.004)
(Excel Table S2-4), attributed to the upregulation of 36 DEGs encoding targets of the MYC
transcription factor that promote cell growth and proliferation, including ten spliceosome
genes: HNRNPA2B1, HNRNPA3, HNRNPD, HNRNPR, LSM7, SNRPD2, SNRPG, SRSF2,
SRSF3, and TXNL4A [54,60]. For CM-A1 and A2, the Patient cells had a higher median
module score for Myc targets V1 compared to Control cells at Day 16 (Figures 4A and S10E).
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Figure 4. Cell type-specific differentially expressed genes (cell type DEGs): enrichment. Our
comparative analyses (Patient vs. Control cells) included cell type-specific differential expression and



Cells 2024, 13, 1479 14 of 34

enrichment using integrated data at four time points: D00, D09B, D16, and D19. We identified cell
type DEGs in 14 pairs of ‘balanced’ cell types/subtypes, with 71,541 total cells. (A) Day 16 enrichment.
Shown are GSEA [61] results using Cluster Profiler [62] (top panel) for 8639 CM-A1A2 cells and
3133 EPDC, with numbers of DEG and enriched MSigDB Hallmark gene sets, dot plots with the
normalized enrichment score (NES) and adjusted p-values, and GSEA enrichment plots. We used
module scoring in Seurat (bottom panel) to compare the expression patterns of key DEGs in enriched
gene sets for Subset-A data (12,700 CM) and Subset-B data (3133 EPDC). For each gene set, shown are
UMAP plots with cell subtype and module scores, as well as violin plots with boxplot by cell subtype,
condition, and cell subtype–condition. Overall, these results at Day 16 support the dysregulation
of TGF Beta signaling, EMT developmental pathway, OXPHOS and glycolysis metabolism, and cell
proliferation (via MYC target genes) in Patient CMs and mTORC1 signaling in Patient EPDCs. (B) Day
19 enrichment. Shown are cell type DEG results using Seurat and EnhancedVolcano [63] (top panels)
and ORA [64] results using Cluster Profiler [62] (bottom panels) for 9978 CM-A1 cells and 2258 EPDC
with the UMAP plot of cell subtypes, number of threshold DEGs, and volcano plot [63] with top
ten DEGs labeled, number of under/overexpressed DEGs and enriched GO biological processes
gene sets, dot plots with gene ratio and adjusted p-values, and enrichment maps. Overall, these
results at Day 19 support the dysregulation of cardiogenesis, with both underexpressed DEGs,
including LMNA, and overexpressed DEGs, including sarcomere genes, in Patient CMs, as well
as epigenetic/heterochromatin dysregulation, with underexpression of XIST, NDN, and LMNA, in
Patient EPDCs.

3.8. Single Lineage for Pluripotent Cells and Lineage Bifurcation for Cardiac Progenitors into
Cardiomyocytes and EPDCs in Patient and Control Data (Workflow Step-IIIB)

For the single subset data (n = 7: 22,326 total cells) for selected cell subtypes of
one condition (Table S10) and for the integrated subset data (n = 2: 62,488 total cells) of
18 paired subtypes (Figure S7A, Table S11), we conducted trajectory inference, testing for
lineage DEGs, and enrichment analyses (Table 1, Figures 5–7, S11 and S12, Excel Table S3).
The results for the control single subset data included three single trajectories (PP-A to
PP-B, CMESO to CP, CP-A to CM-A) and one bifurcating trajectory (ME to CMESO and
ENDO) (Figure S11A). The results for the integrated subset data consisted of two parts:
D00 PP cells (19,346 total cells) with a single trajectory from PP-A to PP-B (PP lineage)
(Figures 5 and S12B,C), and D09B, D16, and D19 CP, CM, and EPDC cells (43,142 total cells)
with a bifurcating trajectory starting at CP-1 and ending at CM-2 (CP Lineage-1) and EPDC
(CP Lineage-2) (Figures 6, 7 and S12B,D). Between conditions, we found differences in
topology and progression for the PP and CP lineages and in the rate of differentiation
between the CP Lineage-1 for CMs and the CP Lineage-2 for EPDCs (Figure S12A).

3.9. Lineage-Specific Differential Expression: Non-Coding RNA XIST, Sixth Imprinted Gene
MEG8, and Cell-Surface Glycoprotein Encoding Gene GPC1 (Workflow Step-IIIB)

Across three lineages, we found equal proportions of Patient (50%) and Control (50%)
cells (Table S11) and variable numbers of lineage DEGs between conditions (Figure S12A).
For example, we identified fewer total DEGs between conditions (CT lineage DEGs) for
the PP lineage (924 DEGs) compared to two CP lineages (2335 global DEGs). Between the
two CP lineages, we found fewer total DEGs between conditions (CT lineage DEGs) for CP
Lineage-1 into CMs (1795 DEG) compared to CP Lineage-2 into EPDCs (2216 DEG).

For all three lineages, consistent with our cell type DEG results, we found the XIST non-
coding RNA gene as the highest ranked or among top 25 CT lineage DEGs (Excel Table S3-2).
For all three lineages, we found underexpression of XIST in Patient compared to Control
PP cells along all pseudotime points (Figures 5A and 6A). In addition, we found a sixth
imprinted gene, MEG8, at 14q32.2 differentially expressed between the Patient and Con-
trol cells [54]. For the PP lineage, we found MEG8 among the top CT lineage DEGs and
for the CP to EPDC lineage, as the highest ranked CT lineage DEGs (Excel Table S3-2),
with overexpression of MEG8 in the Patient, compared to the Control PP cells, along all
pseudotime points (Figure 5A). For both CP lineages (Excel Table S3-3), top CT lineage
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DEGs included GPC1 encoding Glypican Proteoglycan 1, a cell-surface glycoprotein for
growth regulation [54], with overexpression of GPC1 in the Patient, compared to Con-
trol cells, along all pseudotime points (Figure 6A). For all three lineages, LMNA expres-
sion was lower in the Patient, compared to the Control cells, at most pseudotime points
(Figures 5A and 6A); however, the top CT lineage DEGs did not include LMNA.

3.10. Lineage-Specific Pathway Enrichment: Regulation of Gene Expression, Cell Signaling,
Proliferation, and Homeostasis (Workflow Step-III: Lineage Enrichment)

Using enrichment analysis of the top Lineage DEGs (Table 1, Figures 5–7 and S12A),
we found evidence for the dysregulation of pathways consistent with our analyses of the
top cell type DEGs. For the PP lineage, we found four enriched gene sets, compared to none
for the CP lineages by ORA and GSEA. For the CP lineages, we found 19 enriched gene
sets for Lineage-1 for CMs, compared to none for Lineage-2 for EPDCs by ORA and GSEA.
Furthermore, we found additional enriched gene sets after clustering the top Lineage DEGs
into smaller groups by hierarchical cluster analysis.

Consistent with our cell type DEG results, we also found evidence for differences
in gene regulation for two lineages: the PP lineage and the CP to EPDC lineage (Table 1,
Excel Table S3-4). The PP lineage (Figure 5B and Figure S12C) was enriched for regulation
of transcription by RNA polymerase II (GO:0006357, GO:0006366) using CT lineage DEG
Group-B, attributed to the underexpression of 12 genes encoding DNA-binding proteins:
10 Zinc-finger proteins (ZNFs), HMBOX1, and HEY2 [54]. For PP-A and PP-B, the Patient
cells had a lower median module score, based on expression of the 12 genes compared
to the Control cells (Figure 5B). For the CP to EPDC lineage, the top DEGs included
ZNF208, underexpressed in the Patient cells along all pseudotime points (Figure 6B). For
the CP to EPDC lineage, we also found enrichment for dosage compensation (GO:0007549,
GO:0009048) using the CT Lineage-2 DEG Group-B, attributed to XIST underexpression
(Figure S12D).

In each CP lineage, we also found evidence for differences in cell signaling and pro-
liferation by ORA (Table 1, Excel Table S3-4). The CP-to-CM lineage (Figures 7 and S12D)
was enriched for regulation of the BMP signaling pathway (GO:0030510, GO:0030509,
GO:0071773, GO:0071772) using the CT Lineage-1 DEG Group-D, attributed to overexpres-
sion of four DEGs: BMP4, XL GPC3, FST, and LRP2, encoding four regulatory proteins [54].
For CM-1, the Patient cells had a greater median module score based on BMP4, GPC3, FST,
and LRP2 expression, compared to the Control cells (Figure 7), consistent with our cell type
DEG results for TGF Beta signaling in D16 CM-A1A2 (Figure 4A). The CP-to-CM lineage
was also enriched for regulation of cellular response to growth factor stimulus (GO:0090287)
using the CT Lineage-1 DEG Group-C, attributed to the overexpression of seven DEGs such
as GPC1 and MT3, encoding Metallothionein 3, a growth inhibitory factor [54]. For CP-1,
CP-2, and CM-2 cells, the Patient, compared to the Control cells, had a greater median
module score based on the expression of these seven DEGs (Figure S12D). For the CP to
EPDC lineage (Figure S12C), we found enrichment for the regulation of cyclin-dependent
protein serine/threonine kinase activity (GO:0000079, GO:0071900, GO:1904029) using the
CT Lineage-2 DEG Group-C, attributed to overexpression, primarily in CP cells, of two
DEGs: CDKN3 and CCNB2, encoding Cyclin B2 in TGF Beta-mediated cell cycle control [54].

Finally, for two lineages, the PP lineage and the CP Lineage-1, our results included
evidence for differences in homeostasis by ORA (Table 1, Excel Table S3-4). The PP lin-
eage (Figures 5B and S12C,D) was enriched for zinc/metal ion homeostasis (GO:0055065,
GO:0055069, GO:0072507, GO:0006875, GO:0072503) using the CT lineage DEG Group-A,
attributed to the overexpression of 5 to 11 DEGs, including MT1E, MT1F, MT1G, and MT1H,
encoding four metallothionein proteins that bind heavy metals, and BNIP3, encoding BCL2
Interacting Protein 3, a pro-apoptotic factor [54]. For PP-A and PP-B, the Patient, compared
to the Control cells, had a higher median module score, based on the expression of 11 genes
(Figure 5B). Likewise, the CP-to-CM lineage (Figures 7 and S12D) was enriched for metal
homeostasis and response to zinc (GO:0006882, GO:0071294) and copper (GO:0071280,
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GO:0046688) ions using the CT Lineage-1 DEG Group-C, attributed to the overexpression of
three DEGs, such as MT1X and MT3, also encoding metallothionein proteins [54]. Similar
to the PP lineage, the Patient, compared to the Control cells, had a higher median module
score based on expression of the five genes (Figure 7).
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Figure 5. Lineage-specific differentially expressed genes (lineage DEGs): top DEGs and enrich-
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condiments [51] (top right), and smoother plots and gene count plots using TradeSeq [66] (bottom). 
(A) PP Lineage: top DEGs in 19,346 total cells. We identified 97 conditional test DEGs that clustered 
into two groups: A (74 genes) and B (23 genes). Top DEGs included XIST (#1), underexpressed, and 
the imprinted gene MEG8, overexpressed in Patient PPs, along all pseudotime points. LMNA was 
not found as a lineage DEGs; however, LMNA expression was lower in Patient compared to Control 
PPs at all pseudotime points. (B) PP lineage: enrichment. Shown are ORA enrichment results using 
Cluster Profiler [62] (left panel) with DEG numbers by group and enriched GO BP gene sets (GSs), 
top GSs, key DEGs, and enrichment maps. To compare expression of key DEGs in enriched GSs, we 
used Seurat Module Scoring (right panel) and violin plots with boxplots. Results support dysregu-
lation of metal homeostasis, with overexpression of 5 to 11 genes from DEG Group-A, including 
four metallothionein protein (MT) genes and RNA pol II transcription, with underexpression of 12 
DEGs from DEG Group-B, including 10 Zinc-finger protein (ZNF) genes in Patient PPs. 
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Figure 5. Lineage-specific differentially expressed genes (lineage DEGs): top DEGs and enrichment
for pluripotent lineage. Our comparative analyses (Patient vs. Control) included lineage-specific
differential expression and enrichment using integrated data of 18 shared subtypes (62,488 total cells).
This included D00 pluripotent (PP) subtypes for the PP lineage (19,346 total cells), a single tra-
jectory from PP-A to PP-B. Shown are UMAP plots with trajectory and principal curves using
Slingshot [65] (top left), a heat map by condition, along pseudotime points using pheatmap and
condiments [51] (top right), and smoother plots and gene count plots using TradeSeq [66] (bottom).
(A) PP Lineage: top DEGs in 19,346 total cells. We identified 97 conditional test DEGs that clustered
into two groups: A (74 genes) and B (23 genes). Top DEGs included XIST (#1), underexpressed, and
the imprinted gene MEG8, overexpressed in Patient PPs, along all pseudotime points. LMNA was
not found as a lineage DEGs; however, LMNA expression was lower in Patient compared to Control
PPs at all pseudotime points. (B) PP lineage: enrichment. Shown are ORA enrichment results using
Cluster Profiler [62] (left panel) with DEG numbers by group and enriched GO BP gene sets (GSs), top
GSs, key DEGs, and enrichment maps. To compare expression of key DEGs in enriched GSs, we used
Seurat Module Scoring (right panel) and violin plots with boxplots. Results support dysregulation
of metal homeostasis, with overexpression of 5 to 11 genes from DEG Group-A, including four
metallothionein protein (MT) genes and RNA pol II transcription, with underexpression of 12 DEGs
from DEG Group-B, including 10 Zinc-finger protein (ZNF) genes in Patient PPs.

3.11. Decreased Lamin A/C Protein Levels for Patient Cells at Day 19

To compare Lamin A/C protein levels, we differentiated three iPSC pairs as biological
replicates (BRs), three Patient-derived iPSCs (PA1, PA2, and PA3) and three Control iPSCs
(CA1-B, U2, and CA3); obtained protein lysates from differentiated cells at Day 19; repeated
Western blot three times (TR blots x3) (Figures 8A and S13); and quantified the protein levels
for Lamin A, Lamin C, and total Lamin A + C as normalized ratios (NRs) (Table S12A).
A comparison of the Control (n = 3: CA1-B, U2, CA3) vs. Patient (n = 3: PA1, PA2,
PA3) data showed a decrease in mean protein levels for Lamin A, Lamin C, and total
Lamin A + C in the Patient, compared to the Control cells (Figure 8B, Table S12B); however,
these differences were not statistically significant (Lamin A + C: t = 1.66, p = 0.172, Lamin A:
t = 1.59, p = 0.187, Lamin C: t = 1.68, p = 0.168). In our pairwise comparisons, statistical
analysis of fold change revealed a significant decrease in the protein levels for Lamin A + C
for PA1 (−81%), compared to CA1 (t = 27.1, p < 0.0001), and PA2 (−51%), compared to
U2 (t = 10.2, p < 0.001). However, there was no significant difference for PA3 (−0.34%)
compared to CA3 (t = 0.028, p = 0.98) (Figure 8C, Table S12C). Our analyses also showed a
similar, acceptable CV for all the pairs (mean CV = 21.6% ± 4.5%) and % changes twice as
large the CV for PA1 and PA2, but not for PA3 (Table S12C).
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differential expression and enrichment using integrated data of 18 shared subtypes (62,488 total cells).
This included D09B, D16, and D19 cardiac progenitor (CP), CM, and EPDC subtypes for the CP
lineages (43,142 total cells), a bifurcating trajectory starting at CP-1 and ending at CM-2 (Lineage-1:
CPs to CMs) and EPDCs (Lineage-2: CPs to EPDCs). Shown are UMAP plots with trajectory and
principal curves using Slingshot [65] (top left), heat map by condition, along pseudotime points,
using pheatmap and condiments [51] (top right), and smoother plots and gene count plots, using
TradeSeq [66] (bottom). (A) CP Lineage-1: CPs to CMs—Top DEG. We identified 391 total conditional
test DEGs, with the top 100 DEGs clustered into four groups: A (10 genes), B (10 genes), C (59 genes),
and D (21 genes). The top DEGs included XIST (#1), underexpressed, and GPC1 (#2), overexpressed
in Patient cells, along all pseudotime points. (B) CP Lineage-2: CPs to EPDCs—top DEGs. We
identified 25 total conditional test DEGs that clustered into three groups: A (19 genes), B (3 genes),
and C (3 genes). Top DEGs included XL DIAPH2, overexpressed, and ZNF208, underexpressed in
Patient cells, along all pseudotime points and cell cycle gene CCNB2, overexpressed in Patient CP
cells. Similar to the PP lineage, LMNA was not identified as a DEG in both CP lineages with lower
expression in Patient compared to Control cells at all pseudotime points.
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Figure 7. Lineage-specific differentially expressed genes (lineage DEGs): cardiac progenitor
lineage-enrichment. For Lineage-1: CP into CM, shown are ORA enrichment results using Cluster
Profiler [62] (left panel) with numbers of DEGs by group and enriched GO BP gene sets (GSs), top
GSs, key DEGs, and enrichment maps. To compare the expression of key DEGs in enriched GSs, we
used Module Scoring in Seurat (right panel) and violin plots with boxplots. For Lineage-1: CPs into
CMs, these results support dysregulation of Growth Factor (GF) Response with overexpression of
seven Group-C DEGs, including GPC1 and MT3, metal homeostasis with overexpression of three
Group-C DEGs, including two metallothionein proteins (MT1X and MT3) genes, and BMP signaling
pathway, with overexpression of four Group-D DEGs: BMP4, XL GPC3, FST, and LRP2.
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Figure 8. Lamin A/C protein levels at Day 19. (A) Western blot (WB). We performed immunoblotting
on lysates from differentiated cells with three biological replicates (BRs) at Day 19 for Patient (PA1,
PA2, and PA3) and Control (CA1-B, U2, and CA3) iPSC lines. The image (Blot 3) shown was taken
using the Azure c600 imaging system with fluorescent detection in red for Lamin A (74 kDa) and
Lamin C (62 kDa) and in green for Beta-Actin (42 kDa) from Control fibroblast (CA1) (lane 1, positive
control) and the three age- and sex-matched pairs: CA1 and PA1 (lane 2 and 3), CA3 and PA3 (lane 4
and 5), and U2 and PA2 (lane 6 and 7). Positions and sizes of molecular weight (MW) marker proteins
are given on the left margin. (B) Lamin A/C quantification: Controls vs. Patients. We measured the
band volume (BV) for Lamin A, Lamin C, and Beta-Actin using AzureSpot software (v2.2.167) and
calculated normalized ratio (NR = lamin BV/Beta-Actin BV) of each sample (CA1-B, PA1, U2, PA2,
CA3, and PA3) for three WB experiments (Blot 1–3) as technical replicates (TRs). Comparison of the
Control (n = 3 BRs: CA1-B, U2, CA3) vs. Patient (n = 3 BRs: PA1, PA2, PA3) data showed a decrease
in mean protein levels for Lamin A, Lamin C, Lamin A + C in the Patient, compared to Control cells;
these differences were not statistically significant (p > 0.05). Error bars denote SD of the mean protein
levels of BRs. (C) Pairwise comparisons: fold change of total lamin A/C. For each matched pair, we
calculated fold change for Lamin A + C by dividing the Control and Patient protein levels by the
Control protein level. Each chart shows the fold change from three TRs (Blot 1–3) as individual data
points and mean fold change shown as column. Statistical analysis of the fold change revealed a
significant decreases in protein level for Lamin A + C of PA1 (**** p < 0.0001) and PA2 (*** p < 0.001)
but no significant difference for PA3 (p = 0.98) compared to matched Control.
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Table 1. Enrichment results for top cell type and lineage DEGs.

Cell Type/Subtype Process/Pathway a Method Expr #DEGs b Key Cell Type DEGs

D00 PP-A1A2 OXPHOS ORA UNDER 3 DNAJC15, NDUFA3, NDUFA6
D00 PP-B Dosage compensation ORA UNDER 1 XIST (XL)

D09B CP-A OXPHOS GSEA UNDER 46 Electron Transport Chain genes
Muscle dev/diff ORA UNDER 2 LMNA, NKX2-5

D09B CP-B Epigenetic gene expr ORA UNDER 2 XIST (XL), NDN
Muscle/myofibril dev ORA OVER 2 KRT19, MYL9

D09B EPDC Dosage compensation ORA UNDER 1 XIST (XL)
Glycolysis ORA OVER 1 PFKP

D16 CM-A1A2 TGF Beta signaling GSEA UNDER 7 SMAD6, ID1, ID2, ID3
RSTK signaling ORA UNDER 13 ID1

Muscle contraction ORA UNDER 8–11 CACNA1D, CACNA1G
Muscle development ORA UNDER 13 NKX2-5, WNT2

Glycolysis GSEA OVER 27 HK2, ENO2
OXPHOS GSEA OVER 72 Electron Transport Chain genes
OXPHOS ORA OVER 16 Electron Transport Chain genes

Myc targets GSEA OVER 36 Spliceosome genes x10, TYMS
Muscle dev/diff ORA OVER 23–31 ACTC1, ACTN2, CSRP3, MYH7

EMT GSEA OVER 23 CDH2, TIMP1 (XL)

D16 EPDC mTORC1 signaling GSEA OVER 43 HK2, PGK1, ENO1, GAPDH, LDHA,
PHGDH, SHMT2

Nucleotide metabolism ORA OVER 11–12 PFKP, TPI1, PKM, GAPDH, TKT, HINT1,
PAICS

Precursor Metabolites ORA OVER 12 PFKP, TPI1, PKM, GAPDH, TKT
D19 CM-A1 Muscle differentiation ORA UNDER 7–15 LMNA, SYNPO2L, MYOZ2

Myogenesis GSEA OVER 37 LDB3, MYBPC3, MYL2, MYL3, TCAP,
TNNC1, TNNT2, DMD (XL)

Muscle contraction ORA OVER 14–21 MYBPC3, MYL2, MYL3, TCAP, TNNI3
D19 EPDC Epigenetic gene express ORA UNDER 3 LMNA, XIST (XL), NDN

Heterochromatin form ORA UNDER 2 LMNA, NDN

Lineage Process/Pathway a Method Expr #DEGs b Key Condition Test Lineage DEGs

PP Lineage:
PP-A to PP-B Transcription ORA UNDER 12 Zinc-finger protein (ZNF) genes x10,

HMBOX1, HEY2
Metal homeostasis ORA OVER 5–11 MT1E, MT1F, MT1G, MT1H, BNIP3

CP Lineage-1:
CP to CM Growth Factor response ORA OVER 7 GPC1, MT3, FOXD1, PMEPA1, CCBE1,

DCN, SFRP5
BMP signaling pathway ORA OVER 4 BMP4, GPC3 (XL), FST, LRP2

Metal homeostasis ORA OVER 3 MT1X, MT3, SLC39A4
CP Lineage-2:
CP to EPDC Dosage compensation ORA UNDER 1 XIST (XL)

Cyclin kinase activity ORA OVER 2 CCNB2, CDKN3
a Enriched gene set using Cluster Profiler [62]: gene ontology biological process by ORA [64] or molecular
signatures database Hallmark gene set by GSEA [61]. b Number (#) of DEG in enriched gene set by ORA or
in leading edge subset by GSEA. Abbreviations: DEG, differentially expressed genes; expr, expression; PP,
pluripotent; CP, cardiac progenitors; EPDC, epicardium-derived cells; CM, cardiomyocyte; OXPHOS, oxidative
phosphorylation; dev, development; diff, differentiation; EMT, epithelial-mesenchymal transition; RSTK, receptor
serine/threonine kinase; form, formation; ORA, over-representation analysis; GSEA, gene set enrichment analysis;
UNDER, underexpressed; OVER, overexpressed; XL, X-linked.

4. Discussion

To investigate possible molecular mechanisms of LMNA-related DCM due to a c.357-
2A>G splice-site mutation, we used a Patient-derived iPSC model of CM differentiation,
serial scRNA-seq studies, and a comprehensive bioinformatics workflow. Our main find-
ings include: 1. model complexity with heterogenous cell types, possible subtypes, and
lineages after sequential QC data processing and multi-level analyses; 2. differential ex-
pression of genes, including LMNA and enriched gene sets for cell signaling, cardiogenesis,
and EMT involved in gene regulation and cell development in specific LMNA-mutant cell
types and lineages; 3. differential expression of XL genes, including XIST, six imprinted
genes, and gene sets for regulation of metabolism, homeostasis, and proliferation. In our
iPSC-derived model for Lamin A/C haploinsufficiency, our findings support a possible
molecular mechanism involving cell type and lineage-specific dysregulation of gene expres-
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sion in epigenomic developmental programs for PPs, CMs, and EPDCs. We also discuss
the challenges of data interpretation in our iPSC-derived model.

Complexity of iPSC-derived model and comparisons to previous serial scRNA-seq
studies of normal CM differentiation. After iPSC validation, we differentiated one LMNA-
mutant line derived from an affected female (Patient) and two non-mutant lines derived
from her unaffected sister (Control) for scRNA-seq. After sequential QC data processing,
we identified 110,521 total high-quality cells. We conducted multi-level analyses of high-
quality cells by unsupervised clustering and annotation using known markers (88 total
genes) to identify main cell types and possible cell subtypes in single-sample, merged,
and integrated data, as well as subset data. Here, we compared our results to previous
scRNA-seq studies [27–36,67].

For our Control samples (65,324 high-quality cells), collected across all seven time
points (D00 to D30), we identified ten main cell types: PP, ME, CMESO, ENDO, ECTO,
ENDOTH, CP, CM, EPDC, and UNK. These main cell types are consistent with seven
serial scRNA-seq studies on control human iPSCs [29,30,32,33,35,36] and human ESCs [31],
differentiated into CMs using the Wnt small molecule method. One exception was ECTO,
identified as a main cell type in only two [30,33] of seven studies. The absence of ECTO in
five studies [29,32,33,35,36] may be due to the small proportion of ECTO cells (2% for D09B
CA1), the lack of cell annotation markers, such as PAX6 or SOX1 [68], and/or biological
variability of different control iPSC lines.

By subclustering, we identified many possible cell subtypes, including four PP sub-
types, two CP subtypes, two CM subtypes, and six further differentiated CM and EPDC
subtypes at Day 30. Among our PP subtypes at Day 0, the predominant PP-A subtype (88%)
represents a combined cluster, after regression of CC scores of cells, of two reported main
PP subpopulations: Core and Proliferative PPs [27,28]. For our three smaller subtypes, PP-B
(3%) and PP-C (6%) might be similar to the reported smaller PP subpopulations: early and
late primed for differentiation [27], while PP-D (3%) comprises partially differentiated cells
with lower expression of a core PP marker POU5F1 [69] and the undifferentiated cell marker
CMND [70]. Within our CP cell type at Day 9A and 9B, CP cells subclustered into subtype
CP-A, with a higher expression of HAND1 and HAPLN1 and a similar expression pattern
to early CMs, and into subtype CP-B, with a higher expression of GATA4 and HAND2 and
a similar expression pattern to early EPDCs. Thus, these two subtypes comprise distinct
progenitor cells for CMs (CP-A) and EPDCs (CP-B), similar to two reported progenitor
subpopulations at Day 5: the CM precursor (D5:S1) and the cardiovascular progenitor
(D5:S3) [29].

We also identified possible cell subtypes for CMs and EPDCs. Within our CM cell
type at Days 9B, 16, and 19, cells subclustered into subtype CM-A (70%), with a higher
expression of multiple CM markers and Ribosomal Protein Genes, and subtype CM/UNK-
B (30%), with a lower expression of most CM markers, except for TTN, and greater levels
of %Mt. The predominant CM subtype, CM-A, is consistent with reported single CM
populations, committed CMs (D15:S2) [29], and D11-15 early CMs [36]. In contrast, subtype
CM/UNK-B is unique to our study, likely due to cell type-specific QC processing; we
used a high %Mt threshold level for low-quality cells only for non-CM cells because of the
higher Mt content in heart tissues [71,72]. Thus, our approach allowed the identification
of the subtype CM/UNK-B, cells typically discarded prior to annotation. The subtype
CM/UNK-B will need to be evaluated further as either low-quality/dying CM or a possible
unique CM subtype characterized by a high mitochondrial content. Finally, at Day 30,
we identified later-differentiated CM subtypes: ATR-CM and VENTR-CM. One of three
similar scRNA-seq studies at Day 30 reported six distinct cell populations as atrial and
ventricular cells using the Fluidigm C1 system for 43 TNNT2+ ACTC1+ subclustered
cells [30]. Without subclustering at Day 30, two other studies reported a single CM cell
type as late CMs [36] and as definitive CMs (D30:S2) [29]. Our results demonstrate the
importance of subcluster analyses for CMs and later time points for identification and
further analysis of differentiated subtypes [34].
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Subcluster analyses for the EPDCs at Day 30, without metabolic enrichment, identified
four possible subtypes: EPI, CFIBRO, VSM, and an unspecified EPDC subtype. These
subtypes were not observed for EPDC at earlier time points, at Day 16 and 19, with
metabolic enrichment. The three similar scRNA-seq studies at Day 30 did not report these
EPDC subtypes after metabolic enrichment [29,30,36]. Similar to CMs, two studies that did
not perform subcluster analyses reported a single EPDC cell type, identified as epicardial
cells [36] and non-contractile cells (D30:S1) [29]. Taken together, our results provide, first,
additional evidence for the continued presence of EPDCs [67] despite metabolic enrichment
for CMs by glucose deprivation/lactate enrichment [59] and second, at later time points,
four possible EPDC subtypes requiring further analysis.

After the identification of cell types and subtypes, we analyzed single and paired
subset data using Slingshot and found multiple lineages with single trajectories and two
bifurcating trajectories. For the Control single-subset data, we identified three single
trajectories (PP-A to PP-B, CMESO to CP, CP-A to CM-A) and one bifurcating trajectory
(ME to CMESO and ENDO). For the paired subset data of primarily “balanced” subtypes
(62,488 total cells), we also identified a single trajectory at Day 0 (PP-A to PP-B) for both the
Control and Patient cells and a second bifurcating trajectory (CPs into CMs and EPDCs).
Our first lineage bifurcation at Day 2 (ME into CMESO and ENDO) is similar to the
reported lineages using different trajectory methods, including Scdiff [29], Monocle 2 [31],
and STREAM [36]. Our second lineage bifurcation of CPs at Day 9 (CPs into CMs and
EPDCs) is consistent with previous reported lineages: cardiac precursor cells (D5:S1 and
D5:S3) into committed CMs (D15:S2) and non-contractile cells (D15:S1) [29], D5 CPs into
D7-D15 CMs and CFIBRO [35], and D5-D7 late CPs into D11-D15 early CMs and D5-
D15 epicardial progenitors/epicardial cells [36]. Overall, our results for main cell types,
several subtypes, and lineages with at least two bifurcations are consistent with previous
scRNA-seq studies, supporting the validity of our complex iPSC-derived model.

Differential expression of LMNA and gene sets for cell signaling, cardiogenesis, and
EMT involved in epigenetic gene regulation and cell development for CMs and EPDCs
with Lamin A/C haploinsufficiency. Using integrated data, we conducted comparative
analyses that identified two types of DEGs for the Patient, compared to the Control cells:
cell type DEGs and lineage DEGs. We identified the cell type DEGs using four shared cell
types (PPs, CPs, CMs, EPDCs) in 14 primarily ‘balanced’ subtypes (71,541 total cells). We
identified the lineage DEGs using 18 paired subtypes (62,488 total cells) that derived three
lineages: a single trajectory from PP-A into PP-B at Day 0, and a bifurcating trajectory from
CPs into CMs (CP Lineage-1) and EPDCs (CP Lineage-2) across Days 9, 16, and 19. Using
the top cell type and lineage DEGs, pathway enrichment by ORA and GSEA provided
evidence for the dysregulation of multiple biological processes and important insights into
LMNA-related DCM pathogenesis.

Among top cell type DEGs, we found that our DCM study gene, LMNA, was underex-
pressed in the Patient cells compared to the Control cells for shared cell types and lineages.
In the Control PPs at Day 0, we detected limited LMNA expression, whcih increased along
normal CM differentiation, as reported [22–24]. In the Patient PPs, we observed a similar
pattern but at lower levels, with the greatest differences in LMNA expression at Day 19
CM-A1 and EPDC. We confirmed decreased Lamin A/C protein expression at Day 19 by
WB, using two additional affected patients from the family, with matched controls. In
addition, for all shared cell types detected, we found evidence for primarily monoallelic
expression of the normal LMNA allele in Patient cells, similar to our previous results on
LMNA-mutant dermal fibroblasts derived from the study family [49]. Our results support
a molecular mechanism of LMNA haploinsufficiency for both cell types, CMs and EPDCs,
in our iPSC-derived model.

To evaluate possible effects of LMNA haploinsufficiency and other top cell type DEGs,
we used pathway enrichment, which provided evidence for differences in the regulation
of epigenetic gene expression and cell development between conditions. First, the EPDC
progenitor cells at Day 9 (CP-B) were enriched for epigenetic gene expression, attributed to
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the decreased expression of the non-coding XIST RNA gene that initiates XCI [52] and NDN,
the paternally expressed imprinted gene [73], and for muscle development, attributed to the
increased expression of keratin and myosin light chain protein-encoding genes, KRT19 and
MYL9. EPDC at Day 19 was also enriched for epigenetic expression and heterochromatin
formation, attributed to the decreased expression of LMNA, NDN, and/or XIST.

Using the top lineage DEG pathway enrichment, we found evidence for differences
in the regulation of transcription in all three lineages between conditions. The PP-A
to PP-B lineage was enriched for the regulation of transcription by RNA polymerase II,
with underexpression of 12 genes, including ten Zinc-finger protein (ZNF) genes, such
as ZNF208 [54]. For both CP lineages, our analysis also identified ZNF208 as the top
global lineage DEGs with limited expression in the Patient, compared to the Control CPs,
along CM and EPDC lineages. Zinc-finger proteins bind DNA, regulate gene transcription,
and play roles in many cellular processes, including cell proliferation, differentiation,
and cancer progression [74]. For example, ZNF208 may serve as a tumor suppressor,
with an epigenetic mechanism of differentiation to adenocarcinoma from ZNF208 gene
silencing due to promoter hypermethylation and ZNF208 underexpression [75]. Thus,
it is possible that LMNA haploinsufficiency results in the epigenomic dysregulation of
ZNF gene expression during the differentiation of CPs into EPDCs, a similar pathogenic
mechanism proposed for defective myogenesis in patients with Emery–Dreifuss muscular
dystrophy associated with the LMNA R453W missense mutation [11,76].

For the CM progenitor cells and CMs, our enrichment results provided evidence
for differences between conditions in developmental pathways, including cardiogenesis
and EMT. The CP-A cells were enriched for muscle cell differentiation, attributed to the
decreased expression of LMNA and NKX2-5, which encode a key transcription factor
in cardiogenesis and myocardial regeneration [77,78]. The predominant CM subtype at
Day 16 was then enriched for muscle contraction and development, attributed to the
underexpression of 20 different DEGs, including NKX2-5 and WNT-signaling protein-
encoding gene WNT2, as well as for muscle development and differentiation, attributed to
the overexpression of 31 different DEGs, including the sarcomere protein-encoding gene
ACTC1. At Day 16, the CMs were enriched for EMT, attributed to the upregulation of
23 DEGs, including the mesenchymal marker CDH2 and the known EMT and XL gene
TIMP1 [58]. At Day 19, CMs continued to show enrichment for muscle differentiation,
attributed to the underexpression of 15 different genes, including three DEGs encoding
key components and regulators for sarcomere development (LMNA [79], MYOZ2 [80],
and SYNPO2L [81]) as well as for myogenesis and muscle contraction, attributed to the
overexpression of 49 different DEGs, including the XL DMD gene and sarcomere protein-
encoding genes: MYBPC3, MYL2, MYL3, and TNNT2.

These results for LMNA haploinsufficiency in our iPSC-derived model suggest car-
diomyocyte dysfunction due to the disruption of gene expression in EPDCs and CMs, as
reported in two other iPSC-derived models using bulk RNA-seq for LMNA K117fs [21]
at Day 40 and LMNA R225X at Day 14 [22]. Our results are also similar to those from
studies of Lamin A/C loss-of-function that reported gene expression changes, including the
upregulation for EMT in Lmna −/− mouse heart tissue, using bulk RNA-seq [16]. Another
recent study reported precocious CM development with the upregulation of Nkx2-5 and
sarcomere genes in Lmna −/− mouse ESC-derived CPs and CMs and in LMNA knockdown
iPSC-derived CMs, using bulk RNA-seq and qPCR [24]. Our results for LMNA haploin-
sufficiency in our iPSC-derived model support cell type-specific disruption of epigenomic
developmental pathways for cardiogenesis and EMT in LMNA-mutant CP differentiation
into EPDCs and CMs.

Using enrichment analysis, we also found evidence for differences in cell signaling
pathways involving the TGF Beta superfamily for CMs and mTORC1 for EPDCs at Day 16.
The predominant CM cell type was enriched for RSTK and TGF Beta signaling pathways,
attributed to the underexpression of multiple DEG, including SMAD6, which encodes
a signaling inhibitor [82], and ID1, ID2, and ID3, which encode three Inhibitor-of-DNA-
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Binding proteins, which regulate signaling in heart development [83]. The CP-to-CM
lineage was also enriched for the regulation of BMP signaling pathway, attributed to the
overexpression of four DEGs encoding regulatory proteins involved in heart growth and
development: BMP4 [84], XL gene GPC3 [85], FST [86], and LRP2 [87], as well as the
regulation of response to growth factor, attributed to the overexpression of seven DEGs,
such as GPC1, encoding Glypican Proteoglycan 1, a modulator of signaling pathways
that regulates cell growth, motility, and differentiation [88]. In contrast to the CP-to-CM
lineage, the EPDCs at Day 16 were enriched for the mTORC1 signaling pathway, attributed
to the upregulation of genes involved in the metabolism of glucose, lactate, and amino
acid metabolism.

These results for LMNA haploinsufficiency in our iPSC-derived model suggest that
both CM and EPDC dysfunction due to the dysregulation of TGF Beta and mTORC1 signal-
ing, as reported in previous studies using LMNA-mutant mouse models and the Patient sam-
ples. These studies reported hyperactivation of TGF Beta signaling in Lmna −/− MEF [13]
and in Lmna H222P/H222P mouse cardiomyocytes and heart tissue, with myocardial fibro-
sis and increased collagen expression [14]. Another study reported the hyperactivation of
AKT-mTORC1 in heart tissue from Lmna H222P/H222P mice and from three patients with
the LMNA mutation [15]. A recent study also provided evidence for the dysregulation of the
TGF Beta/BMP pathway and BMP4 overexpression using LAD analysis in LMNA-related
DCM heart tissue [17,18]. In addition, the snRNA-seq study of LMNA-related DCM tissue
showed cell type-specific dysregulation of multiple signaling pathways, including BMP
signaling [38]. Similarly, our iPSC-derived model for LMNA haploinsufficiency supports
altered cell-specific responses to signaling pathways involving TGF Beta/BMP in mutant
CMs and mTORC1 in mutant EPDCs.

Differential expression of X-linked genes, including XIST, six imprinted genes,
and gene sets involved in the regulation of metabolism, homeostasis, and proliferation.
Among the top cell type and lineage DEGs, we found the non-coding XIST RNA gene
that initiates XCI [52]. For XIST, we detected no expression, or lower expression levels of
XIST in the Patient, compared to the Control cells, at all time points and shared cell types.
Despite the limited XIST expression in the Patient cells, we detected primarily monoal-
lelic expression for seven XL genes (PRICKLE3, MAGED2, MAGEH1, KIF4A, ARMCX4,
HTATSF1, and IDS), known to be subject to XCI [55], consistent with the reported retention
of clonal X-inactivation during fibroblast reprogramming and iPSC differentiation [89].
In contrast, for four of five XL genes (CD99, EIF2S3, PLS3, TMEM187) with consistent or
variable XCI escape [55], we detected the biallelic expression of equal proportions across
the Patient cells, compared to the skewed expression across the Control cells, during iPSC
differentiation into CMs and EPDCs, suggesting possible partial X chromosome reactiva-
tion or XCI erosion. Since the nuclear lamina plays an important role in XIST-mediated X
chromosome gene silencing [90,91], we might speculate that our findings for altered XIST
and XL gene expression may be evidence for the disruption of epigenomic developmental
pathways due to Lamin A/C haploinsufficiency.

In addition to XIST, among the top cell type and lineage DEGs, we found six imprinted
genes: SNRPN, PWAR6, NDN, PEG10, MEG3, and MEG8, located at known imprinted
regions. In the Patient, compared to the Control cells, we found decreased expression
for four paternally expressed genes: SNRPN, PWAR6, NDN, at chr15q11.2, and PEG10,
at 7q21 and increased expression for two maternally expressed genes: MEG3 and MEG8,
at chr14q32.2. Since these imprinted genes lacked informative coding SNV, we could not
determine biallelic vs. monoallelic expression. In a genomic imprinting model using mouse
ESCs, the biallelic expression of maternally expressed Meg3 occurred further away from
the nuclear periphery [92]. Similarly, we might speculate that our findings in human cells
with Lamin A/C haploinsufficiency is due to the disruption of epigenomic developmental
pathways, altered genome organization, and subsequent altered or loss of imprinting.
Further studies on a possible role of Lamin A/C in the maintenance of XCI and genomic
imprinting are needed.
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Using top DEGs, we also found metabolic gene signatures consistent with both cell
type and metabolic selection, as previously reported [59,93], but also differences in cell
metabolism between the Patient and Control cells by cell type and lineage. First, the
predominant PP subtype at Day 0 was enriched for OXPHOS, with the ETC genes DNAJC15,
NDUFA3, and NDUFA6 underexpressed in the Patient cells. For the CP subtypes at Day 9,
the CM progenitors were enriched for oxidative metabolism with 46 DEG downregulated in
the Patient cells, while the EPDC progenitors were enriched for glycolytic metabolism with
the phosphofructokinase-encoding gene PFKP, which was overexpressed in the Patient cells.
For both the Control and Patient CMs and EPDCs, we also found unique metabolic gene
signatures, consistent metabolic selection for CMs using lactate oxidation, as previously
reported [59,93], but also EPDC survival, using alternative metabolic pathways. For CMs
and EPDCs at Day 16 (post-metabolic selection), CMs were enriched for glucose metabolism
and OXPHOS, with an overexpression of 98 DEGs, while EPDCs were enriched for glucose
and nucleotide metabolism, with an overexpression of 18 DEGs. Only three DEGs (ATP5ME,
COX4I1, P4HA2) were overexpressed in both CMs and EPDCs.

These results in our iPSC-derived model demonstrated the ability to detect gene sig-
natures associated with specific cell type, metabolic selection, and condition (Patient vs.
Control). Two previous studies reported gene expression changes using bulk RNA-seq
with downregulation of OXPHOS in Lmna −/− mouse heart tissue [16] and mitochondrial
dysfunction in LMNA E342K iPSC-CM [94]. Using snRNA-seq, heart tissues from LMNA pa-
tients showed CM-specific alterations of mitochondrial metabolism and glycolysis through
the upregulation of FNIP2 and CPEB4 [38]. Using scRNA-seq to distinguish between CP,
CM, and EPDC, our results in our iPSC-derived model with Lamin A/C haploinsufficiency
might also suggest an association with metabolic activity dependent on mutant cell type
and lineage. For example, based on our findings, metabolic activity might decrease in CM
progenitors and increase in EPDC progenitors with Lamin A/C haploinsufficiency.

In addition, our results provided evidence for differences in cell homeostasis and
response between Patient and Control cells for two lineages. The PP-A to PP-B and CP
to CM lineages were enriched for metal homeostasis, attributed to the overexpression of
BNIP3, which encodes a pro-apoptotic mitochondrial protein, and metallothionein protein
genes (MT): MT1E, MT1F, MT1G, MT1H, MT1X, and MT3, which encode various heavy
metal binding proteins [54]. The BNIP3 and MT proteins play important roles in the
regulation of normal cell processes, including cell growth, differentiation, mitochondrial
function, and responses to oxidative stress [95,96]. A study on Bnip3 overexpression in
mouse ESCs and iPSCs reported decreased ROS levels and DNA damage and increased
mitochondrial respiration and DNA repair [97]. Another study reported LMNA S143P
iPSC-CM had increased sarcomere disorganization with increased cellular stress due to
hypoxia [98]. Similarly, our enrichment results in our iPSC-derived model for LMNA
haploinsufficiency may suggest the dysregulation of cellular homeostasis and responses to
oxidative stress or hypoxia in LMNA-mutant PPs and CPs to CM lineages.

Finally, our results provided evidence for differences in cell proliferation for CMs
at Day 16 and the CP to EPDC lineage. The predominant CM subtype was enriched
for Hallmark Myc targets V1, with upregulation of 36 DEGs, including ten spliceosome
genes, TYMS, a canonical S-phase marker [99], and other proto-oncogene targets for the
activation of growth-related genes [54,60]. The CP to EPDC lineage was enriched for cyclin-
dependent kinase activity, attributed to the overexpression, primarily in CP cells, of two CC
genes, CDKN3, encoding a cyclin-dependent kinase inhibitor, and CCNB2, encoding Cyclin
B2, required for control at the G2/M transition [54]. Our results, supporting increased
proliferation of CM and EPDC progenitors, agree with the reported increased proliferation
and altered CC progression in Lmna −/− MEF [13] and increased CCNB2 expression in
cancer cell lines with LMNA knockdown [100]. However, our results disagree with the
reported restricted proliferation and delayed CC activity of Lmna −/− mouse CMs [101]
and the downregulation of CC genes in Lmna −/− mouse ESC-derived CPs and CMs and
in LMNA knockdown iPSC-CMs [24]. These discrepancies may involve LMNA genotype
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(haploinsufficiency vs. loss of function), species (human vs. mouse), growth conditions,
including metabolic selection, and possible biological and technical variables in our iPSC-
derived model. Further evaluations using single-cell analyses are required to define cell
type-specific changes in cell proliferation and CC control.

5. Conclusions and Challenges

In our on-going studies, focused on a multi-generation family with a heterozygous
LMNA c.357-2A>G splice-site mutation to identify the possible molecular mechanism of
LMNA-related DCMs [37,40,41], we generated and differentiated iPSC lines, derived from
an affected female (Patient) and her unaffected sister (Control) and conducted scRNA-seq
across multiple time points. To evaluate cell heterogeneity, we used a comprehensive
scRNA-seq bioinformatic workflow with serial, cell type-specific data processing. After
extensive multi-level analyses of 110,521 high-quality cells, we found substantial com-
plexity in our iPSC-derived model: ten main cell types, many possible subtypes, and
several lineages, including the bifurcation of CPs into CMs and EPDCs lineages, consistent
with previous scRNA-seq studies of normal iPSC differentiation. To identify cell type and
lineage-specific mechanisms, we used comparative analyses of Patient and Control cells.
In our analyses of the top cell type and lineage DEGs, we found evidence for the ‘gene
expression’ hypothesis, as proposed in other LMNA disease models. Overall, using our
Patient-derived iPSC model and single-cell transcriptomics, our study supports an asso-
ciation with Lamin A/C haploinsufficiency and cell type and lineage-specific disruption
of epigenomic developmental programs such as gene transcription, cell signaling, and
cardiogenesis and EMT differentiation pathways.

Although our evidence supports the ‘gene expression’ hypothesis and pathway dys-
regulation, as proposed in other LMNA disease models, we acknowledge the limit of our
sample size and the challenges of data interpretation in an iPSC-derived model due to vari-
ability from biological and technical factors, which can influence gene expression, epigenetic
regulation, and cell differentiation. These confounding factors include reported variability
between different iPSC lines and clones [102,103] and variability from the susceptibility for
epigenomic aberrations of human iPSC [104–106].

Thus, we advise caution for our interpretation of the results and emphasize the need
for model improvement and validation in future studies. For our Patient-derived iPSC
disease model, we will first need to resolve or reduce the confounding factors. To address
the variability between iPSC lines and clones, we will need to conduct a larger scRNA-seq
study with both biological replicates and isogenic Control iPSC lines. Biological replicates,
multiple LMNA iPSCs derived from different family members, are needed to determine the
levels of variability in CM differentiation and for gene expression between different LMNA-
mutant iPSC lines and clones [102]. In addition, to minimize variability due to differences
in the genomic background [103], we will need to create a matched set of isogenic Control
iPSC lines by repairing the LMNA mutation in each Patient iPSC line using genome editing
tools such as CRISPR-Cas9 or Base Editing [107,108].

To improve our Patient-derived iPSC disease model, we will also need to address
the susceptibility of normal iPSC lines for epigenomic aberrations, which may influence
multiple biological processes. Reported epigenomic aberrations include altered XIST
expression, XCI erosion, and upregulation of XL genes [106], altered DNA methylation, and
loss of imprinting for many genes, such as SNRPN, NDN, MEG3, PEG10 [104], associated
with somatic reprogramming, molecular memory of cell origin, and cell culturing [106].
A recent study showed the effects of molecular memory in human iPSCs of fibroblast
origin, with retained expression for fibroblast-specific genes and increased expression
for mesoderm progenitor markers such as BMP4, compared to human ESCs [109]. To
address the biological effects of molecular memory, we may try to wipe away the fibroblast
epigenomic memory in our LMNA Patient and Control fibroblast or iPSC lines to create
cells in the naïve pluripotency state (naïve iPSC), which more closely resemble human
ESCs [110], using a new method called transient-naïve-treatment [109].
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By improving our Patient-derived iPSC model using biological replicates, isogenic
Controls, and naïve iPSCs, it might be possible to separate the consequences of LMNA
haploinsufficiency from confounding factors and to continue testing the ‘gene expression’
hypothesis for LMNA-related DCM. Finally, with the newly described role of Lamin A/C
in naïve pluripotency and cardiovascular cell fate [12,24], successfully addressing the
limitations may enable new investigations to evaluate other possible mechanisms, including
epigenomic dysregulation, using naïve iPSC-based models for LMNA-related DCM.
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