Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence—A Narrative Review
Abstract
:1. Introduction
2. Metabolic Effects
3. Local Cardioprotective Effects
3.1. Antifibrotic Effect
3.2. Anti-Apoptotic Effect
3.3. Anti-Inflammatory Effect
3.4. Effects on Mitochondria
3.5. Effects on Sirtuins
3.6. Effects on Vasoactive Agents
4. Clinical Evidence
4.1. Fibrates
Helsinki Heart Study (HHS) [61] | Veterans Affairs High Density Lipoprotein Intervention Trial (VA-HIT) [62] | The Bezafibrate Infarction Prevention (BIP) Study [63] | Lower Extremity Arterial Disease Event Reduction (LEADER) [64] | Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) [65] | The ACCORD-Lipid Study: Implications for Treatment of Dyslipidemia in Type 2 Diabetes Mellitus [66] | |
---|---|---|---|---|---|---|
Year | 1987 | 1999 | 2000 | 2002 | 2005 | 2011 |
Drug | Gemfibrozil | Gemfibrozil | Bezafibrate | Bezafibrate | Fenofibrate | Simvastatin + Fenofibrate |
Dosage | 600 mg TD | 1200 mg OD | 400 mg OD | 400 mg OD | 200 mg OD | Simvastatin 20–40 mg OD and fenofibrate 160 mg OD |
Type of prevention | Primary | Secondary | Secondary | Secondary | Primary | Primary |
Intervention | Randomized, double-blind drug vs. placebo | Drug vs. placebo | Randomized, double- blinded drug vs. placebo | Randomized, blinded drug vs. placebo | Double-blind, placebo-controlled trial | Randomized, multicenter, double 2 × 2 factorial design study |
Mean follow-up | 5 years | 5 years | 6.2 years | 4.6 years | 5 years | 4.7 years |
Patients enrolled | 4081 | 2531 | 3090 | 1568 | 9795 | 5518 |
Inclusion criteria or lipid cut-off | Healthy Patients with non-HDL-C greater than or equal to 200 mg per deciliter | Male < 74 years old with document CAD and the following lipid profile: HDL ≤ 40, LDL ≤ 140, TG ≤ 300. | Patients 45–74 years of age with a history of MI and/or angina TC 180–250 mg/dL, TG < 300 mg/dL, LDL < 180 mg/dL, and HDL < 45 mg/dL | Men with lower-extremity arterial disease. | Patients with T2D and TG 2.31 mmol/L (≥204 mg/dL) | T2D patients who are at high risk for CVD events because of existing CVD or additional risk factors. TG 2.31 mmol/L (≥204 mg/dL) |
Effects in lipid profile | >10% HDL, TC < 11%, <LDL-C 10%, <TG 43% | >6% HDL-C, <31% TG, <4% TC. No differences in LDL | <TG 21%, >HDL 18% | <7.6% TC, <8.1% LDL-C, >8% HDL-C, <23% TG | <11% TC, <12% LDL-C, <29% TG, >5% HDL-C | >HDL 6.3%, <21% TG, No difference in LDL-C between groups |
Clinical benefits |
| <22% of CHD death or AMI. <24% in the composite endpoint of CHD death, nonfatal AMI and stroke. |
|
|
|
|
Indications and Clinical Use of Fibrates in Specific Lipoprotein Disorders
4.2. Thiazolidinediones or Glitazones
Effects of Thiazolidinediones on In-Stent Restenosis and Target Lesion Revascularization: A Meta-Analysis of Randomized Controlled Trials [80] | Secondary Prevention of Macrovascular Events in Patients with Type 2 Diabetes in the PROactive Study (PROspective Pioglitazone Clinical Trial in Macrovascular Events): A Randomized Controlled Trial [83] | Thiazolidinediones Play a Positive Role in the Vascular Endothelium and Inhibit Plaque Progression in Diabetic Patients with Coronary Atherosclerosis: A Systematic Review and Meta-Analysis [75] | Pioglitazone and Risk of Cardiovascular Events in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Trials [84] | Pioglitazone after Ischemic Stroke or Transient Ischemic Attack [85] | |
---|---|---|---|---|---|
Year | 2017 | 2005 | 2022 | 2007 | 2016 |
Drug | Rosiglitazone and Pioglitazone | Pioglitazone | Rosiglitazone and Pioglitazone | Pioglitazone | Pioglitazone |
Dosage | Pioglitazone 30 mg/OD, Rosiglitazone 4 mg/OD | 15–45 mg, depending on tolerability | Rosiglitazone 4 mg/OD, Pioglitazone 15–30 mg/OD | 15–30 mg/OD | 45 mg/OD |
Type of prevention | Secondary | Secondary | Secondary | Primary | Primary |
Intervention | Drug vs. placebo or other anti-diabetic therapy | Drug vs. placebo | Drug vs. placebo | Drug vs. placebo or active comparator | Drug vs. placebo |
Mean follow-up | 6–18 months | 34.5 months | 3–12 months | 3–24 months | 4.8 years |
Patients enrolled | 1350 | 5238 | 451 | 16 390 | 3876 |
Inclusion criteria | Post-percutaneous intervention patients | Patients with T2DM + >6 months macrovascular event | Patients with T2DM + and coronary heart disease or vascular stent surgery suggesting coronary atherosclerosis | Adult patients with T2DM and inadequate glycemic control | Patients with recent ischemic stroke or transient ischemic attack, non-T2DM patients |
Endpoints | The number of patients with angiographic in-stent restenosis and patients required to have target lesion revascularization during follow-up. | Primary: Composite of all-cause mortality, non-fatal infarction, stroke, cute coronary syndrome, intervention in leg or amputation. Secondary endpoint: composite of all-cause mortality, non-fatal myocardial infarction, and stroke. | Changes in vascular endothelial and plaque-related indices after treatment in patients with diabetes combined with coronary atherosclerosis, and to explore potential targets for the protective effects of TZDs in myocardial infarction. | Composite of death, myocardial infarction, or stroke. Secondary outcome measures included the incidence of serious heart failure. | Fatal or nonfatal stroke or myocardial infarction. |
Outcomes | Reduction in ISR, target lesion revascularization and major adverse cardiac events. | No significant reduction of the primary endpoint. Secondary endpoint reduced with statical significance. (0.84, 0.72–0.98, p = 0.027). | Inhibitory effect on plaque progression and a protective effect on the vascular endothelium in patients with diabetes and coronary atherosclerosis. | Lower risk of death, myocardial infarction, or stroke among a diverse population of patients with diabetes. Risk of serious heart failure is increased by pioglitazone, although without an associated increase in mortality. | The risk of stroke or myocardial infarction was lower among patients who received pioglitazone than among those who received placebo. Pioglitazone was also associated with a lower risk of diabetes. |
5. Limitations
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Panorama Epidemiológico de las Enfermedades no Transmisibles en México, Secretaría de Salud, Dirección General de Epidemiología. Junio 2022. Available online: https://www.gob.mx/salud/documentos/panorama-epidemiologico-de-las-enfermedades-no-transmisibles-en-mexico-269304 (accessed on 1 December 2023).
- Ali, M.K.; Pearson-Stuttard, J.; Selvin, E.; Gregg, E.W. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia 2022, 65, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. S2), 25–32. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem. 2019, 166, 502–513. [Google Scholar] [CrossRef]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Cheng, C.K.; Zhang, H.; Luo, J.Y.; Wang, L.; Tomlinson, B.; Huang, Y. Molecular mechanisms and therapeutic perspectives of peroxisome proliferator-activated receptor α agonists in cardiovascular health and disease. Med. Res. Rev. 2023, 43, 2086–2114. [Google Scholar] [CrossRef]
- Sánchez-Aguilar, M.; Ibarra-Lara, L.; Cano-Martínez, A.; Soria-Castro, E.; Castrejón-Téllez, V.; Pavón, N.; Osorio-Yáñez, C.; Díaz-Díaz, E.; Rubio-Ruíz, M.E. PPAR Alpha Activation by Clofibrate Alleviates Ischemia/Reperfusion Injury in Metabolic Syndrome Rats by Decreasing Cardiac Inflammation and Remodeling and by Regulating the Atrial Natriuretic Peptide Compensatory Response. Int. J. Mol. Sci. 2023, 24, 5321. [Google Scholar] [CrossRef]
- Giglio, R.V.; Papanas, N.; Rizvi, A.A.; Ciaccio, M.; Patti, A.M.; Ilias, I.; Pantea Stoian, A.; Sahebkar, A.; Janez, A.; Rizzo, M. An Update on the Current and Emerging Use of Thiazolidinediones for Type 2 Diabetes. Medicina 2022, 58, 1475. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, J.; McMillen, T.S.; Villet, O.; Tian, R.; Shao, D. Enhancing fatty acid oxidation negatively regulates PPARs signaling in the heart. J. Mol. Cell. Cardiol. 2020, 146, 1–11. [Google Scholar] [CrossRef]
- Qian, L.; Yin, X.; Lan, T.; Lu, Y. Peroxisome proliferator-activated receptor gamma preserves intracellular homeostasis of insulin-resistant periodontal ligament stem cells. Ann. Transl. Med. 2022, 10, 580. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, P.; Young, L.H.; Qi, D. Targeting white adipose tissue to combat insulin resistance. Trends Pharmacol. Sci. 2024, 24, S0165-6147(24)00141-X. [Google Scholar] [CrossRef]
- Talman, V.; Kivelä, R. Cardiomyocyte-Endothelial Cell Interactions in Cardiac Remodeling and Regeneration. Front. Cardiovasc. Med. 2018, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Guillamat-Prats, R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021, 10, 1729. [Google Scholar] [CrossRef] [PubMed]
- Iglarz, M.; Touyz, R.M.; Amiri, F.; Lavoie, M.F.; Diep, Q.N.; Schiffrin, E.L. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.A.; Thatcher, T.H.; Olsen, K.C.; Maggirwar, S.B.; Phipps, R.P.; Sime, P.J. PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: Implications for therapy of fibrosis. PLoS ONE 2011, 6, e15909. [Google Scholar] [CrossRef]
- Chow, B.J.; Lee, I.X.Y.; Liu, C.; Liu, Y.C. Potential therapeutic effects of peroxisome proliferator-activated receptors on corneal diseases. Exp. Biol. Med. 2024, 249, 10142. [Google Scholar] [CrossRef]
- Parry, T.L.; Desai, G.; Schisler, J.C.; Li, L.; Quintana, M.T.; Stanley, N.; Lockyer, P.; Patterson, C.; Willis, M.S. Fenofibrate unexpectedly induces cardiac hypertrophy in mice lacking MuRF1. Cardiovasc. Pathol. 2016, 25, 127–140. [Google Scholar] [CrossRef]
- Huss, J.M.; Levy, F.H.; Kelly, D.P. Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: A mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J. Biol. Chem. 2001, 276, 27605–27612. [Google Scholar] [CrossRef]
- Leon, R.L.; Bitar, L.; Rajagopalan, V.; Spong, C.Y. Interdependence of placenta and fetal cardiac development. Prenat. Diagn. 2024, 44, 846–855. [Google Scholar] [CrossRef]
- Duan, Y.; Qi, D.; Liu, Y.; Song, Y.; Wang, X.; Jiao, S.; Li, H.; Gonzalez, F.J.; Qi, Y.; Xu, Q.; et al. Deficiency of peroxisome proliferator-activated receptor α attenuates apoptosis and promotes migration of vascular smooth muscle cells. Biochem. Biophys. Rep. 2021, 27, 101091. [Google Scholar] [CrossRef]
- Oikonomou, E.; Mourouzis, K.; Fountoulakis, P.; Papamikroulis, G.A.; Siasos, G.; Antonopoulos, A.; Vogiatzi, G.; Tsalamadris, S.; Vavuranakis, M.; Tousoulis, D. Interrelationship between diabetes mellitus and heart failure: The role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail. Rev. 2018, 23, 389–408. [Google Scholar] [CrossRef]
- Fu, Q.; Shen, N.; Fang, T.; Zhang, H.; Di, Y.; Liu, X.; Du, C.; Guo, J. ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages. Genes Genom. 2024, 46, 323–332. [Google Scholar] [CrossRef]
- Li, A.C.; Brown, K.K.; Silvestre, M.J.; Willson, T.M.; Palinski, W.; Glass, C.K. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J. Clin. Investig. 2000, 106, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Cuzzocrea, S.; Pisano, B.; Dugo, L.; Ianaro, A.; Maffia, P.; Patel, N.S.; Di Paola, R.; Ialenti, A.; Genovese, T.; Chatterjee, P.K.; et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur. J. Pharmacol. 2004, 483, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, J.C.; McCarson, K.E. Models of Inflammation: Carrageenan Air Pouch. Curr. Protoc. 2021, 1, e183. [Google Scholar] [CrossRef]
- Mendez, M.; LaPointe, M.C. PPARgamma inhibition of cyclooxygenase-2, PGE2 synthase, and inducible nitric oxide synthase in cardiac myocytes. Hypertension 2003, 42, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Bisaccia, G.; Ricci, F.; Gallina, S.; Di Baldassarre, A.; Ghinassi, B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int. J. Mol. Sci. 2021, 22, 614. [Google Scholar] [CrossRef]
- Diep, Q.N.; Benkirane, K.; Amiri, F.; Cohn, J.S.; Endemann, D.; Schiffrin, E.L. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J. Mol. Cell. Cardiol. 2004, 36, 295–304. [Google Scholar] [CrossRef]
- Ichihara, S.; Obata, K.; Yamada, Y.; Nagata, K.; Noda, A.; Ichihara, G.; Yamada, A.; Kato, T.; Izawa, H.; Murohara, T.; et al. Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J. Mol. Cell. Cardiol. 2006, 41, 318–329. [Google Scholar] [CrossRef]
- Wagner, K.D.; Wagner, N. PPARs and Myocardial Infarction. Int. J. Mol. Sci. 2020, 21, 9436. [Google Scholar] [CrossRef]
- Yuan, J.; Guo, L.; Ma, J.; Zhang, H.; Xiao, M.; Li, N.; Gong, H.; Yan, M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol. Toxicol. 2024, 40, 55. [Google Scholar] [CrossRef]
- Jia, Z.; Xue, R.; Liu, G.; Li, L.; Yang, J.; Pi, G.; Ma, S.; Kan, Q. HMGB1 Is Involved in the Protective Effect of the PPAR α Agonist Fenofibrate against Cardiac Hypertrophy. PPAR Res. 2014, 2014, 541394. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Shkurat, T.P.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.S.; Oka, S.I.; Zablocki, D.; Sadoshima, J. Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H584–H596. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; Ardehali, H.; Balaban, R.S.; DiLisa, F.; Dorn, G.W., 2nd; Kitsis, R.N.; Otsu, K.; Ping, P.; Rizzuto, R.; Sack, M.N.; et al. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement from the American Heart Association. Circ. Res. 2016, 118, 1960–1991. [Google Scholar] [CrossRef] [PubMed]
- Prandi, F.R.; Evangelista, I.; Sergi, D.; Palazzuoli, A.; Romeo, F. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: Molecular abnormalities and phenotypical variants. Heart Fail. Rev. 2023, 28, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, H.; Lin, S.; Lv, Y.; Lin, Y.; Liu, Y.; Peng, R.; Jin, H. New therapeutic directions in type II diabetes and its complications: Mitochondrial dynamics. Front. Endocrinol. 2023, 14, 1230168. [Google Scholar] [CrossRef]
- García-Peña, L.M.; Abel, E.D.; Pereira, R.O. Mitochondrial Dynamics, Diabetes, and Cardiovascular Disease. Diabetes 2024, 73, 151–161. [Google Scholar] [CrossRef]
- Augustyniak, J.; Lenart, J.; Gaj, P.; Kolanowska, M.; Jazdzewski, K.; Stepien, P.P.; Buzanska, L. Bezafibrate Upregulates Mitochondrial Biogenesis and Influence Neural Differentiation of Human-Induced Pluripotent Stem Cells. Mol. Neurobiol. 2019, 56, 4346–4363. [Google Scholar] [CrossRef]
- Morel, J.; Singer, M. Statins, fibrates, tiazolidinediones and resveratrol as adjuntive therapies in sepsis: Could mitochondria be a common target? Intensive Care Med. Exp. 2014, 2, 9. [Google Scholar] [CrossRef]
- Yu, L.; Chen, S.; Liang, Q.; Huang, C.; Zhang, W.; Hu, L.; Yu, Y.; Liu, L.; Cheng, X.; Bao, H. Rosiglitazone reduces diabetes angiopathy by inhibiting mitochondrial dysfunction dependent on regulating HSP22 expression. iScience 2023, 26, 106194. [Google Scholar] [CrossRef]
- Cividini, F.; Scott, B.T.; Suarez, J.; Casteel, D.E.; Heinz, S.; Dai, A.; Diemer, T.; Suarez, J.A.; Benner, C.W.; Ghassemian, M.; et al. Ncor2/PPARα-Dependent Upregulation of MCUb in the Type 2 Diabetic Heart Impacts Cardiac Metabolic Flexibility and Function. Diabetes 2021, 70, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Wen, R.; Liu, C.F.; Zhang, T.N.; Yang, N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed. Pharmacother. 2023, 164, 114931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ren, D.; Fedorova, J.; He, Z.; Li, J. SIRT1/SIRT3 Modulates Redox Homeostasis during Ischemia/Reperfusion in the Aging Heart. Antioxidants 2020, 9, 858. [Google Scholar] [CrossRef] [PubMed]
- Fourny, N.; Lan, C.; Sérée, E.; Bernard, M.; Desrois, M. Protective Effect of Resveratrol against Ischemia-Reperfusion Injury via Enhanced High Energy Compounds and eNOS-SIRT1 Expression in Type 2 Diabetic Female Rat Heart. Nutrients 2019, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Zhang, T.N.; Chen, H.H.; Yu, X.F.; Lv, J.L.; Liu, Y.Y.; Liu, Y.S.; Zheng, G.; Zhao, J.Q.; Wei, Y.F.; et al. The sirtuin family in health and disease. Signal Transduct. Target. Ther. 2022, 7, 402. [Google Scholar] [CrossRef]
- Wu, T.; Qu, Y.; Xu, S.; Wang, Y.; Liu, X.; Ma, D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J. 2023, 37, e23099. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, R.; Wu, C.; Liang, X.; He, L.; Wang, L.; Wang, X. Activation of the sirtuin silent information regulator 1 pathway inhibits pathological myocardial remodeling. Front. Pharmacol. 2023, 14, 1111320. [Google Scholar] [CrossRef]
- Ogata, T.; Miyauchi, T.; Sakai, S.; Irukayama-Tomobe, Y.; Goto, K.; Yamaguchi, I. Stimulation of peroxisome-proliferator-activated receptor alpha (PPAR alpha) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. Clin. Sci. 2002, 103 (Suppl. S48), 284S–288S. [Google Scholar] [CrossRef]
- Jen, H.L.; Liu, P.L.; Chen, Y.H.; Yin, W.H.; Chen, J.W.; Lin, S.J. Peroxisome Proliferator-Activated Receptor α Reduces Endothelin-1-Caused Cardiomyocyte Hypertrophy by Inhibiting Nuclear Factor-κB and Adiponectin. Mediat. Inflamm. 2016, 2016, 5609121. [Google Scholar] [CrossRef]
- Jen, H.L.; Yin, W.H.; Chen, J.W.; Lin, S.J. Endothelin-1-Induced Cell Hypertrophy in Cardiomyocytes is Improved by Fenofibrate: Possible Roles of Adiponectin. J. Atheroscler. Thromb. 2017, 24, 508–517. [Google Scholar] [CrossRef]
- Ibarra-Lara, L.; Sánchez-Aguilar, M.; Sánchez-Mendoza, A.; Del Valle-Mondragón, L.; Soria-Castro, E.; Carreón-Torres, E.; Díaz-Díaz, E.; Vázquez-Meza, H.; Guarner-Lans, V.; Rubio-Ruiz, M.E. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II. Molecules 2016, 22, 31. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.M.S.; Cordon, B.; Ma, B.; Xie, J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. 2023, 10, e2303259. [Google Scholar] [CrossRef]
- Esenboga, K.; Çiçek, Ö.F.; Oktay, A.A.; Ayral, P.A.; Gürlek, A. Effect of fenofibrate on serum nitric oxide levels in patients with hypertriglyceridemia. Adv. Clin. Exp. Med. 2019, 28, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Lara, L.; Sánchez-Aguilar, M.; Soria-Castro, E.; Vargas-Barrón, J.; Roldán, F.J.; Pavón, N.; Torres-Narváez, J.C.; Cervantes-Pérez, L.G.; Pastelín-Hernández, G.; Sánchez-Mendoza, A. Clofibrate Treatment Decreases Inflammation and Reverses Myocardial Infarction-Induced Remodelation in a Rodent Experimental Model. Molecules 2019, 24, 270. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Kadiiska, M.B.; Bonini, M.G.; Ruggiero, C.; Cleland, E.; Wicks, S.; Stadler, K. Thiazolidinedione treatment decreases oxidative stress in spontaneously hypertensive heart failure rats through attenuation of inducible nitric oxide synthase-mediated lipid radical formation. Diabetes 2012, 61, 586–596. [Google Scholar] [CrossRef]
- Takada, I.; Makishima, M. Peroxisome proliferator-activated receptor agonists and antagonists: A patent review (2014-present). Expert Opin. Ther. Pat. 2020, 30, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Di Angelantonio, E.; Gao, P.; Pennells, L.; Kaptoge, S.; Caslake, M.; Thompson, A.; Butterworth, A.S.; Sarwar, N.; Wormser, D.; Emerging Risk Factors Collaboration; et al. Lipid related markers and cardiovascular disease prediction. JAMA 2012, 307, 2499–2506. [Google Scholar] [CrossRef]
- Frick, M.H.; Elo, O.; Haapa, K.; Heinonen, O.P.; Heinsalmi, P.; Helo, P.; Huttunen, J.K.; Kaitaniemi, P.; Koskinen, P.; Manninen, V.; et al. Helsinki Heart Study: Primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 1987, 317, 1237–1245. [Google Scholar] [CrossRef]
- Rubins, H.B.; Robins, S.J.; Collins, D.; Fye, C.L.; Anderson, J.W.; Elam, M.B.; Faas, F.H.; Linares, E.; Schaefer, E.J.; Schectman, G.; et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 1999, 341, 410–418. [Google Scholar] [CrossRef]
- Bezafibrate Infarction Prevention (BIP) Study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation 2000, 102, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Meade, T.; Zuhrie, R.; Cook, C.; Cooper, J. Bezafibrate in men with lower extremity arterial disease: Randomised controlled trial. BMJ 2002, 325, 1139. [Google Scholar] [CrossRef] [PubMed]
- The FIELD Study Investigators. Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study: Baseline characteristics and short-term effects of fenofibrate [ISRCTN64783481]. Cardiovasc. Diabetol. 2005, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Elam, M.; Lovato, L.; Ginsberg, H. The ACCORD-Lipid study: Implications for treatment of dyslipidemia in Type 2 diabetes mellitus. Clin. Lipidol. 2011, 6, 9–20. [Google Scholar] [CrossRef]
- Jeong, H.; Maatouk, C.M.; Russell, M.W.; Singh, R.P. Associations between lipid abnormalities and diabetic retinopathy across a large United States national database. Eye 2024, 38, 1870–1875. [Google Scholar] [CrossRef]
- Koopal, C.; Marais, A.D.; Westerink, J.; van der Graaf, Y.; Visseren, F.L.J. Effect of adding bezafibrate to standard lipid-lowering therapy on post-fat load lipid levels in patients with familial dysbetalipoproteinemia. A randomized placebo-controlled crossover trial. J. Lipid Res. 2017, 58, 2180–2187. [Google Scholar] [CrossRef]
- Cattin, L.; Da Col, P.G.; Feruglio, F.S.; Finazzo, L.; Rimondi, S.; Descovich, G.; Manzato, E.; Zambon, S.; Crepaldi, G.; Siepi, D. Efficacy of ciprofibrate in primary type II and IV hyperlipidemia: The Italian multicenter study. Clin. Ther. 1990, 12, 482–488. [Google Scholar] [PubMed]
- Rajamani, K.; Colman, P.G.; Li, L.P.; Best, J.D.; Voysey, M.; D’Emden, M.C.; Laakso, M.; Baker, J.R.; Keech, A.C. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): A prespecified analysis of a randomised controlled trial. Lancet 2009, 373, 1780–1788. [Google Scholar] [CrossRef]
- Malur, P.; Menezes, A.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. The Microvascular and Macrovascular Benefits of Fibrates in Diabetes and the Metabolic Syndrome: A review. Mo. Med. 2017, 114, 464–471. [Google Scholar]
- Ghani, R.A.; Bin Yaakob, I.; Wahab, N.A.; Zainudin, S.; Mustafa, N.; Sukor, N.; Mohamud, W.N.W.; Kadir, K.A.; Kamaruddin, N.A. The influence of fenofibrate on lipid profile, endothelial dysfunction, and inflammatory markers in type 2 diabetes mellitus patients with typical and mixed dyslipidemia. J. Clin. Lipidol. 2013, 7, 446–453. [Google Scholar] [CrossRef]
- Pozo, L.; Bello, F.; Suarez, A.; Ochoa-Martinez, F.E.; Mendez, Y.; Chang, C.H.; Surani, S. Novel pharmacological therapy in type 2 diabetes mellitus with established cardiovascular disease: Current evidence. World J. Diabetes 2019, 10, 291–303. [Google Scholar] [CrossRef]
- Woo, M.H.; Lee, H.S.; Kim, J. Effect of pioglitazone in acute ischemic stroke patients with diabetes mellitus: A nested case-control study. Cardiovasc. Diabetol. 2019, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.Y.; Zhou, M.Q.; Zheng, Q.Y.; Zhang, J.H.; Cheng, W.T.; Bai, X.H.; Zhou, F.; Wu, A.M.; Nie, B.; Liu, W.J.; et al. Thiazolidinediones play a positive role in the vascular endothelium and inhibit plaque progression in diabetic patients with coronary atherosclerosis: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 1043406. [Google Scholar] [CrossRef]
- Van Wijk, J.P.; Rabelink, T.J. Impact of thiazolidinedione therapy on atherogenesis. Curr. Atheroscler. Rep. 2005, 7, 369–374. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Wang, X.; Lin, D.; Pan, Q.; Guo, L. Functional network analysis of gene-phenotype connectivity based on pioglitazone. Exp. Ther. Med. 2019, 18, 4790–4798. [Google Scholar] [CrossRef]
- Bertrand, O.F.; Poirier, P.; Rodés-Cabau, J.; Rinfret, S.; Title, L.; Dzavik, V.; Natarajan, M.; Angel, J.; Batalla, N.; Alméras, N.; et al. A multicentre, randomized, double-blind placebo-controlled trial evaluating rosiglitazone for the prevention of atherosclerosis progression after coronary artery bypass graft surgery in patients with type 2 diabetes. Design and rationale of the VeIn-Coronary aTherOsclerosis and Rosiglitazone after bypass surgerY (VICTORY) trial. Can. J. Cardiol. 2009, 25, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Ratner, R.E.; Cannon, C.P.; Serruys, P.W.; García-García, H.M.; van Es, G.A.; Kolatkar, N.S.; Kravitz, B.G.; Miller, D.M.; Huang, C.; et al. Effect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: The assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation 2010, 121, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, S.; Zhu, M.; Hua, J.; Dai, J.; Xu, X.; Qiu, Y.; Mao, W. Different Effects of Thiazolidinediones on In-Stent Restenosis and Target Lesion Revascularization after PCI: A Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2017, 7, 14464. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Gao, H.; Li, W. Long-term risk of rosiglitazone on cardiovascular events—A systematic review and meta-analysis. Endokrynol. Pol. 2018, 69, 381–394. [Google Scholar] [CrossRef]
- Sim, R.; Chong, C.W.; Loganadan, N.K.; Fong, A.Y.Y.; Navaravong, L.; Hussein, Z.; Khunti, K.; Lee, S.W.H. Comparative effectiveness of cardiovascular, renal and safety outcomes of second-line antidiabetic drugs use in people with type 2 diabetes: A systematic review and network meta-analysis of randomized controlled trials. Diabet. Med. 2022, 39, e14780. [Google Scholar] [CrossRef] [PubMed]
- Dormandy, J.A.; Charbonnel, B.; Eckland, D.J.; Erdmann, E.; Massi-Benedetti, M.; Moules, I.K.; Skene, A.M.; Tan, M.H.; Lefèbvre, P.J.; Murray, G.D.; et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet 2005, 366, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Wolski, K.; Nicholls, S.J.; Nissen, S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. JAMA 2007, 298, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Kernan, W.N.; Viscoli, C.M.; Furie, K.L.; Young, L.H.; Inzucchi, S.E.; Gorman, M.; Guarino, P.D.; Lovejoy, A.M.; Peduzzi, P.N.; Conwit, R.; et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N. Engl. J. Med. 2016, 374, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Ruíz, M.E.; Plata-Corona, J.C.; Soria-Castro, E.; Díaz-Juárez, J.A.; Sánchez-Aguilar, M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence—A Narrative Review. Cells 2024, 13, 1488. https://doi.org/10.3390/cells13171488
Rubio-Ruíz ME, Plata-Corona JC, Soria-Castro E, Díaz-Juárez JA, Sánchez-Aguilar M. Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence—A Narrative Review. Cells. 2024; 13(17):1488. https://doi.org/10.3390/cells13171488
Chicago/Turabian StyleRubio-Ruíz, María Esther, Juan Carlos Plata-Corona, Elizabeth Soria-Castro, Julieta Anabell Díaz-Juárez, and María Sánchez-Aguilar. 2024. "Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence—A Narrative Review" Cells 13, no. 17: 1488. https://doi.org/10.3390/cells13171488
APA StyleRubio-Ruíz, M. E., Plata-Corona, J. C., Soria-Castro, E., Díaz-Juárez, J. A., & Sánchez-Aguilar, M. (2024). Pleiotropic Effects of Peroxisome Proliferator-Activated Receptor Alpha and Gamma Agonists on Myocardial Damage: Molecular Mechanisms and Clinical Evidence—A Narrative Review. Cells, 13(17), 1488. https://doi.org/10.3390/cells13171488