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Abstract: Pericytes are versatile cells integral to the blood vessel walls of the microcirculation, where
they exhibit specific stem cell traits. They are essential in modulating blood flow, ensuring vascular
permeability, and maintaining homeostasis and are involved in the tissue repair process. The human
endometrium is a unique and complex tissue that serves as a natural scar-free healing model with
its cyclical repair and regeneration process every month. The regulation of pericytes has gained
increasing attention due to their involvement in various physiological and pathological processes.
However, endometrial pericytes are less well studied compared to the pericytes in other organs.
This review aims to provide a comprehensive overview of endometrial pericytes, with a focus on
elucidating their physiological function and potential implications in uterine disorders.

Keywords: pericyte; mesenchymal stem cell; endometrial repair; regeneration; endometrial fibrosis;
uterine disorder

1. Introduction

Pericytes, also known as Rouget cells, were first identified and named by Zimmerman
in 1923 [1]. In the early twentieth century, a population of contractile cells was discovered
enveloping the wall of the blood vessels [2]. They were given the name “pericytes” owing
to their anatomical position in a perivascular location, surrounding the arterioles and
capillaries, close to endothelial cells [3]. Pericytes are highly branched interstitial cells of
mesenchymal origin found across various organs and tissues [4]. They have critical roles in
regulating blood flow, mediating vascular permeability, maintaining tissue homeostasis,
and facilitating tissue repair and regeneration.

The human endometrium, a unique tissue rich in microvasculature, undergoes ap-
proximately 400 cycles of proliferation, differentiation, breakdown, shedding, and repair
throughout a woman’s reproductive lifespan [5]. Endometrial growth and differentiation
are tightly regulated by steroid hormones during the proliferative and secretory phases of
the menstrual cycle [6]. The absence of pregnancy leads to a drastic decline in progesterone
levels, resulting in vasoconstriction of the basal arteries and causing the functional layer
of the endometrium to disintegrate and shed during menstruation. This process typically
occurs swiftly without scarring, along with repair and re-epithelialization being completed
within 48 h of the onset of shedding [7]. The initial repair phase of endometrial regeneration
is independent of steroid hormones [8], involving a complex interplay of inflammatory,
coagulation, and angiogenic factors needed for tissue stabilization and homeostasis during
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the early proliferative phase [9]. Endometrial vascular remodeling plays a crucial role in
minimizing blood loss during menstruation.

However, the cellular and molecular mechanisms of endometrial vascular remodeling
and the regeneration of various cell lineages, particularly the involvement of pericytes,
remain poorly understood and warrant further investigation. This review aims to offer
a comprehensive view of the origin, molecular markers, characteristics, and functions of
endometrial pericytes, as well as their implications for uterine disorders. Elucidating the
role of pericytes in endometrial physiology and pathology holds promise for developing
pericyte-targeted therapies for uterine disorders.

2. Characterization of Pericytes in the Endometrium
2.1. Origin

Pericytes are notable for their location along the arterioles and capillaries, where they
form close associations with endothelial cells [10]. Blood vessels consisting of pericytes
and endothelial cells are some of the first organs to develop from the embryonic mesoderm
during embryonic development [11]. In mature tissues, pericytes are situated along the
outer wall of microvascular endothelial cells and are easily identified by their elongated
elliptical nuclei with a scant surrounding cytoplasm [12]. Their cytoplasm extends to
form finger-like projections that traverse the length of the microvessels, enveloping and
supporting the vessel wall. Through multiple intercellular junctions and a shared basement
membrane, pericytes maintain close physical ties with endothelial cells (Figure 1).

Figure 1. Schematic illustration of perivascular cells in the endometrium. Created using BioRender.

As shown in Figure 1, pericytes encircle the endothelial cells in capillaries and mi-
crovessels across both the functional and basalis layers of the endometrium. In contrast,
as another type of perivascular cells, adventitial cells mainly reside in the larger vessels
within the basalis layer [13]. The adventitial cells in the outermost layer of large vessels
contribute to the formation of the vascular structure and stiffness. Functionally, they are
involved in stabilizing the blood vessels [14]. Studies utilizing a three-dimensional gel
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matrix in ex vivo co-culture have shown that the absence of pericytes results in the loss
of microvascular integrity [15]. A study conducted on porcine endometrium provided
some novel insights into these perivascular cells by revealing the existence of potential
mesenchymal stem/progenitor cells situated in the perivascular location.

Additionally, it was suggested that the CD105 and CD146 stromal cells, often more
differentiated, could be traced back to their perivascular ancestors [16]. Previous studies
have shown controversial results about whether endometrial scratching could improve
in vitro fertilization (IVF) outcomes [17]. A recent study suggested that endometrial injury
may improve IVF outcomes in women with recurrent implantation failure by influencing
perivascular endometrial mesenchymal stem/progenitor cells (eMSCs), which are thought
to regenerate the stromal vascular component of the functional layer every month [18].

In the endometrial tissue, it has been found that perivascular cells, including pericytes
and adventitial cells, are multipotent cells of mesenchymal origin [13]. Human endometrial
pericytes are believed to play a key role in endometrial vascularization, immunomodulation,
repair, and reconstruction [19]. However, no consensus exists concerning the source of
endometrial pericytes so far. The hierarchical relationship between pericytes and adventitial
cells also requires further investigation.

2.2. Molecular Markers

Reaching a consensus on how to define pericytes has posed a challenge for several
decades. As a highly plastic cell type, their molecular signature, morphological markers,
and functional diversity have proven to be both complex and dynamically changing.

Their complex phenotypic characteristics might be explained by their diverse de-
velopmental origins and vessel recruitment patterns, as well as their specific anatomical
positions [20]. In organs other than the endometrium, pericyte markers have usually been
selected based on a rigorous assessment of their transcriptional abundance, specificity,
and uniformity, as informed by single-cell RNA sequencing (scRNA-seq) data [21]. The
chosen markers have then been validated through in situ analysis, which has served as an
additional selection criterion. Among all of the markers identified so far across multiple
organs, there are several universal and stable pericyte markers, such as neural antigen 2
(NG2), platelet-derived growth factor receptor beta (PDGFRb), and regulator of G protein
signaling 5 (RGS5) [21]. There is also a consensus in the research community that pericytes
typically do not express hematopoietic or endothelial markers like CD45 and CD31 [22].
As of today, pericytes are usually identified by combining information from morpholog-
ical and molecular markers with the localization of the cell. It is, however, important to
interpret the current literature with caution since no definite molecular markers have been
identified for endometrial pericytes. Historically, endometrial pericytes have been identi-
fied as SUSD2+ cells [23]. Along with the development of sequencing technologies, more
molecular markers at the transcriptomic level have been proposed. Recent advancements
in scRNA-seq have enabled the identification of a wide range of putative pericyte markers
and tissue-specific characteristics. Indeed, our previous scRNA-seq study identified a set of
common signature genes for human endometrial pericytes: RGS5, Actin Alpha 2, Smooth
Muscle (ACTA2), Caveolin 1 (CAV1), HIG1 Hypoxia-Inducible Domain Family Member 1B
(HIGD1B), and Collagen Type IV Alpha 1 Chain (COL4A1) [24]. Furthermore, the pericyte
cluster was divided into two subtypes according to the expression level of RGS5: pericyte
subtype 1 with high RGS5 presents as CSPG4+, CNN1low, and MYH11low, and pericyte
subtype 2 shows a CSPG-, CNN1high, MYH11high profile [19]. We speculated that pericyte 1
represented a classic mural cell population, while pericyte 2 was more like a smooth muscle
or contractile pericyte. In the future, by utilizing genetically encoded lineage markers
and lineage tracing technology, it may be possible to track endometrial pericytes as they
divide and differentiate them into various cell types, which could aid in characterizing
these cells [25].
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2.3. Plasticity

It has been proposed that plasticity is an essential feature of the stem state [26].
Several studies have demonstrated that pericytes exhibit properties akin to MSCs, including
multilineage differentiation potential, plasticity, and a similar set of surface markers [13].
The abluminal position seems to be a preferential niche for several types of multipotential
progenitor cells, regardless of their tissue of origin. This position enables them to maximize
their properties, such as organogenesis, tissue renewal, and regeneration post-injury.

Pericytes in the endometrium hold high plasticity and the potential for multilineage
differentiation. As described above, CD34+ adventitial cells and CD146+ pericytes are
two types of perivascular cells derived from the human endometrium that both display
MSC phenotypes. It has been reported that CD34+ adventitial cells and CD146+ pericytes
can differentiate into endometrial stromal-like cells in vitro [27]. The blood vessel wall
harboring these perivascular cell types is considered a source of multipotent cells [22]. One
study revealed that endometrial MSCs are multipotent clonogenic pericytes that exhibit self-
renewal and lineage-specific pathways, the capacity to adapt to endometrial desquamation
and regeneration conditions, and a genetic program indicative of their differentiated lineage,
of the stromal fibroblast [28]. In essence, their unique location and potential to differentiate
into stromal-like cells grant them the substantial capacity to contribute to endometrial
regeneration and repair.

3. The Roles of Pericytes in the Endometrium
3.1. Vascularization

Pericytes are critical players in angiogenesis and vascularization, contributing to vas-
culogenic processes, vessel maturation, capillary permeability regulation, and blood flow
control. They support endothelial cells by facilitating extracellular matrix production and
providing structural stability to developing blood vessels [28]. Additionally, pericytes
produce angiogenic factors such as transforming growth factor beta (TGF-β) and vascu-
lar endothelial growth factor (VEGF), which stimulate endothelial cell proliferation and
transformation, thereby promoting new vessel formation [29].

In the endometrium, pericytes play several crucial roles, particularly during the late
secretory phase and menstruation. As progesterone levels decline, the endometrial vas-
culature undergoes vascular stasis and vasoconstriction, with a short relaxation of the
arterioles resulting in bleeding [30]. During menstruation, hemostasis and vascular repair
occur simultaneously, with angiogenesis being essential for endometrial repair. Pericytes
also contribute to the maturation of the endometrial vasculature by stabilizing immature
basal and proliferating endothelial cells, creating a foundation for further endometrial
cell proliferation. Furthermore, pericytes maintain vascular stability and strengthen the
endothelial cell wall through direct contact and paracrine regulation [31], secreting and
activating signaling molecules such as ANGPT1 and TGF-β [29,31,32]. The proliferative
branching length of the endothelial cells during angiogenesis is crucial for establishing a
functional capillary network and vascular remodeling. For instance, by generating a diph-
theria toxin/DTR-mediated pericyte depletion murine model (DTRiPC double-transgenic
mice), Eilken et al. [33] demonstrated that pericytes regulate endothelial cell proliferation
and branching out in retinal angiogenesis through the VEGF-A/VEGFR2 signaling pathway.
Thus, we believe that pericytes are indispensable for angiogenesis and vascularization in
the endometrium, playing multifaceted roles in supporting the endothelial cells, stabilizing
the blood vessels, and facilitating vascular repair and regeneration.

3.2. Immunomodulation

Efficient endometrial remodeling during the breakdown and early proliferative phases
requires the involvement of immune responses activated by various immune cells, such
as uterine natural killer cells (uNKs), macrophages (uMCs), neutrophils, dendritic cells
(DCs), and T cells [34,35]. During the late secretory phase, as progesterone levels decline,
the endometrium experiences a localized inflammatory response, resulting in edema and
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the influx of specific maternal immune cells into the stroma [36]. Numerous molecules
released by the pericytes are involved in immunomodulation during the tissue-healing
process [37]. In the brain, pericytes are known to participate in immunosurveillance and
modulation of neuroinflammation [38]. Similarly, in the endometrium, pericytes play a role
in wound healing, which involves massive neutrophil infiltration, immune cell activation,
and immunomodulation [39].

Pericytes secrete a basal secretome that includes cytokines and adhesion molecules
such as IL-1α, IL-1β, IL-6, E-selectin, and vascular cell adhesion molecule (VCAM)-1, as
well as angiogenic factors [40]. The basal secretome of the pericytes plays an important
role in tissue-specific inflammation, immunomodulation, tissue repair, regeneration, and
preserving vessel integrity. Following exposure stimuli, pericytes act as the frontline for
sensing environmental signals and release both an induced secretome unique to the given
stimulus and an increased amount of the basal secretome [37,41]. For instance, pericytes in
the brain increase the secretion of nerve growth factor (NGF), brain-derived neurotrophic
factor (BDNF), and neurotrophin (NT)-3 in response to hypoxia [42].

To our knowledge, studies about the endometrial pericyte secretome are limited. A
few studies have shown that endometrial pericytes secrete microvesicles and exosomes
containing cytokines that participate in the immune response observed during endometrial
shedding and regeneration [43,44]. However, we do not know how endometrial pericytes
respond to various pathological conditions. The immunomodulatory functions of pericytes
need in-depth investigation in different biological circumstances.

3.3. Endometrial Repair and Regeneration

The remarkable regenerative ability of the endometrium indicates the presence of
stem/progenitor cells, which are believed to reside in the basalis layer [45]. Purified
perivascular cells display a varied mesodermal developmental potential and blend in with
conventionally derived mesenchymal stem cells upon in vitro culture [46]. Considering
the shared surface makers and functions between MSCs and pericytes, particularly in the
endometrium, researchers believe that endometrial pericytes might act as native MSCs in
the endometrium [47]. This was also supported by a study where eMSCs in endometriosis
had a similar gene expression profile to endometrial stromal fibroblasts in the eutopic
endometrium in endometriosis, with the former thought to be the progenitors of the
latter [48].

The onset of menstruation is initiated by a decrease in ovarian progesterone levels,
resulting in the release of several inflammatory mediators, primarily produced by the cells
surrounding the spiral arterioles in the endometrium [9,49]. This hormonal shift may also
affect pericytes, which respond to changes in the permeability of the blood vessels and
cytokine release. The prominent distribution of progesterone receptors in perivascular cells
suggests that progesterone-induced changes in the endometrium are primarily mediated
via these cells rather than the endothelial cells themselves [49].

Both in vivo and in vitro studies have implied that pericytes are a potential origin of
MSCs, as they can differentiate into various cell types, including endothelial cells, vascular
smooth muscle cells, fibroblasts, adipocytes, chondrocytes, and tissue-specific cells [50].
Pericytes respond to changes in the tissue-specific environment by altering their phenotype
and also hold stemness properties, making them a potential cell source of endometrial
repair and regeneration. For example, one single-cell RNA sequencing study identified
a unique population of PDGFRβ+ mesenchymal stromal cells that gained a distinct tran-
scriptomic signature specific to the epithelial cells in response to endometrial shedding,
suggesting a transition from stromal to epithelial cells [51]. This study provided evidence in-
dicating that stromal fibroblasts may contribute to restoring the luminal epithelium during
endometrial regeneration through a mesenchymal-to-epithelial transition. In 2020, another
study investigated the regenerative potential of two perivascular stem cell populations
in the human endometrium [27]. They found that CD34+ adventitial cells and CD146+
pericytes both showed MSC phenotypes after in vitro culture and could be induced to
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differentiate into endometrial endothelial-like cells and stromal-like cells. However, after
in vivo xenotransplantation and eutopic transplantation into a rat model, these endometrial
perivascular stem cells presented limited regenerative potential. Even though there are
close similarities between endometrial MSCs and pericytes, no study has investigated the
lineage relationship between them so far. In the bone marrow, it has been demonstrated
that pericyte progenitors are highly immature cells with greater plasticity and engraftment
potential compared to MSCs, indicating that endometrial MSCs might be the progeny of
endometrial pericytes [52].

Considering pericytes’ roles in supporting angiogenesis and modulating immune re-
sponses and their differentiation potential, their significance in ensuring the endometrium’s
overall health and functional performance is indisputable. Future research focused on the
mechanisms by which pericytes contribute to endometrial regeneration may shed light on
potential therapeutic targets for various uterine disorders.

3.4. Endometrial Decidulization

Decidualization denotes the functional and morphological transformation of the en-
dometrial lining and is required for blastocyst implantation [53]. The decidualization
process is intricately associated with the unique spatial and temporal expression patterns
of several key molecules in endometrial stromal cells. Studies have highlighted the im-
portance of angiotensin II, interleukin-15 (IL-15), and aminopeptidase A in regulating
this complex process. Ando et al. [54] documented the premenstrual disappearance of
aminopeptidase A from the endometrial stromal cells surrounding the spiral arteries and
arterioles, a change that plays a critical role in the preparation of the endometrium for
implantation. Moreover, Ahmed et al. [55] localized angiotensin II and its receptor subtypes
within the human endometrium, identifying a novel high-affinity angiotensin II binding
site that may have implications for vascular regulation during the menstrual cycle. Addi-
tionally, Kitaya et al. [56] reported on the expression of IL-15 in the human endometrium
and decidua, suggesting its role in immune modulation during early pregnancy.

Several studies indicate that endometrial pericytes also play a crucial role in the process
of decidualization. For instance, one study demonstrated that precursors of human decidual
stromal cells are pericyte-like cells, expressing pericyte markers and angiogenic factors, and
show chemotactic and contractile abilities under the effects of cytokines [16]. Murakami
et al. [57] highlighted that the secretome switch during decidualization is a pivotal event
that supports the establishment of a receptive endometrial environment, promoting the
survival and function of the decidual cells within the niche. An exometabolomic analysis
by Harden et al. [58] demonstrated distinct metabolic shifts in decidualizing stromal and
perivascular cells, further elucidating the complex interplay between endometrial pericytes
and stroma during the decidualization process. Furthermore, research by Gorsek Sparovec
et al. [59] provided insights into the fate of SUSD2+ endometrial mesenchymal stem cells,
showing that these cells, which include pericytes, undergo specific transformations during
decidualization, underscoring their dynamic role in maintaining endometrial integrity and
function during early pregnancy.

Collectively, these findings emphasize the dynamic molecular environment within the
endometrium and underscore the significance of perivascular stromal cells in the successful
decidualization and implantation process. Further knowledge on pericyte function and the
molecular mechanisms in the decidualization process may create new insights contributing
to our understanding of the establishment and maintenance of early pregnancy.

4. Pericytes in Endometrial Pathology
4.1. Intrauterine Adhesions and a Thin Endometrium

Intrauterine adhesions, also named Asherman’s syndrome, constitute a gynecological
condition that usually results from deep trauma to the endometrium, followed by tissue
fibrosis obliterating the uterine cavity partially or completely [60]. Histologically, the en-
dometrial tissue becomes thin, pale, atrophic, and avascular in most cases. Functionally, the
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endometrium is usually unresponsive to steroid hormones, with poor growth of the glan-
dular epithelium and impaired vascular development, resulting in a thin endometrium [61].
Currently, surgical treatment with resection of fibrotic adhesions is utilized to restore the
uterine cavity [62]. It is, however, critical to also restore the function of the endometrium,
including regeneration of the parenchymal cells and neovascularization, for patients with
fertility requirements.

The fibrosis process following injury is a typical wound-healing process. It is reported
that an imbalanced tissue repair response following an acute or chronic injury can lead to
fibrosis, characterized by the abnormal accumulation of activated and contractile αSMA+
myofibroblasts [63]. Myofibroblasts release significant amounts of inflammatory mediators,
growth factors, and the extracellular matrix (ECM) components, contributing to aberrant
ECM remodeling. In recent years, several studies have reported that pericytes might serve
as the precursors of myofibroblasts, contributing to organ fibrosis [64–66]. It has also
been reported that pericytes may be involved in endometrial fibrosis [62]. The pericyte-to-
myofibroblast transition is proposed as a key mechanism contributing to various fibrotic
conditions [20]. In addition, endometrial MSCs have been regarded as crucial to enabling
endometrial remodeling [49].

MSCs occupy a perivascular niche and contain regenerative and immunomodulatory
properties. Given these characteristics, MSCs of endometrial and non-endometrial origin
(bone marrow, adipose, or placental) have been investigated for therapeutic purposes.
However, the specific role of endometrial pericytes in the pathogenesis of intrauterine
adhesions warrants further investigation.

4.2. Adenomyosis and Endometriosis

Adenomyosis is a prevalent gynecological disorder characterized by the invasion of
the endometrial glands into the inner layer of the myometrium, accompanied by muscular
infiltration and microenvironmental factors that stimulate the growth of the smooth muscle
cells [67]. As a sisterhood disease, endometriosis is characterized by the endometrial glands
and stroma residing outside of the uterus [68]. Despite their common occurrence, their
etiology remains elusive. Recent studies suggest that the pericytes may play a crucial role in
the development and progression of adenomyosis [69]. The multipotency of the pericytes,
coupled with their proximity to the myometrial layer, suggests that they may contribute to
the pathogenesis of adenomyosis as the origin. A retrospective analysis of histopathological
slides revealed the infiltration of the uterine blood vessels in adenomyotic lesions and
suggested the presence of mesenchymal-stem-cell-like cells in the perivascular niche [70].
This finding supports the notion that adenomyosis may originate from multipotent vascular
pericytes located in the myometrial layer. Furthermore, Sieiński et al. [71] found that
adenomyotic interstitial proliferation originates from perivascular interstitial growth, which
suggests that the potential pluripotent stem cell population involved in adenomyosis could
be pericytes. The potential role of pericytes in the development of adenomyosis is further
supported by the observation that adenomyotic lesions exhibit increased vascularity and
angiogenesis [72]. Pericytes contribute to vascular remodeling and stabilization, which
could facilitate the invasive behavior of the ectopic lesions in adenomyosis. In addition,
one study demonstrated that endometrial fibroblasts, as the progeny of eMSCs, exhibited
progesterone resistance inherited from the eMSCs and a pro-inflammatory phenotype in
endometriosis [48].

Thus, the current evidence suggests that pericytes may play a significant role in the
initiation and development of adenomyosis. The function of pericytes in endometriosis
needs further exploration. Future studies could focus on understanding the underlying
molecular mechanisms by which pericytes may contribute to adenomyosis. Such knowl-
edge is vital to developing novel therapeutic interventions targeting the pericytes for the
treatment of adenomyosis and endometriosis.
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4.3. Abnormal Uterine Bleeding and Related Conditions

Abnormal uterine bleeding (AUB) is a common gynecological condition with het-
erogeneous etiologies, usually causing a negative impact on women’s quality of life [73].
Idiopathic AUB of endometrial origin is thought to be associated with immature and fragile
microvessels [74]. One clinical study demonstrated that low pericyte coverage and rear-
rangement of the pericytes may play a causal role in idiopathic heavy menstrual bleeding
(HMB) and contribute to excessive blood loss [74]. The researchers observed a correlation
between reduced pericyte coverage of the endometrial microvessels and the increased
expression of VEGF-A, a potent angiogenic factor, suggesting a potential mechanism for
abnormal bleeding. In addition to its possible role in HMB, pericytes may also be involved
in endometrial calcification. Starostanko et al. suggested that CD34+ adventitial cells could
contribute to the pathogenesis of endometrial calcification, which, in turn, may lead to
irregular uterine bleeding, chronic pelvic pain, and even infertility [75]. Also, other con-
ditions related to abnormal uterine bleeding, such as polycystic ovary syndrome (PCOS),
have been suggested to have altered eMSC gene expression profiles, suggesting underly-
ing endometrial pericytes and possible vasculature abnormalities in women with these
conditions [76], which warrants further research [77].

Taken together, the loss of pericytes from the endometrial microvessels may trigger
aberrant blood vessel remodeling, resulting in abnormal bleeding patterns. The finding
opens up new avenues for pericyte-targeted therapies aiming to restore normal vessel
function and maintain homeostasis of the endometrium.

5. Future Perspectives

Pericytes are a diverse population of cells that play a crucial role in the maintenance
of endometrial homeostasis through vascular remodeling, immunomodulation, repair, and
regenerative processes. To date, many critical questions regarding endometrial pericytes re-
main unanswered, such as their exact localization, characterization of endometrial pericyte
sets and subsets, their molecular signatures, the mechanisms responsible for their biological
activities, and their involvement in different pathological events. Future research should
focus on precisely characterizing their different subtypes, their hierarchical relationships,
and their distinct functions both temporally and spatially during endometrial repair and
regeneration. Understanding the role of the perivascular microenvironment, including
interactions with other cell types and cellular components, will be vital to understanding
their functional role in the endometrium. Elucidating the cellular and molecular mecha-
nisms and functions of pericytes will pave the way for more tailored therapies for various
uterine disorders. Such advances hold the potential to significantly improve the clinical
outcomes for patients by offering more precise and effective treatment options.

6. Conclusions

In summary, a deeper understanding of the endometrial pericytes and their role in
both healthy cycling endometria and pathological endometria is essential to advancing the
field of reproductive medicine. This knowledge will not only enhance our comprehension
of endometrial biology but also accelerate the development of innovative therapeutic
approaches to managing several uterine disorders.
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