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Abstract: RNA sequencing (RNA-Seq) has become a widely adopted technique for studying gene
expression. However, conventional RNA-Seq analyses rely on gene expression (GE) values that
aggregate all the transcripts produced under a single gene identifier, overlooking the complexity
of transcript variants arising from different transcription start sites or alternative splicing. Tran-
script variants may encode proteins with diverse functional domains, or noncoding RNAs. This
study explored the implications of neglecting transcript variants in RNA-Seq analyses. Among the
1334 transcription factor (TF) genes expressed in mouse embryonic stem (ES) or trophoblast stem (TS)
cells, 652 were differentially expressed in TS cells based on GE values (365 upregulated and 287 down-
regulated, ≥absolute 2-fold changes, false discovery rate (FDR) p-value ≤ 0.05). The 365 upregulated
genes expressed 883 transcript variants. Further transcript expression (TE) based analyses identi-
fied only 174 (<20%) of the 883 transcripts to be upregulated. The remaining 709 transcripts were
either downregulated or showed no significant changes. Meanwhile, the 287 downregulated genes
expressed 856 transcript variants and only 153 (<20%) of the 856 transcripts were downregulated.
The other 703 transcripts were either upregulated or showed no significant change. Additionally, the
682 insignificant TF genes (GE values < absolute 2-fold changes and/or FDR p-values > 0.05) between
ES and TS cells expressed 2215 transcript variants. These included 477 (>21%) differentially expressed
transcripts (276 upregulated and 201 downregulated, ≥absolute 2-fold changes, FDR p-value ≤ 0.05).
Hence, GE based RNA-Seq analyses do not represent accurate expression levels due to divergent
transcripts expression from the same gene. Our findings show that by including transcript variants
in RNA-Seq analyses, we can generate a precise understanding of a gene’s functional and regulatory
landscape; ignoring the variants may result in an erroneous interpretation.

Keywords: RNA sequencing; transcript variants; embryonic stem cells; trophoblast stem cells;
differential expression of genes; differential expression of transcript variants

1. Introduction

Understanding gene expression at the cellular level is crucial for unraveling cell-type-
specific functions, identifying biomarkers, and pinpointing genes or pathways for targeted
molecular interventions [1]. RNA sequencing (RNA-Seq) has emerged as a powerful tool
for comprehensive transcriptome analysis, enabling the identification of lineage-specific
gene expression patterns [2–4]. Integrating RNA-Seq with techniques such as ATAC-
Seq, ChIP-Seq, Cut and Run, Ribo-Seq, and methyl-Seq has provided insights into the
intricate interplay between epigenomic modifications and transcriptional regulations [5,6].
Moreover, a detailed examination of the transcriptome offers a window into the gene
regulatory mechanisms within a distinct cell type [7].

A single gene does not express a single mRNA to encode a single protein [8]. Com-
monly, multiple mRNAs that are transcribed encode different proteins or noncoding
RNAs [8]. Alternative transcription start sites (ATSS) can result in the expression of more
than one transcript from a single gene [9]. Alternative transcription start sites occur due to
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alternative proximal promoter use as well as the availability of alternative transcriptional
regulators in a particular cell type [10,11]. However, alternative splicing is another common
mechanism underlying the generation of multiple mRNA variants from a single initial
transcript [12]. RNA editing may further expand the repertoire of transcript variants [13].
Although the transcript variants are translated into peptides using the same open read-
ing frame, they can encode a variety of proteins with different lengths and functional
domains [14]. Some alternative transcripts do not encode any proteins and may act as
long noncoding RNAs or other regulatory RNAs [15]. Thus, alternative transcripts, some
of which encode noncoding RNAs, may play pivotal roles in lineage-specific divergent
cellular functions.

Despite the functional intricacies of transcript variants, conventional gene expression
analyses typically overlook the diversity of transcripts. Current RNA-Seq methodolo-
gies often quantify gene expression (GE) values in reads per kilobase million (RPKM) or
transcripts per million (TPM), aggregating all transcript counts under a single mRNA
identifier without distinguishing between full-length transcripts and their variants, irre-
spective of their protein-coding potential [16,17]. However, RNA-Seq analyses can generate
quantitative data regarding transcript variants’ expressions (TE values). While transcript
expression (TE) values can be concurrently calculated, GE values predominantly drive the
identification of differentially expressed genes across experimental conditions, largely due
to analytical complexities and validation challenges hindering the widespread adoption of
TE analyses [18]. Hence, to understand the biological function of the transcript variants in
cells, TE-based analysis is required to elucidate the precise mechanisms.

This study aims to draw the attention of researchers in the field of transcriptomic anal-
yses to two important issues. First, it is biologically inaccurate to consider the expression of
a single transcript from a specific gene for differential expression analyses. Second, it can
be misleading to conclude that similar expression trends occur in all the transcript variants
expressed from a single gene. Therefore, we have evaluated the limitations of GE-based
RNA-Seq analyses without considering the TE values of transcript variants. We have ob-
served that while one transcript variant of a gene is upregulated, another transcript variant
can be downregulated, which, ultimately, skews the results or masks the actual expression
pattern. Our results indicate that GE-based RNA-Seq analyses incorrectly represented over
80% of the TE-based analyses.

2. Materials and Methods
2.1. Experimental Model

We have used RNA sequencing data of two early embryonic stem cell lines, embryonic
stem (ES) cells and trophoblast stem (TS) cells, and focused on the expression of tran-
scription factors (TFs). Differential expression of lineage-specific TFs are characteristic
determinants of ES and TS cell lineages. Ectopic expression of selective lineage-specific
TFs can reprogram somatic cells into ES or TS cells [19,20] (Figure 1A). Moreover, TFs are
appropriate for defining the role of transcript variants due to their well-defined functional
domains [DNA binding domains (DBDs), transactivation domains (TADs), and signaling
sensing domains (SSDs)] [21] (Figure 1B). Thus, transcript variants of the same TF gene
may encode proteins carrying different DBDs, TADs, or SSDs that can be easily determined.
We have systematically analyzed the differential expression of TFs between the ES and
TS cells to understand the limitations of transcriptome analyses without considering the
transcript variants.
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indicates the start of gene transcription. MEF, mouse embryonic fibroblast; iPSC, induced pluripo-

tent stem cells; iTSC, induced trophoblast stem cells; TF, transcription factor; RNA Pol II, RNA pol-

ymerase II; TSS, transcription start site. 
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Figure 1. Transcription factors and early embryonic stem cells. The schematics explain the reasons
for choosing TFs for this study (A). Transcript variants encoding distinct domains are easily under-
standable in TFs, and the role of TFs in determining cell fate is well known (B). The rightmost arrow
indicates the start of gene transcription. MEF, mouse embryonic fibroblast; iPSC, induced pluripotent
stem cells; iTSC, induced trophoblast stem cells; TF, transcription factor; RNA Pol II, RNA polymerase
II; TSS, transcription start site.

2.2. RNA Sequencing Data

This study included RNA-Seq data from mouse ES cells (n = 3 libraries) and mouse
TS cells (n = 3 libraries). Mouse TS cell data were generated in our laboratory and have
been submitted to the Sequencing Read Archive (PRJNA1131096; SRA, NCBI). The ES cell
data were downloaded from the NCBI’s Gene Expression Omnibus (GEO) (SRR24044798,
SRR24044809, SRR24044810) [22].

Mouse TS cells were maintained in feeder-free stem conditions [23]. TS cells were cul-
tured for 48 h, and total RNA was extracted using TRI reagent (Millipore-Sigma, St. Louis,
MO, USA). From each sample, 500 ng of total RNA (RIN value > 9) was used for the
sequencing library preparation using a TruSeq Stranded mRNA kit (Illumina, San Diego,
CA, USA). The cDNA libraries were evaluated for quality at the KUMC Genomics Core
and sequenced on an Illumina HiSeq X sequencer at Novogene Corporation (Sacramento,
CA, USA).

2.3. RNA Sequencing Analysis

RNA-Seq data were analyzed using CLC Genomics Workbench 24 (Qiagen Bioin-
formatics, Redwood City, CA, USA). The software has Linux, Macintosh, and Windows
versions; we used the Windows version to analyze the RNA-Seq data. CLC Genomics
Workbench uses the expectation–maximization (EM) estimation algorithm to categorize
and assign annotated transcripts to the transcript variants within the reference genome,
gene, and mRNA. All clean reads were obtained by removing low-quality reads and
trimming the adapter sequences. The high-quality reads were aligned to the Mus mus-
culus reference genome (GRCm39), gene (GRCm39.111_Gene), and mRNA sequences
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(GRCm39.111_mRNA) using the default parameters: (a) maximum number of allowable
mismatches was 2; (b) minimum length and similarity fraction was set at 0.8; and (c) the
minimum number of hits per read was 10. The expression values of individual genes
(GE) or transcript variants (TE) in ES and TS cells were measured in TPM [24–26]. The
threshold p-value was determined according to the false discovery rate (FDR). Differentially
expressed genes were determined if the absolute fold change in expression was 2 with an
FDR p-value of ≤ 0.05.

Expression of 16,052 to 16,510 genes was detected in the ES- or TS-cell-derived RNA-
Seq samples. We selectively analyzed the 1374 mouse TFs that were curated by the Gifford
lab (https://cgs.csail.mit.edu/ReprogrammingRecovery/mouse_tf_list.html) from a list of
human TFs [27]. Notably, about 90% of the TF genes in ES and TS cells expressed more than
two transcript variants based on GRCm39.111_mRNA analyses. New tracks containing only
the TFs were generated from each RNA-Seq data file containing GE or TE values, which
were used in subsequent analyses. The threshold p-values were determined according to the
false discovery rate (FDR) to identify the differentially expressed genes or transcript variants
between ES and TS cells. A gene or a transcript variant was considered differentially
expressed if the absolute fold change was ≥2 and the FDR p-value was ≤ 0.05 [24–26].

2.4. Analysis of the Transcript Variants

We analyzed the differential expression of genes using the RNA-Seq files containing
GE values. The differentially expressed genes were divided into three groups: upregulated
(≥2-fold changes and FDR p ≤ 0.05), downregulated (≤−2-fold changes and FDR p ≤ 0.05),
and insignificant (either < absolute 2-fold changes and/or FDR p > 0.05). The transcript
variants encoded by the upregulated, downregulated, or insignificant group of genes were
further analyzed to identify the differentially expressed ones between mouse ES and TS
cells. Differential expressions of the transcript variants were analyzed using the RNA-Seq
files containing TE values. These analyses identified the differentially upregulated (≥2-fold
changes and FDR p ≤ 0.05), downregulated (≤−2-fold changes and FDR p ≤ 0.05), and
insignificant (either < absolute 2-fold changes or FDR p > 0.05) group of transcript variants.

2.5. Statistical Analyses

For RNA Seq, each study group contained three library samples. In CLC Genomics
Workbench 24, the ‘differential expression for RNA-Seq tool’ performs multi-factorial
statistics on a set of expression tracks based on a negative binomial generalized linear
model (GLM). The final GLM fit and dispersion estimate calculates the total likelihood of
the model given the data and the uncertainty of each fitted coefficient [28]. Two statistical
tests, the Wald and the likelihood ratio tests, use one of these values. The across-group
(ANOVA-like) comparison uses the likelihood ratio test.

3. Results
3.1. Lineage-Specific Expression of Transcription Factors

Expression of the TFs in mouse ES cells and TS cells was analyzed using RNA-Seq
data. Differential expression of TF genes between ES and TS cells was evident in the heat
map (Figure 2A). Based on the Pearson correlation matrix of the TFs, there was a high
positive relation among the three ES samples and among the three TS samples (Figure 2A).
The validity of ES and TS lineage identity was confirmed based on the expression of stem
cell markers (Pou5f1, Nanog, and Klf4 for ES; Tfap2C, Gata3, and Eomes for TS) [29–31]. High
levels of Pou5f1, Nanog, and Klf4 were expressed in mouse ES cells but were very low in TS
cells (Figure 2B). In contrast, Tfap2c, Gata3, and Eomes expressions were very high in mouse
TS cells but low in ES cells (Figure 2C).

https://cgs.csail.mit.edu/ReprogrammingRecovery/mouse_tf_list.html
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Figure 2. Quality and validity of the RNA-Seq data obtained from mouse ES cells and TS cells. (A) A
matrix shows the Pearson correlation of 1365 transcription factors (TFs) expressed in three ES and
three TS samples. ES-specific abundant expression of characteristic TFs (Pou5f1, Nanog, and Klf4) that
differentiate them from TS cells (B) and TS-specific abundant expression of TFs (Tfap2c, Gata3, and
Eomes) that distinguish those from ES cells (C) indicate the RNA-Seq data quality and validity. Data
represent mean TPM ± SE, * indicates p < 0.05. Rel exp., relative expression; TPM, transcript per
million. Rel exp., relative expression.

3.2. Differential Expression of the Transcription Factor Genes and Transcript Variants

Of the 1374 TFs, 1334 were expressed in mouse ES or TS cells. TS cells showed differ-
ential expression of 652 TF genes compared to ES cells (365 upregulated and 287 down-
regulated; ≥absolute 2-fold changes, FDR p-value ≤ 0.05) (Figure 3A–C). The differential
expressions of the GE values in TS cells are evident in heat maps (Figure 3A), volcano
plots (Figure 3B), and bar graphs (Figure 3C). The 1334 TF genes expressed 3954 transcript
variants in mouse TS or ES cells (Figure 3D–F). A total of 1739 of the 3954 transcript vari-
ants were differentially expressed in TS cells (883 upregulated and 856 downregulated;
≥absolute 2-fold changes, FDR p-value ≤ 0.05) (Figure 3D–F). The differential expressions
of the TE values in TS cells are shown in heat maps (Figure 3D), volcano plots (Figure 3E),
and bar graphs (Figure 3F).

3.3. Discrepancy between Gene Expression and Transcript Variants

Despite the overall similar differential expression of genes (based on GE values) and
transcript variants (based on TE values) (Figure 3C,F), further analyses revealed a remark-
able discrepancy between GE- and TE-based analyses (Figures 4 and 5). The 365 upregu-
lated genes in TS cells expressed 883 transcript variants. Of those 883 transcript variants,
only 174 showed significant upregulation (≥2-fold upregulation, FDR p-values ≤ 0.05).
The remaining 89 transcript variants were significantly downregulated (≤−2-fold down-
regulation, FDR p-values ≤ 0.05), and 620 showed insignificant differences based on TE
values in TS cells (Figure 4A,D). The 287 downregulated genes expressed 856 transcript
variants, of which only 153 were significantly downregulated (≤−2-fold downregulation,
FDR p-values ≤ 0.05). The remaining 62 transcript variants were upregulated (≥2-fold
upregulation, FDR p-values ≤ 0.05), and 641 showed insignificant differences based on TE
values (Figure 4B,D). The 682 genes with no significant differential expression based on GE
values (either < absolute 2-fold changes or FDR p > 0.05) contained 2215 transcript variants.
Of those, 276 transcripts showed significant upregulation (≥2-fold upregulation, FDR
p-values ≤ 0.05), and 201 showed significant downregulation (≤−2-fold downregulation,
FDR p-values ≤ 0.05) (Figure 4C,D). We then further compared the transcript variants
compressed to their respective gene groups (Supplementary Figure S1). We detected that
about ~40% of the transcript variants overlapped in all groups, indicating that those genes
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encode transcript variants that can be either upregulated, downregulated, or insignificant
despite their original gene group.
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Figure 3. Differential expression of genes and transcript variants in mouse TS cells compared to ES
cells. Heat maps, volcano plots, and bar graphs show that ~49% of the genes were differentially
expressed (27% upregulated and 22% downregulated) in TS cells (A–C). Similarly, 44% of the tran-
script variants encoded by the TF genes were differentially expressed (22% upregulated and 22%
downregulated) in TS cells. A 5% reduction in upregulated transcript variants was associated with
increased variants in the insignificant group (D–F). No., number; exp., expression; vars., variants.

3.4. Increased Discrepancy among the Low-Abundance Transcript Variants

We further analyzed the transcript variants among the differentially expressed genes
according to their abundance in mouse TS or ES cells (Figure 5A–H). The low-abundance
transcript variants (TPM < 5 TE values) showed greater discrepancy compared to the moder-
ately high-abundance transcripts (TPM ≥ 5 TE values) (Figure 5A–H). The 365 upregulated
genes expressed 883 transcript variants; 666 were low-abundance, and 217 were moderate-
to high-abundance (Figure 5G,H). The 287 downregulated genes expressed 856 transcript
variants, 578 were low-abundance, and 278 were high-abundance (Figure 5G,H). The 682 in-
significant genes included 2215 transcript variants, of which 1476 were low-abundance
(TPM < 5 TE values), and 739 were high-abundance (TPM ≥ 5 TE values) (Figure 5G,H).
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Figure 4. Discordant differential expression of the transcript variants expressed in mouse TS cells.
Volcano plots show the differential expression of transcript variants corresponding to upregulated
(A), downregulated (B), and insignificant genes (C). Of transcript variants of the upregulated genes,
~80% were either downregulated or insignificant (D). Similarly, ~82% of transcript variants of the
downregulated genes were either upregulated or insignificant (D). In addition, ~21% of transcript
variants of the insignificant genes were differentially expressed (D). Upreg., upregulated; downreg.,
downregulated; insig., insignificant; no., number; trans., transcript.

We observed that ~86% of the low-copy-number transcripts of upregulated genes
showed discordant results (Figure 5A,G,H). In contrast, ~62% of the high-copy-number
transcripts of upregulated genes showed discrepant results (Figure 5B,G,H). Similarly, 93%
of the low-copy-number transcripts and 60% of the high-copy-number transcripts that were
expressed by the downregulated genes were discrepant. (Figure 5C,D,G,H). Among the
low-abundance transcript variants expressed by the insignificant genes, only ~10% showed
differential expression, whereas it was ~30% among the high-copy-number transcript
variants (Figure 5E–H). We have included detailed lists of the discrepant transcript variants
and their biotypes in Supplemental Tables S1–S3. These tables may give an idea of how the
variant interacts within the cell, but to find the function relevance of each variant requires
experimentation with said variant [32]. This is unfortunately beyond the scope of this
study, and due to the novelty of transcript variant analysis, a connection to proteomics
(e.g., protein isoforms) was not available. Without proteomics, it is impossible to predict
biological function accurately.

3.5. The Basis of Discrepancy between Gene Expression and Transcript Variant Analyses

Our next step of investigation was directed towards elucidating the molecular basis of
the discrepancy between analyses of gene expressions and transcript variants. In this anal-
ysis, we included two from each group of the upregulated, downregulated, or insignificant
genes that demonstrated a discrepancy between their GE-based and TE-based analyses
(as identified in Section 3.4) (Figure 5). Here, we have analyzed the transcript variants of
Kmt2a and Hmg20b from the GE-based upregulated group (Figure 6), Gtf2i and Rbpj from
the downregulated group (Figure 7), and Atf2 and E2f3 genes from the insignificant group
(Figure 8). We identified that the downregulation of a transcript variant can be masked
by relatively higher upregulation of another transcript variant while proteins are encoded
with different functional domains (Figure 6A,B).
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Figure 5. Differential expressions of the low-copy- and high-copy number transcript variants ex-
pressed in mouse ES or TS cells. Volcano plots showed discordant results among the low-copy-
number (<5 TPM) (A,C,E) as well as the high-copy-number (B,D,F) transcript variants expressed by
upregulated (A,B), downregulated (C,D), or insignificant (E,F) genes. While the low-copy-number
transcripts of the upregulated genes showed discordant results in 86%, it was only 62% among the
high-copy-number transcripts (G,H). Similarly, 93% of the low-copy-number transcripts encoded by
downregulated genes were discordant, and only 60% of the high-copy-number genes were discordant
(G,H). Remarkably only 10% of transcript variants of insignificant genes were differentially expressed,
whereas it was 30% for the high-copy-number genes. Upreg., upregulated; downreg., downregulated;
insig., insignificant; no., number.
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Figure 6. Impact of differentially expressed transcript variants on the upregulated genes. GE-based
expression analyses identified both Kmt2a and Hmg20b as upregulated genes in mouse TS cells. We
identified that transcript variant Kmt2a-202 is significantly downregulated and expresses a full-length
functional protein (A). However, this downregulation is masked by relatively higher upregulation
of another transcript variant of Kmt2a (Kmt2a-203), which expresses a truncated protein (A). We
observed the downregulation of Hmg20b-202, which encodes a full-length protein, and Hmg20b-210,
which encodes a truncated protein. Downregulation of the two transcript variants of Hmg20b remains
unknown due to a higher upregulation of Hmg20b-203 that encodes a full-length protein (B).
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expression analyses identified both Gtf2i and Rbpj as downregulated genes in mouse TS cells. We
identified that transcript variant Gtf2i-203 is significantly upregulated and lacks one exon (A). However,
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the upregulation of Gtf2i-203 is masked by relatively higher downregulation of another transcript
variant of Gtf2i (Gtf2i-223), which expresses a truncated protein lacking two protein-coding exons
(A). We also observed that the upregulation of Rbpj-203, which encodes a full-length protein, remains
unknown due to a higher downregulation of another transcript variant of Rbpj (Rbpj-210) that encodes
a protein with a different domain at either end (B).
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Figure 8. Impact of differential expression of transcript variants on the genes with insignificant
differential expression. GE-based expression analyses did not identify both E2f3 and Atf2 as differen-
tially expressed genes in mouse TS cells. However, we identified that a transcript variant of the E2f3
gene (E2f3-201) was significantly upregulated, whereas another transcript variant of E2f3 (E2f3-203)
was significantly downregulated (A). Eventually, the upregulation of E2f3-201 was masked by the
downregulation of E2f3-203. Similarly, the significant upregulation of a transcript variant of Atf2
(Atf2-206) and significant downregulation of two transcript variants of Atf2 (Atf2-219 and Atf2-212)
remained undetected due to masking of Atf2-206 results by those of Atf2-219 and Atf2-212 (B).

A similar mechanism also underlies the masked upregulated transcript variants of
Gtf2i (Gtf2i-203) due to the higher downregulation of Gtf2i-223, which does not encode
two exons of the full-length protein (Figure 7A). Another downregulated gene, Rbpj, also
expresses an upregulated transcript variant, Rbpj-203, that expresses full-length protein,
but this result remains unknown at the gene level due to higher downregulation of another
transcript variant, Rbpj-210, which encodes a protein truncated at the amino terminus and
insertion at the carboxy terminus (Figure 7B).

We also observed that both significantly upregulated and downregulated transcript
variants may mask each other, and their differential expressions remain unidentified
during the analyses of GE-based gene expression (Figure 8A,B). GE-based expression
analyses did not identify either E2f3 or Atf2 as differentially expressed genes in mouse
TS cells (Figure 8A,B). We identified that a transcript variant of the E2f3 gene (E2f3-201)
was significantly upregulated. However, the upregulation of E2f3-201 was masked by
significant downregulation of another transcript variant of E2f3 (E2f3-203) (Figure 8A).
Similarly, the significant upregulation of a transcript variant of Atf2 (Atf2-206) remained
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masked by the significant downregulation of two transcript variants of Atf2 (Atf2-219 and
Atf2-212) (Figure 8B).

4. Discussion

In RNA-Seq analyses, it is often assumed that any specific gene expresses only one
transcript, leading to the inference that one gene encodes one mRNA and one protein.
However, this assumption overlooks the fact that a single gene can often encode multiple
transcripts due to alternative transcription start sites and alternative splicing [8,33,34].
These transcript variants can encode multiple in-frame peptides containing different struc-
tural and functional domains [35]. Moreover, some of the transcript variants can serve as
noncoding regulatory RNAs or may undergo nonsense-mediated decay [36,37]. Therefore,
aggregating all transcript variants under a single gene name is not biologically accurate;
future studies should include TE-based differential analyses of transcript variants.

In this study, we have used the Windows version of the CLC Genomics Workbench to
analyze our GE-based and TE-based RNA-Seq data. The statistical methods employed in
our study are the EM estimation algorithm during RNA sequencing and GLMs followed by
a negative binomial distribution during differential expression analysis. However, due to a
large variety in RNA-Seq methodology across experiments, here we acknowledge other
potential choices for analysis and their impacts.

For instance, other software for RNA-Seq analyses, including Partek (Chesterfield, MO,
USA), Lasergene (DNASTAR Inc., Madison, WI, USA), and Ugene [38–40], can also perform
similar analyses, including alignments and identification of splice variants or transcript
isoforms. For RNA-Seq differential expression, currently, there are two major differential
expression statistical packages used [41]. The first is DESeq2, and the second is known as
edgeR. Previously, both packages had differing normalization methods where DESeq2 had
a computed scaling factor as the median of the ratio of its geometric mean across lanes,
and edgeR applied TMM, trimmed mean of M-values, which computes the weighted mean
of log ratios between the test sample and the reference [42]. Now, these packages use an
optimized approach of applying a GLM to each gene, assuming read counts with a negative
binomial distribution, and Wald tests or likelihood ratio tests [43]. In addition, after read
alignment, CLC and other genomic software packages apply quality control measures
of count data, allowing for high reproducibility among technical replicates [17]. Overall,
CLC’s model follows a nearly identical sequence to the modified models of DESeq2 and
edgeR. Once applied, the general and most important trend of our analysis stands: it is
inaccurate to analyze RNA sequences based on GE, since transcript variants are summed
regardless of their upregulation, downregulation, or neutrality [32]. This will be the case
regardless of performing different algorithms on the data.

Additionally, almost all RNA-Seq processes, including CLC, begin with an align-
ment to a reference genome. Not only is the reference genome used during this study,
Mouse Genome Assembly 39, the most recent and comprehensive Ensembl available dur-
ing the manuscript preparation; but CLC’s specific aligner algorithm, which utilizes the
expectation–maximum algorithm, is described as the most consistently accurate performer
when benchmarked against other popular aligners, namely STAR and NOVOALIGN at the
“junction level” [44]. CLC also stands as a top performer in all data sets except for those
that were the least complex, where complexity is determined by the difficulty of alignment
in a specific region.

This study was premised on the quantitative differences in the expression of the
transcript variants of TF genes in mouse ES and TS cells. All the transcript variants
are included under one gene name in GE-based analyses, but we have detected that the
expression trends of these variants are not uniform. For instance, while a transcript variant
expressed by a gene shows lineage-specific upregulation, another transcript expressed by
the same gene can be downregulated simultaneously. These diverse patterns of transcript
variant expression in the same cell type may lead to erroneous estimations in GE-based
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differential gene expression analyses. Therefore, we quantified the potential errors arising
from ignoring the differential expression of transcript variants (Figures 4 and 5).

Although the overall differential expression of TF genes and transcript variants was
comparable between mouse ES and TS cells (Figure 4), deeper analyses illuminated a
different picture of discrepancy (Figures 5–8). We determined that only 14% (51 out of
365) of upregulated genes did not express any downregulated or insignificant variants,
and only 17% (48 out of 287) of the downregulated genes did not express any upregulated
or insignificant transcript variants. Collectively, transcript variants expressed by more
than 80% of the differentially expressed genes yielded inaccurate interpretations. Many
upregulated genes included transcript variants that were either downregulated or had no
significant changes (Figures 4–8). Many downregulated genes included upregulated tran-
script variants and transcripts without significant differences (Figures 4–8). Furthermore,
genes that did not show significant changes in GE-based analyses expressed differentially
expressed transcript variants (Figures 4–8).

More detailed analyses revealed that the transcript variants’ copy number (TPM
value) plays an important role in determining the discrepancy between GE- and TE-based
analyses. Among the upregulated genes, approximately 86% of the low-copy-number
transcript variants were discordant, whereas it was about 62% in the case of high-copy-
number transcripts (Figure 5G,H). Among the downregulated genes, approximately 93%
of the low-copy-number transcript variants were discordant, whereas it was about 60% in
the case of high-copy-number transcripts (Figure 5G,H). These observations indicate that
low-copy-number transcript variants show more discrepancy. We suspect that statistical
analyses sort the low-copy-number transcript variants more towards the insignificant group
(Figure 5G). In contrast, the high-copy-number transcript variants stay more within the
expected differentially expressed gene groups (Figure 5H). Notably, we detected a different
pattern among the transcript variants corresponding to the insignificant group. While
90% of the low-copy-number transcript variants remained insignificant, it was reduced
to 70% among the high-copy-number transcripts (Figure 5G,H). The high-copy-number
transcript variants were sorted from the insignificant to the differentially expressed group
(Figure 5G,H). Based on these findings, we can assume that if the sample size is increased,
the genes or transcript variants in the insignificant group will decrease, and those in the
upregulated or downregulated groups will increase. However, as most RNA-Seq studies
include three samples in each group, we have used three libraries in each group.

We elucidated the underlying mechanism that results in the discrepant behavior of
RNA-Seq between GE-based and TE-based differential expression analyses (Figures 6–8).
The chosen genes specifically have notable up- and downregulations, but these display
contradicting regulations when compared to the expression value and fold change of
their individual transcript variants. We have also included statistically insignificant genes
that have statistically significant transcript variants—another example of the discordance
between both outputs of RNA sequencing. A gene can be identified as upregulated on a GE
basis if one or more of its transcript variants are highly upregulated despite one or more
of its transcript variants’ low-level downregulations (Figure 6). Similarly, a gene can be
identified as downregulated on a GE basis if one or more of its transcript variants are highly
downregulated despite one or more of its transcript variants’ low-level upregulations
(Figure 7). As expected, when a transcript variant of a gene shows upregulation and
another variant shows downregulation, that may result in an insignificant difference in
GE-based expression analysis despite the presence of two differentially expressed transcript
variants (Figure 8).

If transcript variants are not included in RNA-Seq analyses, we fail to identify mecha-
nisms that define a particular cell type. Cell-lineage-specific transcriptional and posttran-
scriptional machinery generates transcript variants of divergent molecular functions [45].
Without transcript variant consideration, we ignore transcriptional and posttranscriptional
mechanisms. Alternative promoters can also express transcript variants, suggesting that
without exploration of alternative transcript start sites, different regulatory mechanisms
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involved in gene expression and transcription initiation will remain unexplored. Lastly,
genes also express transcript variants as long noncoding RNAs that have gene regulatory
roles. Thus, we potentially fail to uncover valuable gene regulatory information if we do
not analyze the transcript variants at this level.

5. Conclusions

During RNA-Seq analyses, GE values are considered, and TE values of the transcript
variants are ignored to avoid relative procedural complexity. This study demonstrates the
errors that are made when GE-value-based differentially expressed genes are identified
and transcript variants are not considered. Our results clearly indicate that gene expression
analyses based on GE values are substantially inaccurate and do not enable a comprehensive
analysis or interpretation of differential gene expression in cells. RNA-Seq analyses should
consider TE values of the transcript variants to identify their differential expression.
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